Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 20 de 3.214
Filtrar
Más filtros

Publication year range
1.
Cell ; 174(5): 1247-1263.e15, 2018 08 23.
Artículo en Inglés | MEDLINE | ID: mdl-30078710

RESUMEN

Type I spiral ganglion neurons (SGNs) transmit sound information from cochlear hair cells to the CNS. Using transcriptome analysis of thousands of single neurons, we demonstrate that murine type I SGNs consist of subclasses that are defined by the expression of subsets of transcription factors, cell adhesion molecules, ion channels, and neurotransmitter receptors. Subtype specification is initiated prior to the onset of hearing during the time period when auditory circuits mature. Gene mutations linked to deafness that disrupt hair cell mechanotransduction or glutamatergic signaling perturb the firing behavior of SGNs prior to hearing onset and disrupt SGN subtype specification. We thus conclude that an intact hair cell mechanotransduction machinery is critical during the pre-hearing period to regulate the firing behavior of SGNs and their segregation into subtypes. Because deafness is frequently caused by defects in hair cells, our findings have significant ramifications for the etiology of hearing loss and its treatment.


Asunto(s)
Células Ciliadas Auditivas/fisiología , Audición/fisiología , Mecanotransducción Celular , Neuronas/fisiología , Transducción de Señal , Ganglio Espiral de la Cóclea/fisiología , Animales , Análisis por Conglomerados , Marcadores Genéticos , Masculino , Ratones , Ratones Endogámicos CBA , Ratones Noqueados , Mutación , Neuroglía/fisiología , Análisis de Secuencia de ARN
2.
Cell ; 174(5): 1229-1246.e17, 2018 08 23.
Artículo en Inglés | MEDLINE | ID: mdl-30078709

RESUMEN

In the auditory system, type I spiral ganglion neurons (SGNs) convey complex acoustic information from inner hair cells (IHCs) to the brainstem. Although SGNs exhibit variation in physiological and anatomical properties, it is unclear which features are endogenous and which reflect input from synaptic partners. Using single-cell RNA sequencing, we derived a molecular classification of mouse type I SGNs comprising three subtypes that express unique combinations of Ca2+ binding proteins, ion channel regulators, guidance molecules, and transcription factors. Based on connectivity and susceptibility to age-related loss, these subtypes correspond to those defined physiologically. Additional intrinsic differences among subtypes and across the tonotopic axis highlight an unexpectedly active role for SGNs in auditory processing. SGN identities emerge postnatally and are disrupted in a mouse model of deafness that lacks IHC-driven activity. These results elucidate the range, nature, and origins of SGN diversity, with implications for treatment of congenital deafness.


Asunto(s)
Oído Interno/fisiología , Células Ciliadas Auditivas Internas/fisiología , Células Receptoras Sensoriales/fisiología , Sistemas de Transporte de Aminoácidos Acídicos/genética , Animales , Calbindina 2/genética , Cóclea/fisiología , Sordera/genética , Femenino , Masculino , Ratones , Ratones Endogámicos C57BL , Análisis de Secuencia de ARN , Ganglio Espiral de la Cóclea/fisiología , Transmisión Sináptica , Transgenes
3.
EMBO J ; 42(23): e114587, 2023 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-37800695

RESUMEN

Our sense of hearing enables the processing of stimuli that differ in sound pressure by more than six orders of magnitude. How to process a wide range of stimulus intensities with temporal precision is an enigmatic phenomenon of the auditory system. Downstream of dynamic range compression by active cochlear micromechanics, the inner hair cells (IHCs) cover the full intensity range of sound input. Yet, the firing rate in each of their postsynaptic spiral ganglion neurons (SGNs) encodes only a fraction of it. As a population, spiral ganglion neurons with their respective individual coding fractions cover the entire audible range. How such "dynamic range fractionation" arises is a topic of current research and the focus of this review. Here, we discuss mechanisms for generating the diverse functional properties of SGNs and formulate testable hypotheses. We postulate that an interplay of synaptic heterogeneity, molecularly distinct subtypes of SGNs, and efferent modulation serves the neural decomposition of sound information and thus contributes to a population code for sound intensity.


Asunto(s)
Cóclea , Células Ciliadas Auditivas Internas , Células Ciliadas Auditivas Internas/fisiología , Sonido , Sinapsis/fisiología , Ganglio Espiral de la Cóclea
4.
Proc Natl Acad Sci U S A ; 121(31): e2315599121, 2024 Jul 30.
Artículo en Inglés | MEDLINE | ID: mdl-39058581

RESUMEN

Ribbon synapses between inner hair cells (IHCs) and type I spiral ganglion neurons (SGNs) in the inner ear are damaged by noise trauma and with aging, causing "synaptopathy" and hearing loss. Cocultures of neonatal denervated organs of Corti and newly introduced SGNs have been developed to find strategies for improving IHC synapse regeneration, but evidence of the physiological normality of regenerated synapses is missing. This study utilizes IHC optogenetic stimulation and SGN recordings, showing that, when P3-5 denervated organs of Corti are cocultured with SGNs, newly formed IHC/SGN synapses are indeed functional, exhibiting glutamatergic excitatory postsynaptic currents. When using older organs of Corti at P10-11, synaptic activity probed by deconvolution showed more mature release properties, closer to the specialized mode of IHC synaptic transmission crucial for coding the sound signal. This functional assessment of newly formed IHC synapses developed here, provides a powerful tool for testing approaches to improve synapse regeneration.


Asunto(s)
Ganglio Espiral de la Cóclea , Sinapsis , Animales , Ganglio Espiral de la Cóclea/citología , Ganglio Espiral de la Cóclea/fisiología , Sinapsis/fisiología , Ratones , Células Ciliadas Auditivas Internas/fisiología , Células Ciliadas Auditivas Internas/metabolismo , Transmisión Sináptica/fisiología , Neuronas/fisiología , Neuronas/metabolismo , Regeneración/fisiología , Células Ciliadas Auditivas/fisiología , Técnicas de Cocultivo/métodos , Optogenética/métodos , Regeneración Nerviosa/fisiología , Potenciales Postsinápticos Excitadores/fisiología , Órgano Espiral/fisiología , Órgano Espiral/citología , Órgano Espiral/metabolismo
5.
Proc Natl Acad Sci U S A ; 120(31): e2217033120, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37487063

RESUMEN

Type I spiral ganglion neurons (SGNs) are the auditory afferents that transmit sound information from cochlear inner hair cells (IHCs) to the brainstem. These afferents consist of physiological subtypes that differ in their spontaneous firing rate (SR), activation threshold, and dynamic range and have been described as low, medium, and high SR fibers. Lately, single-cell RNA sequencing experiments have revealed three molecularly defined type I SGN subtypes. The extent to which physiological type I SGN subtypes correspond to molecularly defined subtypes is unclear. To address this question, we have generated mouse lines expressing CreERT2 in SGN subtypes that allow for a physiological assessment of molecular subtypes. We show that Lypd1-CreERT2 expressing SGNs represent a well-defined group of neurons that preferentially innervate the IHC modiolar side and exhibit a narrow range of low SRs. In contrast, Calb2-CreERT2 expressing SGNs preferentially innervate the IHC pillar side and exhibit a wider range of SRs, thus suggesting that a strict stratification of all SGNs into three molecular subclasses is not obvious, at least not with the CreERT2 tools used here. Genetically marked neuronal subtypes refine their innervation specificity onto IHCs postnatally during the time when activity is required to refine their molecular phenotype. Type I SGNs thus consist of genetically defined subtypes with distinct physiological properties and innervation patterns. The molecular subtype-specific lines characterized here will provide important tools for investigating the role of the physiologically distinct type I SGNs in encoding sound signals.


Asunto(s)
Tronco Encefálico , Células Ciliadas Vestibulares , Animales , Ratones , Cóclea , Células Ciliadas Auditivas Internas , Neuronas
6.
J Neurosci ; 44(7)2024 Feb 14.
Artículo en Inglés | MEDLINE | ID: mdl-38176908

RESUMEN

Early B-cell factor 1 (EBF1) is a basic helix-loop-helix transcription factor essential for the differentiation of various tissues. Our single-cell RNA sequencing data suggest that Ebf1 is expressed in the sensory epithelium of the mouse inner ear. Here, we found that the murine Ebf1 gene and its protein are expressed in the prosensory domain of the inner ear, medial region of the cochlear duct floor, otic mesenchyme, and cochleovestibular ganglion. Ebf1 deletion in mice results in incomplete formation of the spiral limbus and scala tympani, increased number of cells in the organ of Corti and Kölliker's organ, and aberrant course of the spiral ganglion axons. Ebf1 deletion in the mouse cochlear epithelia caused the proliferation of SOX2-positive cochlear cells at E13.5, indicating that EBF1 suppresses the proliferation of the prosensory domain and cells of Kölliker's organ to facilitate the development of appropriate numbers of hair and supporting cells. Furthermore, mice with deletion of cochlear epithelium-specific Ebf1 showed poor postnatal hearing function. Our results suggest that Ebf1 is essential for normal auditory function in mammals.


Asunto(s)
Oído Interno , Rampa Timpánica , Animales , Ratones , Cóclea/metabolismo , Conducto Coclear , Mamíferos , Ganglio Espiral de la Cóclea , Factores de Transcripción/metabolismo
7.
Development ; 149(19)2022 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-36239412

RESUMEN

The binding of 17ß-oestradiol to oestrogen receptor alpha (ERα) plays a crucial role in the control of reproduction, acting through both nuclear and membrane-initiated signalling. To study the physiological role of membrane ERα in the reproductive system, we used the C451A-ERα mouse model with selective loss of function of membrane ERα. Despite C451A-ERα mice being described as sterile, daily weighing and ultrasound imaging revealed that homozygous females do become pregnant, allowing the investigation of the role of ERα during pregnancy for the first time. All neonatal deaths of the mutant offspring mice resulted from delayed parturition associated with failure in pre-term progesterone withdrawal. Moreover, pregnant C451A-ERα females exhibited partial intrauterine embryo arrest at about E9.5. The observed embryonic lethality resulted from altered expansion of Tpbpa-positive spiral artery-associated trophoblast giant cells into the utero-placental unit, which is associated with an imbalance in expression of angiogenic factors. Together, these processes control the trophoblast-mediated spiral arterial remodelling. Hence, loss of membrane ERα within maternal tissues clearly alters the activity of invasive trophoblast cells during placentogenesis. This previously unreported function of membrane ERα could open new avenues towards a better understanding of human pregnancy-associated pathologies.


Asunto(s)
Receptor alfa de Estrógeno , Trofoblastos , Animales , Estradiol/metabolismo , Receptor alfa de Estrógeno/genética , Femenino , Fertilidad , Humanos , Ratones , Placenta/metabolismo , Embarazo , Progesterona/metabolismo , Receptores de Estrógenos/metabolismo , Trofoblastos/metabolismo
8.
FASEB J ; 38(9): e23637, 2024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38720403

RESUMEN

Vascular smooth muscle cell (VSMC) plasticity is fundamental in uterine spiral artery remodeling during placentation in Eutherian mammals. Our previous work showed that the invasion of trophoblast cells into uterine myometrium coincides with a phenotypic change of VSMCs. Here, we elucidate the mechanism by which trophoblast cells confer VSMC plasticity. Analysis of genetic markers on E13.5, E16.5, and E19.5 in the rat metrial gland, the entry point of uterine arteries, revealed that trophoblast invasion is associated with downregulation of MYOCARDIN, α-smooth muscle actin, and calponin1, and concomitant upregulation of Smemb in VSMCs. Myocardin overexpression or knockdown in VSMCs led to upregulation or downregulation of contractile markers, respectively. Co-culture of trophoblast cells with VSMCs decreased MYOCARDIN expression along with compromised expression of contractile markers in VSMCs. However, co-culture of trophoblast cells with VSMCs overexpressing MYOCARDIN inhibited their change in phenotype, whereas, overexpression of transactivation domain deleted MYOCARDIN failed to elicit this response. Furthermore, the co-culture of trophoblast cells with VSMCs led to the activation of NFκß signaling. Interestingly, despite producing IL-1ß, trophoblast cells possess only the decoy receptor, whereas, VSMCs possess the IL-1ß signaling receptor. Treatment of VSMCs with exogenous IL-1ß led to a decrease in MYOCARDIN and an increase in phosphorylation of NFκß. The effect of trophoblast cells in the downregulation of MYOCARDIN in VSMCs was reversed by blocking NFκß translocation to the nucleus. Together, these data highlight that trophoblast cells direct VSMC plasticity, and trophoblast-derived IL-1ß is a key player in downregulating MYOCARDIN via the NFκß signaling pathway.


Asunto(s)
Interleucina-1beta , Músculo Liso Vascular , Miocitos del Músculo Liso , FN-kappa B , Proteínas Nucleares , Transducción de Señal , Transactivadores , Trofoblastos , Animales , Trofoblastos/metabolismo , Músculo Liso Vascular/metabolismo , Músculo Liso Vascular/citología , Transactivadores/metabolismo , Transactivadores/genética , Ratas , Proteínas Nucleares/metabolismo , Proteínas Nucleares/genética , Transducción de Señal/fisiología , FN-kappa B/metabolismo , Femenino , Miocitos del Músculo Liso/metabolismo , Interleucina-1beta/metabolismo , Embarazo , Técnicas de Cocultivo , Ratas Sprague-Dawley , Células Cultivadas , Plasticidad de la Célula/fisiología , Calponinas
9.
Cell Mol Life Sci ; 81(1): 180, 2024 Apr 13.
Artículo en Inglés | MEDLINE | ID: mdl-38613672

RESUMEN

Aberrant remodeling of uterine spiral arteries (SPA) is strongly associated with the pathogenesis of early-onset preeclampsia (EOPE). However, the complexities of SPA transformation remain inadequately understood. We conducted a single-cell RNA sequencing analysis of whole placental tissues derived from patients with EOPE and their corresponding controls, identified DAB2 as a key gene of interest and explored the mechanism underlying the communication between Extravillous trophoblast cells (EVTs) and decidual vascular smooth muscle cells (dVSMC) through cell models and a placenta-decidua coculture (PDC) model in vitro. DAB2 enhanced the motility and viability of HTR-8/SVneo cells. After exposure to conditioned medium (CM) from HTR-8/SVneoshNC cells, hVSMCs exhibited a rounded morphology, indicative of dedifferentiation, while CM-HTR-8/SVneoshDAB2 cells displayed a spindle-like morphology. Furthermore, the PDC model demonstrated that CM-HTR-8/SVneoshDAB2 was less conducive to vascular remodeling. Further in-depth mechanistic investigations revealed that C-X-C motif chemokine ligand 8 (CXCL8, also known as IL8) is a pivotal regulator governing the dedifferentiation of dVSMC. DAB2 expression in EVTs is critical for orchestrating the phenotypic transition and motility of dVSMC. These processes may be intricately linked to the CXCL8/PI3K/AKT pathway, underscoring its central role in intricate SPA remodeling.


Asunto(s)
Eosina Amarillenta-(YS)/análogos & derivados , Interleucina-8 , Fosfatidiletanolaminas , Preeclampsia , Embarazo , Humanos , Femenino , Interleucina-8/genética , Fosfatidilinositol 3-Quinasas , Preeclampsia/genética , Placenta , Arterias , Medios de Cultivo Condicionados , Proteínas Adaptadoras Transductoras de Señales , Proteínas Reguladoras de la Apoptosis
10.
Proc Natl Acad Sci U S A ; 119(24): e2117568119, 2022 06 14.
Artículo en Inglés | MEDLINE | ID: mdl-35679346

RESUMEN

We identify and demonstrate a universal mechanism for terminating spiral waves in excitable media using an established topological framework. This mechanism dictates whether high- or low-energy defibrillation shocks succeed or fail. Furthermore, this mechanism allows for the design of a single minimal stimulus capable of defibrillating, at any time, turbulent states driven by multiple spiral waves. We demonstrate this method in a variety of computational models of cardiac tissue ranging from simple to detailed human models. The theory described here shows how this mechanism underlies all successful defibrillation and can be used to further develop existing and future low-energy defibrillation strategies.


Asunto(s)
Cardioversión Eléctrica , Corazón , Simulación por Computador , Cardioversión Eléctrica/métodos , Humanos , Modelos Cardiovasculares
11.
Proc Natl Acad Sci U S A ; 119(37): e2207433119, 2022 09 13.
Artículo en Inglés | MEDLINE | ID: mdl-36074819

RESUMEN

A cardinal feature of the auditory pathway is frequency selectivity, represented in a tonotopic map from the cochlea to the cortex. The molecular determinants of the auditory frequency map are unknown. Here, we discovered that the transcription factor ISL1 regulates the molecular and cellular features of auditory neurons, including the formation of the spiral ganglion and peripheral and central processes that shape the tonotopic representation of the auditory map. We selectively knocked out Isl1 in auditory neurons using Neurod1Cre strategies. In the absence of Isl1, spiral ganglion neurons migrate into the central cochlea and beyond, and the cochlear wiring is profoundly reduced and disrupted. The central axons of Isl1 mutants lose their topographic projections and segregation at the cochlear nucleus. Transcriptome analysis of spiral ganglion neurons shows that Isl1 regulates neurogenesis, axonogenesis, migration, neurotransmission-related machinery, and synaptic communication patterns. We show that peripheral disorganization in the cochlea affects the physiological properties of hearing in the midbrain and auditory behavior. Surprisingly, auditory processing features are preserved despite the significant hearing impairment, revealing central auditory pathway resilience and plasticity in Isl1 mutant mice. Mutant mice have a reduced acoustic startle reflex, altered prepulse inhibition, and characteristics of compensatory neural hyperactivity centrally. Our findings show that ISL1 is one of the obligatory factors required to sculpt auditory structural and functional tonotopic maps. Still, upon Isl1 deletion, the ensuing central plasticity of the auditory pathway does not suffice to overcome developmentally induced peripheral dysfunction of the cochlea.


Asunto(s)
Vías Auditivas , Núcleo Coclear , Células Ciliadas Auditivas , Proteínas con Homeodominio LIM , Neurogénesis , Ganglio Espiral de la Cóclea , Factores de Transcripción , Animales , Vías Auditivas/embriología , Cóclea/embriología , Cóclea/inervación , Núcleo Coclear/embriología , Células Ciliadas Auditivas/fisiología , Proteínas con Homeodominio LIM/genética , Proteínas con Homeodominio LIM/fisiología , Ratones , Neurogénesis/genética , Ganglio Espiral de la Cóclea/enzimología , Factores de Transcripción/genética , Factores de Transcripción/fisiología
12.
J Physiol ; 2024 Sep 26.
Artículo en Inglés | MEDLINE | ID: mdl-39324853

RESUMEN

Spiral ganglion neurons (SGNs) are primary sensory afferent neurons that relay acoustic information from the cochlear inner hair cells (IHCs) to the brainstem. The response properties of different SGNs diverge to represent a wide range of sound intensities in an action-potential code. This biophysical heterogeneity is established during pre-hearing stages of development, a time when IHCs fire spontaneous Ca2+ action potentials that drive glutamate release from their ribbon synapses onto the SGN terminals. The role of spontaneous IHC activity in the refinement of SGN characteristics is still largely unknown. Using pre-hearing otoferlin knockout mice (Otof-/-), in which Ca2+-dependent exocytosis in IHCs is abolished, we found that developing SGNs fail to upregulate low-voltage-activated K+-channels and hyperpolarisation-activated cyclic-nucleotide-gated channels. This delayed maturation resulted in hyperexcitable SGNs with immature firing characteristics. We have also shown that SGNs that synapse with the pillar side of the IHCs selectively express a resurgent K+ current, highlighting a novel biophysical marker for these neurons. RNA-sequencing showed that several K+ channels are downregulated in Otof-/- mice, further supporting the electrophysiological recordings. Our data demonstrate that spontaneous Ca2+-dependent activity in pre-hearing IHCs regulates some of the key biophysical and molecular features of the developing SGNs. KEY POINTS: Ca2+-dependent exocytosis in inner hair cells (IHCs) is otoferlin-dependent as early as postnatal day 1. A lack of otoferlin in IHCs affects potassium channel expression in SGNs. The absence of otoferlin is associated with SGN hyperexcitability. We propose that type I spiral ganglion neuron functional maturation depends on IHC exocytosis.

13.
Angiogenesis ; 2024 Aug 14.
Artículo en Inglés | MEDLINE | ID: mdl-39143350

RESUMEN

OBJECTIVE (S): Circulating angiogenic factors are used for prediction of placenta-related complications, but their associations with first-trimester placental development is unknown. This study investigates associations between maternal angiogenic factors and utero-placental vascular volume (uPVV) and utero-placental vascular skeleton (uPVS) as novel imaging markers of volumetric and morphologic (branching) development of the first-trimester utero-placental vasculature. METHODS: In 185 ongoing pregnancies from the VIRTUAL Placenta study, a subcohort of the ongoing prospective Rotterdam Periconception cohort, three-dimensional power Doppler ultrasounds of the placenta were obtained at 7-9-11 weeks gestational age (GA). The uPVV was measured as a parameter of volumetric development and reported the vascular quantity in cm3. The uPVS was generated as a parameter of morphologic (branching) development and reported the number of end-, bifurcation- crossing- or vessel points and total vascular length. At 11 weeks GA, maternal serum biomarkers suggested to reflect placental (vascular) development were assessed: placental growth factor (PlGF), soluble fms-like tyrosine kinase-1 (sFlt-1) and soluble endoglin (sEng). sFlt-1/PlGF and sEng/PlGF ratios were calculated. Multivariable linear regression with adjustments was used to estimate associations between serum biomarkers and uPVV and uPVS trajectories. RESULTS: Serum PlGF was positively associated with uPVV and uPVS development (uPVV: ß = 0.39, 95% CI = 0.15;0.64; bifurcation points: ß = 4.64, 95% CI = 0.04;9.25; crossing points: ß = 4.01, 95% CI = 0.65;7.37; total vascular length: ß = 13.33, 95% CI = 3.09;23.58, all p-values < 0.05). sEng/PlGF ratio was negatively associated with uPVV and uPVS development. We observed no associations between sFlt-1, sEng or sFlt-1/PlGF ratio and uPVV and uPVS development. CONCLUSION(S): Higher first-trimester maternal serum PlGF concentration is associated with increased first-trimester utero-placental vascular development as reflected by uPVV and uPVS. Clinical trial registration number Dutch Trial Register NTR6854.

14.
Small ; : e2401020, 2024 Jul 16.
Artículo en Inglés | MEDLINE | ID: mdl-39012061

RESUMEN

Scaffolds have garnered considerable attention for enhancing neural repairment for spinal cord injury (SCI) treatment. Both microstructural features and biochemical modifications play pivotal roles in influencing the interaction of cells with the scaffold, thereby affecting tissue regeneration. Here, a scaffold is designed with spiral structure and gradient peptide modification (GS) specifically for SCI treatment. The spiral structure provides crucial support and space, while the gradient peptide isoleucine-lysine-valine-alanine-valine (IKVAV) modification imparts directional guidance for neuronal and axonal extension. GS scaffold shows a significant nerve extension induction effect through its interlayer gap and gradient peptide density to dorsal root ganglia in vitro, while in vivo studies reveal its substantial promotion for functional recovery and neural repair. Additionally, the GS scaffold displays impressive drug-loading capacity, mesenchymal stem cell-derived exosomes can be efficiently loaded into the GS scaffold and delivered to the injury site, thereby synergistically promoting SCI repair. Overall, the GS scaffold can serve as a versatile platform and present a promising multifunctional approach for SCI treatment.

15.
Small ; 20(7): e2308176, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37803430

RESUMEN

The structure of graphene grown in chemical vapor deposition (CVD) is sensitive to the growth condition, particularly the substrate. The conventional growth of high-quality graphene via the Cu-catalyzed cracking of hydrocarbon species has been extensively studied; however, the direct growth on noncatalytic substrates, for practical applications of graphene such as current Si technologies, remains unexplored. In this study, nanocrystalline graphene (nc-G) spirals are produced on noncatalytic substrates by inductively coupled plasma CVD. The enhanced out-of-plane electrical conductivity is achieved by a spiral-driven continuous current pathway from bottom to top layer. Furthermore, some neighboring nc-G spirals exhibit a homogeneous electrical conductance, which is not common for stacked graphene structure. Klein-edge structure developed at the edge of nc-Gs, which can easily form covalent bonding, is thought to be responsible for the uniform conductance of nc-G aggregates. These results have important implications for practical applications of graphene with vertical conductivity realized through spiral structure.

16.
Small ; : e2404861, 2024 Jul 29.
Artículo en Inglés | MEDLINE | ID: mdl-39073293

RESUMEN

Spiral inorganic perovskite nanowires (NWs) possess unique morphologies and properties that allow them highly attractive for applications in optoelectronic and catalytic fields. In popular solution-based synthesis methodology, however, challenges persist in simultaneously achieving precise and facile control over morphological twisting and fantastic carrier lifetimes. Here, a cooperative strategy of concurrently employing selective etching and ligand engineering is applied to facilitate the formation of spiral CsPbBr3 perovskite NWs with an ultralong carrier lifetime of ≈2 µs. Specifically, a novel amine of 1-(p-tolyl)ethanamine is introduced to functionalize as both a selective etchant and the source of forming an effective ligand to passivate the exposed facets, favoring the structural twisting and the enhancement of carrier lifetimes. The twisting behaviors are dependent on the etch ratios, which are essentially associated with the densities of grain boundaries and dislocations in the NWs. The ultralong carrier lifetime and long-term stability of the spiral NWs open up new possibilities for all-inorganic perovskites in optoelectronic and photocatalytic fields, while the cooperative synthesis strategy paves the way for exploring complex spiral structures with tunable morphology and functionality.

17.
Biol Reprod ; 2024 Jul 29.
Artículo en Inglés | MEDLINE | ID: mdl-39073898

RESUMEN

Preeclampsia (PE) is a multisystem pregnancy disorder characterized by impaired remodeling of placental spiral arteries, which leads to the release of pro-inflammatory cytokines and anti-angiogenic agents. However, treatment options for PE are limited, with termination of pregnancy being the only curative option. In this work, we investigated the effects of human amniotic epithelial cells (hAECs) in PE rat model. The rats were induced with Lipopolysaccharide (LPS) on gestational day (GD) 14.5 followed by injection of hAECs and human umbilical cord mesenchymal stem cells (hUC-MSCs) 24 hours later. The hAECs treatment resulted in a reduction in blood pressure and proteinuria in the PE rat model. Futhermore, hAECs treatmentdecreased levels of pro-inflammatory cytokines, reduced inflammatory cells aggregation, and alleviated the damage to placental spiral arteries by downregulating the expression of anti-angiogenic factor and upregulating proangiogenic factor. In vitro experiments comfirmed that hAECs treatment restored the proliferation, migration, and angiogenesis of LPS-damaged human umbilical vein endothelial cells (hUVECs). Additionally, hAECs treatmenthad positive effects on fetal weight and neurological development in the PE group, with no negative effects onthe physical development or fertility of offspring rats. These results suggested that hAECs transplantation may be a novel adjuvant therapeutic strategy for PE by reducing the inflammatory andenhancing placental spiral artery angiogenesis.

18.
Magn Reson Med ; 92(5): 1898-1912, 2024 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-38817204

RESUMEN

PURPOSE: To compare MR axon radius estimation in human white matter using a multiband spiral sequence combined with field monitoring to the current state-of-the-art echo-planar imaging (EPI)-based approach. METHODS: A custom multiband spiral sequence was used for diffusion-weighted imaging at ultra-high b $$ b $$ -values. Field monitoring and higher order image reconstruction were employed to greatly reduce artifacts in spiral images. Diffusion weighting parameters were chosen to match a state-of-the art EPI-based axon radius mapping protocol. The spiral approach was compared to the EPI approach by comparing the image signal-to-noise ratio (SNR) and performing a test-retest study to assess the respective variability and repeatability of axon radius mapping. Effective axon radius estimates were compared over white matter voxels and along the left corticospinal tract. RESULTS: Increased SNR and reduced artifacts in spiral images led to reduced variability in resulting axon radius maps, especially in low-SNR regions. Test-retest variability was reduced by a factor of approximately 1.5 using the spiral approach. Reduced repeatability due to significant bias was found for some subjects in both spiral and EPI approaches, and attributed to scanner instability, pointing to a previously unknown limitation of the state-of-the-art approach. CONCLUSION: Combining spiral readouts with field monitoring improved mapping of the effective axon radius compared to the conventional EPI approach.


Asunto(s)
Axones , Procesamiento de Imagen Asistido por Computador , Relación Señal-Ruido , Sustancia Blanca , Humanos , Sustancia Blanca/diagnóstico por imagen , Procesamiento de Imagen Asistido por Computador/métodos , Adulto , Reproducibilidad de los Resultados , Masculino , Algoritmos , Imagen Eco-Planar/métodos , Femenino , Imagen de Difusión por Resonancia Magnética/métodos , Artefactos , Encéfalo/diagnóstico por imagen
19.
Magn Reson Med ; 2024 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-39219306

RESUMEN

PURPOSE: To develop a robust 3D ultrashort-TE (UTE) protocol that can reproducibly provide high-quality images, assessed by the ability to yield clinically diagnostic images, and is suitable for clinical translation. THEORY AND METHODS: Building on previous work, a UTE sampled with Fermat looped orthogonally encoded trajectories (FLORET) was chosen as a starting point due to its shorter, clinically reasonable scan times. Modifications to previous FLORET implementations included gradient waveform frequency limitations, a new trajectory ordering scheme, a balanced SSFP implementation, fast gradient spoiling, and full inline reconstruction. FLORET images were collected in phantoms and humans on multiple scanners and sites to demonstrate these improvements. RESULTS: The updates to FLORET provided high-quality images in phantom, musculoskeletal, and pulmonary applications. The gradient waveform modifications and new trajectory ordering scheme significantly reduced visible artifacts. Fast spoiling reduced acquisition time by 20%-28%. Across the various scanners and sites, the inline image quality was consistent and of diagnostic quality. Total image acquisition plus reconstruction time was less than 4 min for musculoskeletal and pulmonary applications with reconstructions taking less than 1 min. CONCLUSION: Recently developed improvements for the FLORET sequence have enabled robust, high-quality UTE acquisitions with short acquisition and reconstruction times. This enables clinical UTE imaging as demonstrated by the implementation of the sequence and acquisition on five MRI scanners, at three different sites, without the need for any additional system characterization or measurements.

20.
Magn Reson Med ; 91(4): 1567-1575, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38044757

RESUMEN

PURPOSE: To investigate spiral-based imaging including trajectories with undersampling as a fast and robust alternative for phase-based magnetic resonance electrical properties tomography (MREPT) techniques. METHODS: Spiral trajectories with various undersampling ratios were prescribed to acquire images from an experimental phantom and a healthy volunteer at 3T. The non-Cartesian acquisitions were reconstructed using SPIRiT, and conductivity maps were derived using phase-based cr-MREPT. The resulting maps were compared between different sampling trajectories. Additionally, a conductivity map was obtained using a Cartesian balanced SSFP acquisition from the volunteer to comparatively demonstrate the robustness of the proposed method. RESULTS: The phantom and volunteer results illustrate the benefits of the spiral acquisitions. Specifically, undersampled spiral acquisitions display improved robustness against field inhomogeneity artifacts and lowered SD values with shortened readout times. Furthermore, average of conductivity values measured for the cerebrospinal fluid with the spiral acquisitions were 1.703 S/m, indicating a close agreement with the theoretical values of 1.794 S/m. CONCLUSION: A spiral-based acquisition framework for conductivity imaging with and without undersampling is presented. Overall, spiral-based acquisitions improved robustness against field inhomogeneity artifacts, while achieving whole head coverage with multiple averages in less than a minute.


Asunto(s)
Procesamiento de Imagen Asistido por Computador , Imagen por Resonancia Magnética , Humanos , Estudios de Factibilidad , Procesamiento de Imagen Asistido por Computador/métodos , Imagen por Resonancia Magnética/métodos , Tomografía/métodos , Fantasmas de Imagen , Espectroscopía de Resonancia Magnética
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda