Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 20 de 25
Filtrar
1.
Plant Cell Environ ; 2024 Aug 05.
Artículo en Inglés | MEDLINE | ID: mdl-39101679

RESUMEN

Future changes in climate, together with rising atmospheric CO 2 ${\text{CO}}_{2}$ , may reorganise the functional composition of ecosystems. Without long-term historical data, predicting how traits will respond to environmental conditions-in particular, water availability-remains a challenge. While eco-evolutionary optimality theory (EEO) can provide insight into how plants adapt to their environment, EEO approaches to date have been formulated on the assumption that plants maximise carbon gain, which omits the important role of tissue construction and size in determining growth rates and fitness. Here, we show how an expanded optimisation framework, focussed on individual growth rate, enables us to explain shifts in four key traits: leaf mass per area, sapwood area to leaf area ratio (Huber value), wood density and sapwood-specific conductivity in response to soil moisture, atmospheric aridity, CO 2 ${\text{CO}}_{2}$ and light availability. In particular, we predict that as conditions become increasingly dry, height-growth optimising traits shift from resource-acquisitive strategies to resource-conservative strategies, consistent with empirical responses across current environmental gradients of rainfall. These findings can explain both the shift in traits and turnover of species along existing environmental gradients and changing future conditions and highlight the importance of both carbon assimilation and tissue construction in shaping the functional composition of vegetation across climates.

2.
Ecol Appl ; 31(6): e02389, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-34142402

RESUMEN

The rivers of Appalachia (United States) are among the most biologically diverse freshwater ecosystems in the temperate zone and are home to numerous endemic aquatic organisms. Throughout the Central Appalachian ecoregion, extensive surface coal mines generate alkaline mine drainage that raises the pH, salinity, and trace element concentrations in downstream waters. Previous regional assessments have found significant declines in stream macroinvertebrate and fish communities after draining these mined areas. Here, we expand these assessments with a more comprehensive evaluation across a broad range of organisms (bacteria, algae, macroinvertebrates, all eukaryotes, and fish) using high-throughput amplicon sequencing of environmental DNA (eDNA). We collected water samples from 93 streams in Central Appalachia (West Virginia, United States) spanning a gradient of mountaintop coal mining intensity and legacy to assess how this land use alters downstream water chemistry and affects aquatic biodiversity. For each group of organisms, we identified the sensitive and tolerant taxa along the gradient and calculated stream specific conductivity thresholds in which large synchronous declines in diversity were observed. Streams below mining operations had steep declines in diversity (-18 to -41%) and substantial shifts in community composition that were consistent across multiple taxonomic groups. Overall, large synchronous declines in bacterial, algal, and macroinvertebrate communities occurred even at low levels of mining impact at stream specific conductivity thresholds of 150-200 µS/cm that are substantially below the current U.S. Environmental Protection Agency aquatic life benchmark of 300 µS/cm for Central Appalachian streams. We show that extensive coal surface mining activities led to the extirpation of 40% of biodiversity from impacted rivers throughout the region and that current water quality criteria are likely not protective for many groups of aquatic organisms.


Asunto(s)
Minas de Carbón , Contaminantes Químicos del Agua , Animales , Biodiversidad , Ecosistema , Monitoreo del Ambiente , Invertebrados , Minería , Ríos , Contaminantes Químicos del Agua/análisis
3.
New Phytol ; 228(2): 512-524, 2020 10.
Artículo en Inglés | MEDLINE | ID: mdl-32496575

RESUMEN

Hydraulic segmentation at the stem-leaf transition predicts higher hydraulic resistance in leaves than in stems. Vulnerability segmentation, however, predicts lower embolism resistance in leaves. Both mechanisms should theoretically favour runaway embolism in leaves to preserve expensive organs such as stems, and should be tested for any potential coordination. We investigated the theoretical leaf-specific conductivity based on an anatomical approach to quantify the degree of hydraulic segmentation across 21 tropical rainforest tree species. Xylem resistance to embolism in stems (flow-centrifugation technique) and leaves (optical visualization method) was quantified to assess vulnerability segmentation. We found a pervasive hydraulic segmentation across species, but with a strong variability in the degree of segmentation. Despite a clear continuum in the degree of vulnerability segmentation, eight species showed a positive vulnerability segmentation (leaves less resistant to embolism than stems), whereas the remaining species studied exhibited a negative or no vulnerability segmentation. The degree of vulnerability segmentation was positively related to the degree of hydraulic segmentation, such that segmented species promote both mechanisms to hydraulically decouple leaf xylem from stem xylem. To what extent hydraulic and vulnerability segmentation determine drought resistance requires further integration of the leaf-stem transition at the whole-plant level, including both xylem and outer xylem tissue.


Asunto(s)
Árboles , Xilema , Sequías , Hojas de la Planta , Tallos de la Planta , Bosque Lluvioso , Agua
4.
J Exp Bot ; 71(14): 4232-4242, 2020 07 06.
Artículo en Inglés | MEDLINE | ID: mdl-32219309

RESUMEN

Plant hydraulic traits are essential metrics for characterizing variation in plant function, but they vary markedly with plant size and position in a plant. We explore the potential effect of conduit widening on variation in hydraulic traits along the stem. We examined three species that differ in conduit diameter at the stem base for a given height (Moringa oleifera, Casimiroa edulis, and Pinus ayacahuite). We made anatomical and hydraulic measurements at different distances from the stem tip, constructed vulnerability curves, and examined the safety-efficiency trade-off with height-standardized data. Our results showed that segment-specific hydraulic resistance varied predictably along the stem, paralleling changes in mean conduit diameter and total number of conduits. The Huber value and leaf specific conductivity also varied depending on the sampling point. Vulnerability curves were markedly less noisy with height standardization, making the vulnerability-efficiency trade-off clearer. Because conduits widen predictably along the stem, taking height and distance from the tip into account provides a way of enhancing comparability and interpretation of hydraulic traits. Our results suggest the need for rethinking hydraulic sampling for comparing plant functional differences and strategies across individuals.


Asunto(s)
Pinus , Tracheophyta , Hojas de la Planta , Agua , Xilema
5.
Sensors (Basel) ; 15(5): 12080-91, 2015 May 22.
Artículo en Inglés | MEDLINE | ID: mdl-26007745

RESUMEN

The paper presents a new approach in the field of precise electrolytic conductivity measurements with planar thin- and thick-film electrodes. This novel measuring method was developed for measurement with comb-like electrodes called interdigitated electrodes (IDEs). Correction characteristics over a wide range of specific conductivities were determined from an interface impedance characterization of the thick-film IDEs. The local maximum of the capacitive part of the interface impedance is used for corrections to get linear responses. The measuring frequency was determined at a wide range of measured conductivity. An iteration mode of measurements was suggested to precisely measure the conductivity at the right frequency in order to achieve a highly accurate response. The method takes precise conductivity measurements in concentration ranges from 10(-6) to 1 M without electrode cell replacement.

6.
Data Brief ; 50: 109557, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37753263

RESUMEN

Groundwater from various shallow and deep reservoirs converges in interaction with marine waters into the limestone aquifer of the Balaruc peninsula (Thau lagoon, southern France). This aquifer faces temporary phenomena of marine water intrusion through the Vise submarine spring located at -29.5 m below the lagoon level. Since the 1960s, seven flow reversal phenomena have occurred, the last one occurring between 11/28/2020 and 03/14/2022. During these phenomena, which can last from a few weeks to several months, the salty water is absorbed from the lagoon to the conduit of the submarine spring, which leads to the salinization of the underlying karst aquifer. The monitoring of flow, water specific conductivity and water temperature data from the karst submarine spring is a key element of the research project to understand the hydrogeological functioning of the karst aquifer under normal conditions or during flow reversal periods. This monitoring allows the characterization of the (in- or out-) flows at the submarine spring, the evaluation of the volume or mass balances, the identification of the hydrogeological and physico-chemical responses (water temperature, specific conductivity) observed within the karstic aquifer. Here, we present the means implemented offshore to acquire data at the submarine spring over the 06/25/2019 - 12/31/2022 time period together with lagoon water's physico-chemical parameters and levels and onshore groundwater's physico-chemical parameters and levels acquired at springs and boreholes from the karst aquifer.

7.
Front Plant Sci ; 14: 1127292, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37377798

RESUMEN

Vessel traits are key in understanding trees' hydraulic efficiency, and related characteristics like growth performance and drought tolerance. While most plant hydraulic studies have focused on aboveground organs, our understanding of root hydraulic functioning and trait coordination across organs remains limited. Furthermore, studies from seasonally dry (sub-)tropical ecosystems and mountain forests are virtually lacking and uncertainties remain regarding potentially different hydraulic strategies of plants differing in leaf habit. Here, we compared wood anatomical traits and specific hydraulic conductivities between coarse roots and small branches of five drought-deciduous and eight evergreen angiosperm tree species in a seasonally dry subtropical Afromontane forest in Ethiopia. We hypothesized that largest vessels and highest hydraulic conductivities are found in roots, with greater vessel tapering between roots and equally-sized branches in evergreen angiosperms due to their drought-tolerating strategy. We further hypothesized that the hydraulic efficiencies of root and branches cannot be predicted from wood density, but that wood densities across organs are generally related. Root-to-branch ratios of conduit diameters varied between 0.8 and 2.8, indicating considerable differences in tapering from coarse roots to small branches. While deciduous trees showed larger branch xylem vessels compared to evergreen angiosperms, root-to-branch ratios were highly variable within both leaf habit types, and evergreen species did not show a more pronounced degree of tapering. Empirically determined hydraulic conductivity and corresponding root-to-branch ratios were similar between both leaf habit types. Wood density of angiosperm roots was negatively related to hydraulic efficiency and vessel dimensions; weaker relationships were found in branches. Wood density of small branches was neither related to stem nor coarse root wood densities. We conclude that in seasonally dry subtropical forests, similar-sized coarse roots hold larger xylem vessels than small branches, but the degree of tapering from roots to branches is highly variable. Our results indicate that leaf habit does not necessarily influence the relationship between coarse root and branch hydraulic traits. However, larger conduits in branches and a low carbon investment in less dense wood may be a prerequisite for high growth rates of drought-deciduous trees during their shortened growing season. The correlation of stem and root wood densities with root hydraulic traits but not branch wood points toward large trade-offs in branch xylem towards mechanical properties.

8.
Water (Basel) ; 15(2): 1-26, 2023 Jan 06.
Artículo en Inglés | MEDLINE | ID: mdl-38269364

RESUMEN

Wastewaters and leachates from various inland resource extraction activities contain high ionic concentrations and differ in ionic composition, which complicates the understanding and effective management of their relative risks to stream ecosystems. To this end, we conducted a stream mesocosm dose-response experiment using two dosing recipes prepared from industrial salts. One recipe was designed to generally reflect the major ion composition of deep well brines (DWB) produced from gas wells (primarily Na+, Ca2+, and Cl-) and the other, the major ion composition of mountaintop mining (MTM) leachates from coal extraction operations (using salts dissociating to Ca2+, Mg2+, Na+, SO42- and HCO3-)-both sources being extensive in the Central Appalachians of the USA. The recipes were dosed at environmentally relevant nominal concentrations of total dissolved solids (TDS) spanning 100 to 2000 mg/L for 43 d under continuous flow-through conditions. The colonizing native algal periphyton and benthic invertebrates comprising the mesocosm ecology were assessed with response sensitivity distributions (RSDs) and hazard concentrations (HCs) at the taxa, community (as assemblages), and system (as primary and secondary production) levels. Single-species toxicity tests were run with the same recipes. Dosing the MTM recipe resulted in a significant loss of secondary production and invertebrate taxa assemblages that diverged from the control at all concentrations tested. Comparatively, intermediate doses of the DWB recipe had little consequence or increased secondary production (for emergence only) and had assemblages less different from the control. Only the highest dose of the DWB recipe had a negative impact on certain ecologies. The MTM recipe appeared more toxic, but overall, for both types of resource extraction wastewaters, the mesocosm responses suggested significant changes in stream ecology would not be expected for specific conductivity below 300 µS/cm, a published aquatic life benchmark suggested for the region.

9.
Plant Direct ; 6(1): e371, 2022 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-35028493

RESUMEN

The rise in atmospheric CO2 has a profound impact on plants physiology and performance. Stomatal gas exchange such as reduction in water loss via transpiration and higher photosynthetic rates are among the key plant physiological traits altered by the increase of CO2. Water acquired in plant roots is transported via the xylem vessels to the shoots. Under conditions of elevated CO2, water flux decreases due to higher water use efficiency and a decline in stomatal conductance. However, the mechanism by which the shoot vascular development is affected under elevated CO2 is still largely unclear in herbaceous crops. In the current study, tomato plants were exposed to either 400 or 800 ppm of CO2 and were analyzed for growth, leaf area, gas exchange rate, and petiole anatomy. Elevated CO2 caused a reduction in metaxylem vessel diameter, which in turn, decreased leaf theatrical conductivity by 400% as compared with plants grown under ambient CO2. This work links anatomical changes in the petioles to the rise in atmospheric CO2 and water use. Plant water demand declined under elevated CO2, while photosynthesis increased. Thus, the decrease in leaf specific conductivity was attributed to lower water consumption in leaf gas exchange and, by extension, to higher leaf water use efficiency. As the global climate changes and water scarcity becomes more common, such anatomical alterations caused by elevated CO2 may affect plant response to water limitation. Further research on petiole anatomical alterations under conditions of combined climate change factors such as drought and heat with elevated CO2 may assist in clarifying the responses expected by future climate scenarios.

10.
Materials (Basel) ; 13(22)2020 Nov 22.
Artículo en Inglés | MEDLINE | ID: mdl-33266428

RESUMEN

Results of studies focusing on the electric behavior of Bi6Fe2Ti3O18 (BFTO) ceramics are reported. BFTO ceramics were fabricated by solid state reaction methods. The simple oxides Bi2O3, TiO2, and Fe2O3 were used as starting materials. Immittance spectroscopy was chosen as a method to characterize electric and dielectric properties of polycrystalline ceramics. The experimental data were measured in the frequency range Δν = (10-1-107) Hz and the temperature range ΔT = (-120-200) °C. Analysis of immittance data was performed in terms of complex impedance, electric modulus function, and conductivity. The activation energy corresponding to a non-Debye type of relaxation was found to be EA = 0.573 eV, whereas the activation energy of conductivity relaxation frequency was found to be EA = 0.570 eV. An assumption of a hopping conductivity mechanism for BFTO ceramics was studied by 'universal' Jonscher's law. A value of the exponents was found to be within the "Jonscher's range" (0.54 ≤ n ≤ 0.72). The dc-conductivity was extracted from the measurements. Activation energy for dc-conductivity was calculated to be EDC = 0.78 eV, whereas the dc hopping activation energy was found to be EH = 0.63 eV. The obtained results were discussed in terms of the jump relaxation model.

11.
Plants (Basel) ; 9(6)2020 May 28.
Artículo en Inglés | MEDLINE | ID: mdl-32481734

RESUMEN

Many halophytic physiological traits related to the tolerance of plants to salinity excess have been extensively studied, with a focus on biomass and/or gas exchange parameters. To gain a more complete understanding of whether salinity excess affects the physiological performance of halophytes, an experiment was performed using the halophyte Atriplex halimus L. as a model. A. halimus plants were subjected to two salinity treatments (171 and 513 mM NaCl) over 60 days in a controlled environment. After this period, dry biomass, specific stem conductivity, water potential at turgor loss point, osmotic potential, gas exchange parameters, and the fluorescence of chlorophyll a derived parameters were assessed in order to obtain knowledge about the differences in vulnerability that these parameters can show when subjected to salinity stress. Our results showed a decrease in belowground and aboveground biomass. The decrement in biomass seen at 513 mM NaCl was related to photosynthetic limitations and specific stem conductivity. Turgor loss point did not vary significantly with the increment of salinity. Therefore, the parameter that showed less vulnerability to saline stress was the turgor loss point, with only a 5% decrease, and the more vulnerable trait was the stem conductivity, with a reduction of nearly 50%.

12.
Freshw Sci ; 39(4): 1-18, 2020 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-33747635

RESUMEN

Secondary salinization, the increase of anthropogenically-derived salts in freshwaters, threatens freshwater biota and ecosystems, drinking water supplies, and infrastructure. The various anthropogenic sources of salts and their locations in a watershed may result in secondary salinization of river and stream networks through multiple inputs. We developed a watershed predictive assessment to investigate the degree to which topology, land-cover, and land-use covariates affect stream specific conductivity (SC), a measure of salinity. We used spatial stream network models to predict SC throughout an Appalachian stream network in a watershed affected by surface coal mining. During high-discharge conditions, 8 to 44% of stream km in the watershed exceeded the SC benchmark of 300 µS/cm, which is meant to be protective of aquatic life in the Central Appalachian ecoregion. During low-discharge conditions, 96 to 100% of stream km exceeded the benchmark. The 2 different discharge conditions altered the spatial dependency of SC among the stream monitoring sites. During most low discharges, SC was a function of upstream-to-downstream network distances, or flow-connected distances, among the sites. Flow-connected distances are indicative of upstream dependencies affecting stream SC. During high discharge, SC was related to both flow-connected distances and flow-unconnected distances (i.e., distances between sites on different branches of the network). Flow-unconnected distances are indicative of processes on adjacent branches and their catchments affecting stream SC. With sites distributed from headwaters to the watershed outlet, the extent of impacts from secondary salinization could be better spatially predicted and assessed with spatial stream network models than with models assuming spatial independence. Importantly, the assessment also recognized the multi-scale spatial relationships that can occur between the landscape and stream network.

13.
Integr Environ Assess Manag ; 14(2): 174-180, 2018 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-29031003

RESUMEN

In 2011, the United States Environmental Protection Agency (USEPA) released a field-based method for estimating the extirpation of freshwater aquatic benthic invertebrates by ionic mixtures dominated by HCO3- , SO42- , and Ca2+ measured as specific conductivity (SC). The estimate of extirpation was SC at the 95th centile (XC95) of a weighted cumulative frequency distribution (CFD) of a genus or species over a range of SC. A CFD of XC95 values was used to predict the SC at which 5% of genera were likely to be extirpated. Because there are many uses for XC95 values and many data sets that could be analyzed using this method, we laid out a step-by-step method for calculating XC95 values and the stressor level that predicts a 5% extirpation of genera (HC05). Although the calculations can be done with a handheld calculator, we developed 2 downloadable Microsoft Excel® spreadsheet calculation tools that are easy to use to calculate XC95 values, to plot a taxon's XC95 cumulative frequency distribution with increasing SC, and to plot probabilities of observing a taxon at a particular SC. They also plot cumulative frequency distributions of XC95 values and calculate HC05 values. In addition to the tools, we share an example and the output of XC95 values for 176 distinct aquatic benthic invertebrates in Appalachia, in West Virginia, USA. Integr Environ Assess Manag 2018;14:174-180. © 2017 SETAC.


Asunto(s)
Monitoreo del Ambiente/métodos , Animales , Organismos Acuáticos/clasificación , Organismos Acuáticos/fisiología , Agua Dulce , Invertebrados/clasificación , Invertebrados/fisiología , Estados Unidos , United States Environmental Protection Agency , Contaminantes Químicos del Agua/análisis , Contaminantes Químicos del Agua/toxicidad
14.
Environ Toxicol Chem ; 37(3): 871-883, 2018 03.
Artículo en Inglés | MEDLINE | ID: mdl-29091302

RESUMEN

Field data of fish occurrences and specific conductivity were used to estimate the tolerance of freshwater fish to elevated ion concentrations and to compare the differences between species- and genus-level analyses for individual effects. We derived extirpation concentrations at the 95th percentile (XC95) of a weighted cumulative frequency distribution for fish species inhabiting streams of the central and southern Appalachians by customizing methods used previously with macroinvertebrate genera. Weighting factors were calculated based on the number of sites in basins where each species occurred, reducing overweighting observations of species restricted to fewer basins. Comparing the species- and genus-level fish XC95 values, XC95s for fish genera were near the XC95s for the most salt-tolerant species in the genus. Therefore, a genus-level effect threshold is not reliably predictive of species-level extirpation, unless the genus is monospecific in the assessed assemblage. Of the 101 fish species XC95 values, 5% were <509 and 10% were <565 µS/cm. The lowest XC95 for a species was 322 µS/cm, which is >300 µS/cm, the exposure estimated to extirpate 5% of macroinvertebrate genera in the central Appalachians. Above 509 µS/cm, 41 of the 101 species are expected to decline in occurrence. Environ Toxicol Chem 2018;37:871-883. Published 2017 Wiley Periodicals Inc. on behalf of SETAC. This article is a US government work and, as such, is in the public domain in the United States of America.


Asunto(s)
Adaptación Fisiológica , Peces/fisiología , Agua Dulce , Animales , Exposición a Riesgos Ambientales/análisis , Iones , Filogenia , Filogeografía , Tamaño de la Muestra , Especificidad de la Especie , Estados Unidos , Contaminantes Químicos del Agua/análisis , Calidad del Agua
15.
Sci Total Environ ; 633: 1657-1666, 2018 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-29472136

RESUMEN

The concentration of salts in streams is increasing world-wide making freshwater a declining resource. Developing thresholds for freshwater with low specific conductivity (SC), a measure of dissolved ions in water, may protect high quality resources that are refugia for aquatic life and that dilute downstream waters. In this case example, methods are illustrated for estimating protective levels for streams with low SC. The Cascades in the Pacific Northwest of the United States of America was selected for the case study because a geophysical model indicated that the SC of freshwater streams was likely to be very low. Also, there was an insufficient range in the SC data to accurately derive a criterion using the 2011, US Environmental Protection Agency field-based extirpation concentration distribution method. Instead, background and a regression model was used to estimate chronic and acute SC levels that could extirpate 5% of benthic invertebrate genera. Background SC was estimated at the 25th centile (33µS/cm) of the measured data and used as the independent variable in a least squares empirical background-to-criteria (B-C) model. Because no comparison could be made with effect levels estimated from a paired SC and biological data set from the Cascades, the lower 50% prediction limit (PL) was identified as an example chronic water quality criterion (97µS/cm). The maximum exposure threshold was estimated at the 90th centile SC of streams meeting the chronic SC level. The example acute SC level was 190µS/cm. Because paired aquatic life and SC data are often sparse, the B-C method is useful for developing SC criteria for other systems with limited data.

16.
Sci Total Environ ; 542(Pt A): 505-20, 2016 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-26520274

RESUMEN

In 2010, a dramatic increase in the levels of total trihalomethane (THM) and the relative proportion of brominated species was observed in finished water at several Pennsylvania water utilities (PDW) using the Allegheny River as their raw water supply. An increase in bromide (Br(-)) concentrations in the Allegheny River was implicated to be the cause of the elevated water disinfection byproducts. This study focused on quantifying the contribution of Br(-) from a commercial wastewater treatment facility (CWTF) that solely treats wastes from oil and gas producers and discharges into the upper reaches of the Allegheny River, and impacts on two downstream PDWs. In 2012, automated daily integrated samples were collected on the Allegheny River at six sites during three seasonal two-week sampling campaigns to characterize Br(-) concentrations and river dispersion characteristics during periods of high and low river discharges. The CWTF discharges resulted in significant increases in Br(-) compared to upstream baseline values in PDW raw drinking water intakes during periods of low river discharge. During high river discharge, the assimilative dilution capacity of the river resulted in lower absolute halide concentrations, but significant elevations Br(-) concentrations were still observed at the nearest downstream PDW intake over baseline river levels. On days with active CWTF effluent discharge the magnitude of bromide impact increased by 39 ppb (53%) and 7 ppb (22%) for low and high river discharge campaigns, respectively. Despite a declining trend in Allegheny River Br(-) (2009-2014), significant impacts from CWTF and coal-fired power plant discharges to Br(-) concentrations during the low river discharge regime at downstream PDW intakes was observed, resulting in small modeled increases in total THM (3%), and estimated positive shifts (41-47%) to more toxic brominated THM analogs. The lack of available coincident measurements of THM, precursors, and physical parameters limited the interpretation of historical trends.


Asunto(s)
Bromuros/análisis , Agua Potable/química , Monitoreo del Ambiente , Contaminantes Químicos del Agua/análisis , Purificación del Agua , Desinfección , Modelos Químicos , Yacimiento de Petróleo y Gas , Pennsylvania , Ríos/química , Trihalometanos , Eliminación de Residuos Líquidos/métodos
17.
J Clin Diagn Res ; 10(5): OC48-51, 2016 May.
Artículo en Inglés | MEDLINE | ID: mdl-27437272

RESUMEN

INTRODUCTION: The lower abdominal obesity is more resistant to absorption as compared to that of upper abdomen. Differences in the physicochemical properties of the subcutaneous fat of the upper and lower abdomen may be responsible for this variation. There is paucity of the scientific literature on the physicochemical properties of the subcutaneous fat of abdomen. AIM: The present study was undertaken to create a database of physicochemical properties of abdominal subcutaneous fat. MATERIALS AND METHODS: The samples of subcutaneous fat from upper and lower abdomen were collected from 40 fresh autopsied bodies (males 33, females 7). The samples were prepared for physicochemical analysis using organic and inorganic solvents. Various physicochemical properties of the fat samples analysed were surface tension, viscosity, specific gravity, specific conductivity, iodine value and thermal properties. Data was analysed by paired and independent sample t-tests. RESULTS: There was a statistically significant difference in all the physicochemical parameters between males and females except surface tension (organic) and surface tension (inorganic) of upper abdominal fat, and surface tension (organic) of lower abdominal fat. In males, viscosity of upper abdominal fat was more compared to that of lower abdomen (both organic and inorganic) unlike the specific conductivity that was higher for the lower abdominal fat as compared to that of the upper abdomen. In females there were statistically significant higher values of surface tension (inorganic) and specific gravity (organic) of the upper abdomen fat as compared to that of lower abdomen. The initial and final weight loss of the lower abdominal fat as indicated by Thermo Gravimetric Analysis was significantly more in males than in female. CONCLUSION: The difference in the physicochemical properties of subcutaneous fat between upper and lower abdomen and between males and females could be responsible for the variant behaviour of subcutaneous abdominal fat towards resorption.

18.
Nanoscale Res Lett ; 11(1): 508, 2016 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-27858377

RESUMEN

Glucose, lactose, and saccharose were used as precursors to prepare chars at 400 °C then activated at 800 °C or 1000 °C in closed vessels with controlled amounts of oxygen penetrating through nanopores in the vessel walls. There are correlations between the porosity, amounts of residual O- and H-containing functionalities, and electroconductivity of amorphous carbons studied. The pore size distributions calculated using the nitrogen adsorption isotherms and TEM images show that all carbons are mainly nanoporous with certain contribution of narrow mesopores (at pore half-width x < 5 nm). Oxidizing activation by oxygen penetrating into the closed vessels with chars through nanopores can more strongly change the outer layers of char particles than the inner pores. Therefore, despite relatively great burn-off degree, the textural characteristics are relatively low for activated carbons.

19.
Environ Pollut ; 216: 902-910, 2016 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-27389551

RESUMEN

Ionic mixtures, measured as specific conductivity, have been increasingly concerned because of their toxicities to aquatic organisms. However, identifying protective values of specific conductivity for aquatic organisms is challenging given that laboratory test systems cannot examine more salt-intolerant species nor effects occurring in streams. Large data sets used for deriving field-based benchmarks are rarely available. In this study, a field-based method for small data sets was used to derive specific conductivity benchmark, which is expected to prevent the extirpation of 95% of local taxa from circum-neutral to alkaline waters dominated by a mixture of SO4(2-) and HCO3(-) anions and other dissolved ions. To compensate for the smaller sample size, species level analyses were combined with genus level analyses. The benchmark is based on extirpation concentration (XC95) values of specific conductivity for 60 macroinvertebrate genera estimated from 296 sampling sites in the Hun-Tai River Basin. We derived the specific conductivity benchmark by using a 2-point interpolation method, which yielded the benchmark of 249 µS/cm. Our study tailored the method that was developed by USEPA to derive aquatic life benchmark for specific conductivity for basin scale application, and may provide useful information for water pollution control and management.


Asunto(s)
Organismos Acuáticos/efectos de los fármacos , Conservación de los Recursos Naturales/métodos , Monitoreo del Ambiente/métodos , Invertebrados/efectos de los fármacos , Ríos/química , Calidad del Agua , Animales , Organismos Acuáticos/química , Benchmarking , China , Ecosistema , Invertebrados/química , Modelos Teóricos , Especificidad de la Especie , Estados Unidos , Contaminación del Agua/análisis
20.
Tree Physiol ; 36(4): 407-20, 2016 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-26546365

RESUMEN

There are increasing concerns about trace metal levels such as copper (Cu) in industrial sites and the broader environment. Different studies have highlighted the role of mycorrhizal associations in plant tolerance to trace metals, modulating some of the plant metabolic and physiological responses. In this study, we investigated the role of the symbiotic association betweenRhizophagus irregularisandSalix purpureaL. in modulating plant responses under Cu stress. We measured Cu accumulation, oxidative stress-related, photosynthetic-related and hydraulic traits, for non-inoculated (non-arbuscular mycorrhizal fungi) and inoculated saplings exposed to different Cu concentrations. We found thatS. purpureais a suitable option for phytoremediation of Cu, acting as a phytostabilizer of this trace metal in its root system. We observed that the symbiotic association modulates a broad spectrum of metabolic and physiological responses inS. purpureaunder Cu conditions, including (i) a reduction in gas exchange associated with chlorophyll content changes and (ii) the sequestration of Cu into the cell walls, modifying vessels anatomy and impacting leaf specific conductivity (KL) and root hydraulic conductance (LP). UpholdingKLandLPunder Cu stress might be related to a dynamic Aquaporin gene regulation ofPIP1;2along with an up-regulation ofTIP2;2in the roots of inoculatedS. purpurea.


Asunto(s)
Cobre/metabolismo , Micorrizas/fisiología , Salix/microbiología , Simbiosis , Biodegradación Ambiental , ADN Mitocondrial , Perfilación de la Expresión Génica , Genes de Plantas , Oxidación-Reducción , Raíces de Plantas/microbiología , Raíces de Plantas/fisiología , Salix/crecimiento & desarrollo , Microbiología del Suelo , Estrés Fisiológico
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda