Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
1.
Acta Pharmacol Sin ; 44(5): 954-968, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-36460834

RESUMEN

Chronic pain patients often have anxiety disorders, and some of them suffer from anxiety even after analgesic administration. In this study, we investigated the role of AMPAR-mediated synaptic transmission in the ventromedial prefrontal cortex (vmPFC) in chronic pain-induced persistent anxiety in mice and explored potential drug targets. Chronic inflammatory pain was induced in mice by bilateral injection of complete Freund's adjuvant (CFA) into the planta of the hind paws; anxiety-like behaviours were assessed with behavioural tests; S-nitrosylation and AMPAR-mediated synaptic transmission were examined using biochemical assays and electrophysiological recordings, respectively. We found that CFA induced persistent upregulation of AMPAR membrane expression and function in the vmPFC of anxious mice but not in the vmPFC of non-anxious mice. The anxious mice exhibited higher S-nitrosylation of stargazin (an AMPAR-interacting protein) in the vmPFC. Inhibition of S-nitrosylation by bilaterally infusing an exogenous stargazin (C302S) mutant into the vmPFC rescued the surface expression of GluA1 and AMPAR-mediated synaptic transmission as well as the anxiety-like behaviours in CFA-injected mice, even after ibuprofen treatment. Moreover, administration of ZL006, a small molecular inhibitor disrupting the interaction of nNOS and PSD-95 (20 mg·kg-1·d-1, for 5 days, i.p.), significantly reduced nitric oxide production and S-nitrosylation of AMPAR-interacting proteins in the vmPFC, resulting in anxiolytic-like effects in anxious mice after ibuprofen treatment. We conclude that S-nitrosylation is necessary for AMPAR trafficking and function in the vmPFC under chronic inflammatory pain-induced persistent anxiety conditions, and nNOS-PSD-95 inhibitors could be potential anxiolytics specific for chronic inflammatory pain-induced persistent anxiety after analgesic treatment.


Asunto(s)
Ansiedad , Dolor Crónico , Corteza Prefrontal , Receptores de Glutamato , Animales , Ratones , Ansiedad/etiología , Ansiedad/metabolismo , Trastornos de Ansiedad , Dolor Crónico/complicaciones , Dolor Crónico/metabolismo , Ibuprofeno , Corteza Prefrontal/metabolismo , Transmisión Sináptica , Receptores de Glutamato/química , Receptores de Glutamato/metabolismo , Inflamación/complicaciones , Inflamación/metabolismo
2.
Pflugers Arch ; 474(4): 457-468, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-35235008

RESUMEN

Neuropathic pain is one of the primary forms of chronic pain and is the consequence of the somatosensory system's direct injury or disease. It is a relevant public health problem that affects about 10% of the world's general population. In neuropathic pain, alteration in neurotransmission occurs at various levels, including the dorsal root ganglia, the spinal cord, and the brain, resulting from the malfunction of diverse molecules such as receptors, ion channels, and elements of specific intracellular signaling pathways. In this context, there have been exciting advances in elucidating neuropathic pain's cellular and molecular mechanisms in the last decade, including the possible role that long non-coding RNAs (lncRNAs) may play, which open up new alternatives for the development of diagnostic and therapeutic strategies for this condition. This review focuses on recent studies associated with the possible relevance of lncRNAs in the development and maintenance of neuropathic pain through their actions on the functional expression of ion channels. Recognizing the changes in the function and spatio-temporal patterns of expression of these membrane proteins is crucial to understanding the control of neuronal excitability in chronic pain syndromes.


Asunto(s)
Dolor Crónico , Neuralgia , ARN Largo no Codificante , Animales , Dolor Crónico/genética , Modelos Animales de Enfermedad , Ganglios Espinales/metabolismo , Humanos , Canales Iónicos/genética , Canales Iónicos/metabolismo , Neuralgia/genética , Neuralgia/metabolismo , ARN Largo no Codificante/genética , ARN Largo no Codificante/metabolismo
3.
J Physiol ; 599(2): 453-469, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-32004381

RESUMEN

Fast excitatory synaptic transmission in the mammalian brain is largely mediated by AMPA-type ionotropic glutamate receptors (AMPARs), which are activated by the neurotransmitter glutamate. In synapses, the function of AMPARs is tuned by their auxiliary subunits, a diverse set of membrane proteins associated with the core pore-forming subunits of the AMPARs. Each auxiliary subunit provides distinct functional modulation of AMPARs, ranging from regulation of trafficking to shaping ion channel gating kinetics. Understanding the molecular mechanism of the function of these complexes is key to decoding synaptic modulation and their global roles in cognitive activities, such as learning and memory. Here, we review the structural and molecular complexity of AMPAR-auxiliary subunit complexes, as well as their functional diversity in different brain regions. We suggest that the recent structural information provides new insights into the molecular mechanisms underlying synaptic functions of AMPAR-auxiliary subunit complexes.


Asunto(s)
Receptores AMPA , Transmisión Sináptica , Animales , Ácido Glutámico , Activación del Canal Iónico , Subunidades de Proteína , Receptores AMPA/metabolismo , Sinapsis/metabolismo
4.
J Physiol ; 599(10): 2655-2671, 2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-33533533

RESUMEN

AMPA receptors are tetrameric glutamate-gated ion channels that mediate a majority of fast excitatory neurotransmission in the brain. They exist as calcium-impermeable (CI-) and calcium-permeable (CP-) subtypes, the latter of which lacks the GluA2 subunit. CP-AMPARs display an array of distinctive biophysical and pharmacological properties that allow them to be functionally identified. This has revealed that they play crucial roles in diverse forms of central synaptic plasticity. Here we summarise the functional hallmarks of CP-AMPARs and describe how these are modified by the presence of auxiliary subunits that have emerged as pivotal regulators of AMPARs. A lasting change in the prevalence of GluA2-containing AMPARs, and hence in the fraction of CP-AMPARs, is a feature in many maladaptive forms of synaptic plasticity and neurological disorders. These include modifications of glutamatergic transmission induced by inflammatory pain, fear conditioning, cocaine exposure, and anoxia-induced damage in neurons and glia. Furthermore, defective RNA editing of GluA2 can cause altered expression of CP-AMPARs and is implicated in motor neuron damage (amyotrophic lateral sclerosis) and the proliferation of cells in malignant gliomas. A number of the players involved in CP-AMPAR regulation have been identified, providing useful insight into interventions that may prevent the aberrant CP-AMPAR expression. Furthermore, recent molecular and pharmacological developments, particularly the discovery of TARP subtype-selective drugs, offer the exciting potential to modify some of the harmful effects of increased CP-AMPAR prevalence in a brain region-specific manner.


Asunto(s)
Plasticidad Neuronal , Receptores AMPA , Canales de Calcio/metabolismo , Neuronas/metabolismo , Receptores AMPA/metabolismo , Transmisión Sináptica
5.
Mol Med ; 27(1): 8, 2021 01 28.
Artículo en Inglés | MEDLINE | ID: mdl-33509083

RESUMEN

BACKGROUND: Alzheimer's disease is a neurodegenerative disease. Previous study has reported that caspase-1/IL-1ß is closely associated with Alzheimer's disease. However, the biological role of caspase-1/IL-1ß in Alzheimer's disease has not been fully elucidated. This study aimed to explore the mechanism of action of caspase-1/IL-1ß in Alzheimer's disease. METHODS: Mouse hippocampal neurones were treated with Aß1-42 to induce Alzheimer's disease cell model. APP/PS1 mice and Aß1-42-induced hippocampal neurones were treated with AC-YVAD-CMK (caspase-1 inhibitor). Spatial learning and memory ability of mice were detected by morris water maze. Flow cytometry, TUNEL staining, Thioflavin S staining and immunohistochemistry were performed to examine apoptosis and senile plaque deposition. Enzyme linked immunosorbent assay and western blot were performed to assess the levels of protein or cytokines. Co-Immunoprecipitation was performed to verify the interaction between Stargazin and GluA1. RESULTS: AC-YVAD-CMK treatment improved spatial learning and memory ability and reduced senile plaque deposition of APP/PS1 mice. Moreover, AC-YVAD-CMK promoted membrane transport of GluA1 in APP/PS1 mice. In vitro, Aß1-42-induced hippocampal neurones exhibited an increase in apoptosis and a decrease in the membrane transport of GluA1, which was abolished by AC-YVAD-CMK treatment. In addition, Stargazin interacted with GluA1, which was repressed by caspase-1. Caspase-1/IL-1ß inhibited membrane transport of GluA1 by inhibiting the interaction between Stargazin and GluA1. CONCLUSIONS: Our data demonstrate that caspase-1/IL-1ß represses membrane transport of GluA1 by inhibiting the interaction between Stargazin in Alzheimer's disease. Thus, caspase-1/IL-1ß may be a target for Alzheimer's disease treatment.


Asunto(s)
Enfermedad de Alzheimer/tratamiento farmacológico , Clorometilcetonas de Aminoácidos/administración & dosificación , Péptidos beta-Amiloides/efectos adversos , Canales de Calcio/metabolismo , Hipocampo/citología , Interleucina-1beta/metabolismo , Receptores AMPA/metabolismo , Enfermedad de Alzheimer/genética , Enfermedad de Alzheimer/metabolismo , Enfermedad de Alzheimer/psicología , Clorometilcetonas de Aminoácidos/farmacología , Animales , Caspasa 1/metabolismo , Células Cultivadas , Modelos Animales de Enfermedad , Hipocampo/efectos de los fármacos , Hipocampo/metabolismo , Humanos , Masculino , Memoria/efectos de los fármacos , Ratones , Ratones Transgénicos , Neuronas/citología , Neuronas/efectos de los fármacos , Neuronas/metabolismo , Aprendizaje Espacial/efectos de los fármacos
6.
J Neurosci ; 37(25): 6007-6020, 2017 06 21.
Artículo en Inglés | MEDLINE | ID: mdl-28559374

RESUMEN

In the brain, transmembrane AMPAR regulatory proteins (TARPs) critically influence the distribution, gating, and pharmacology of AMPARs, but the contribution of these auxiliary subunits to AMPAR-mediated signaling in the spinal cord remains unclear. We found that the Type I TARP γ-2 (stargazin) is present in lamina II of the superficial dorsal horn, an area involved in nociception. Consistent with the notion that γ-2 is associated with surface AMPARs, CNQX, a partial agonist at AMPARs associated with Type I TARPs, evoked whole-cell currents in lamina II neurons, but such currents were severely attenuated in γ-2-lacking stargazer (stg/stg) mice. Examination of EPSCs revealed the targeting of γ-2 to be synapse-specific; the amplitude of spontaneously occurring miniature EPSCs (mEPSCs) was reduced in neurons from stg/stg mice, but the amplitude of capsaicin-induced mEPSCs from C-fiber synapses was unaltered. This suggests that γ-2 is associated with AMPARs at synapses in lamina II but excluded from those at C-fiber inputs, a view supported by our immunohistochemical colabeling data. Following induction of peripheral inflammation, a model of hyperalgesia, there was a switch in the current-voltage relationships of capsaicin-induced mEPSCs, from linear to inwardly rectifying, indicating an increased prevalence of calcium-permeable (CP) AMPARs. This effect was abolished in stg/stg mice. Our results establish that, although γ-2 is not typically associated with calcium-impermeable AMPARs at C-fiber synapses, it is required for the translocation of CP-AMPARs to these synapses following peripheral inflammation.SIGNIFICANCE STATEMENT In the brain, transmembrane AMPAR regulatory proteins (TARPs) critically determine the functional properties of AMPARs, but the contribution of these auxiliary subunits to AMPAR-mediated signaling in the spinal cord remains unclear. An increase in the excitability of neurons within the superficial dorsal horn (SDH) of the spinal cord is thought to underlie heighted pain sensitivity. One mechanism considered to contribute to such long-lived changes is the remodeling of the ionotropic AMPA-type glutamate receptors that underlie fast excitatory synaptic transmission in the SDH. Here we show that the TARP γ-2 (stargazin) is present in SDH neurons and is necessary in a form of inflammatory pain-induced plasticity, which involves an increase in the prevalence of synaptic calcium-permeable AMPARs.


Asunto(s)
Canales de Calcio/metabolismo , Inflamación/metabolismo , Plasticidad Neuronal/fisiología , Células del Asta Posterior/metabolismo , Receptores AMPA/fisiología , 6-Ciano 7-nitroquinoxalina 2,3-diona/farmacología , Animales , Canales de Calcio/genética , Capsaicina/farmacología , Agonistas de Aminoácidos Excitadores/farmacología , Potenciales Postsinápticos Excitadores/fisiología , Femenino , Masculino , Ratones , Ratones Endogámicos C57BL , Fibras Nerviosas Amielínicas/efectos de los fármacos , Enfermedades del Sistema Nervioso Periférico/genética , Enfermedades del Sistema Nervioso Periférico/metabolismo , Receptores AMPA/agonistas , Transmisión Sináptica/genética
7.
J Biol Chem ; 289(43): 29631-41, 2014 Oct 24.
Artículo en Inglés | MEDLINE | ID: mdl-25164819

RESUMEN

D-Serine, an endogenous co-agonist for the glycine site of the synaptic NMDA glutamate receptor, regulates synaptic plasticity and is implicated in schizophrenia. Serine racemase (SR) is the enzyme that converts L-serine to D-serine. In this study, we demonstrate that SR interacts with the synaptic proteins, postsynaptic density protein 95 (PSD-95) and stargazin, forming a ternary complex. SR binds to the PDZ3 domain of PSD-95 through the PDZ domain ligand at its C terminus. SR also binds to the C terminus of stargazin, which facilitates the cell membrane localization of SR and inhibits its activity. AMPA receptor activation internalizes SR and disrupts its interaction with stargazin, therefore derepressing SR activity, leading to more D-serine production and potentially facilitating NMDA receptor activation. These interactions regulate the enzymatic activity as well as the intracellular localization of SR, potentially coupling the activities of NMDA and AMPA receptors. This shuttling of a neurotransmitter synthesizing enzyme between two receptors appears to be a novel mode of synaptic regulation.


Asunto(s)
Canales de Calcio/metabolismo , Ácido Glutámico/metabolismo , Guanilato-Quinasas/metabolismo , Proteínas de la Membrana/metabolismo , N-Metilaspartato/metabolismo , Racemasas y Epimerasas/metabolismo , Transmisión Sináptica , Ácido alfa-Amino-3-hidroxi-5-metil-4-isoxazol Propiónico/metabolismo , Animales , Biocatálisis , Membrana Celular/metabolismo , Homólogo 4 de la Proteína Discs Large , Femenino , Células HEK293 , Humanos , Masculino , Ratones , Modelos Biológicos , Unión Proteica , Ratas , Receptores AMPA/metabolismo , Receptores de N-Metil-D-Aspartato/metabolismo
8.
Front Physiol ; 14: 1286808, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38033343

RESUMEN

CaVγ2 (Stargazin or TARPγ2) is a protein expressed in various types of neurons whose function was initially associated with a decrease in the functional expression of voltage-gated presynaptic Ca2+ channels (CaV) and which is now known to promote the trafficking of the postsynaptic α-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid receptors (AMPAR) towards the cell membrane. Alterations in CaVγ2 expression has been associated with several neurological disorders, such as absence epilepsy. However, its regulation at the transcriptional level has not been intensively addressed. It has been reported that the promoter of the Cacng2 gene, encoding the rat CaVγ2, is bidirectional and regulates the transcription of a long non-coding RNA (lncRNA) in the antisense direction. Here, we investigate the proximal promoter region of the human CACNG2 gene in the antisense direction and show that this region includes two functional cAMP response elements that regulate the expression of a lncRNA called CACNG2-DT. The activity of these sites is significantly enhanced by forskolin, an adenylate cyclase activator, and inhibited by H89, a protein kinase A (PKA) antagonist. Therefore, this regulatory mechanism implies the activation of G protein-coupled receptors and downstream phosphorylation. Interestingly, we also found that the expression of CACNG2-DT may increase the levels of the CaVγ2 subunit. Together, these data provide novel information on the organization of the human CACNG2-DT gene promoter, describe modulatory domains and mechanisms that can mediate various regulatory inputs, and provide initial information on the molecular mechanisms that regulate the functional expression of the CaVγ2 protein.

9.
Schizophr Res ; 249: 16-24, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-32014361

RESUMEN

The glutamate hypothesis of schizophrenia suggests that altered glutamatergic transmission occurs in this illness, although precise mechanisms of dysregulation remain elusive. AMPA receptors (AMPARs), a subtype of ionotropic glutamate receptor, are the main facilitators of fast, excitatory neurotransmission in the brain, and changes in AMPAR number or composition at synapses can regulate synaptic strength and plasticity. Prior evidence of abnormal expression of transmembrane AMPAR regulatory proteins (TARPs) in schizophrenia suggests defective trafficking of AMPARs, which we propose could lead to altered AMPAR expression at excitatory synapses. To test this hypothesis, we isolated subcellular fractions enriched for endoplasmic reticulum (ER) and synapses from anterior cingulate cortex (ACC) from schizophrenia (N = 18) and comparison (N = 18) subjects, and measured glutamate receptor subunits (GluA1, GluA2, GluA3, GluA4, NR1, NR2A, NR2B, and NR3A) and TARP member γ2 (stargazin) in homogenates and subcellular fractions by western blot analysis. We found decreased expression of stargazin and an increased ratio of GluA2:stargazin in ACC homogenates, while in the synapse fraction we identified a decrease in GluA1 and reduced ratios of GluA1:stargazin and GluA1:GluA2 in schizophrenia. The amount of stargazin in the ER fraction was not different, but the relative amount of ER/Total stargazin was increased in schizophrenia. Together, these findings suggest that associations between stargazin and AMPA subunits are abnormal, potentially affecting forward trafficking or synaptic stability of GluA1-containing AMPARs. These data provide evidence that altered interactions with trafficking proteins may contribute to glutamate dysregulation in schizophrenia.


Asunto(s)
Receptores AMPA , Esquizofrenia , Humanos , Receptores AMPA/metabolismo , Giro del Cíngulo/metabolismo , Canales de Calcio , Ácido Glutámico
10.
CNS Neurosci Ther ; 25(2): 187-199, 2019 02.
Artículo en Inglés | MEDLINE | ID: mdl-29911316

RESUMEN

AIMS: Palmitoylation of α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptors (AMPARs) subunits or their "scaffold" proteins produce opposite effects on AMPAR surface delivery. Considering AMPARs have long been identified as suitable drug targets for central nervous system (CNS) disorders, targeting palmitoylation signaling to regulate AMPAR function emerges as a novel therapeutic strategy. However, until now, much less is known about the effect of palmitoylation-deficient state on AMPAR function. Herein, we set out to determine the effect of global de-palmitoylation on AMPAR surface expression and its function, using a special chemical tool, N-(tert-Butyl) hydroxylamine (NtBuHA). METHODS: BS3 protein cross-linking, Western blot, immunoprecipitation, patch clamp, and biotin switch assay. RESULTS: Bath application of NtBuHA (1.0 mM) reduced global palmitoylated proteins in the hippocampus of mice. Although NtBuHA (1.0 mM) did not affect the expression of ionotropic glutamate receptor subunits, it preferentially decreased the surface expression of AMPARs, not N-methyl-d-aspartate receptors (NMDARs). Notably, NtBuHA (1.0 mM) reduces AMPAR-mediated excitatory postsynaptic currents (mEPSCs) in the hippocampus. This effect may be largely due to the de-palmitoylation of postsynaptic density protein 95 (PSD95) and protein kinase A-anchoring proteins, both of which stabilized AMPAR synaptic delivery. Furthermore, we found that changing PSD95 palmitoylation by NtBuHA altered the association of PSD95 with stargazin, which interacted directly with AMPARs, but not NMDARs. CONCLUSION: Our data suggest that the palmitoylation-deficient state initiated by NtBuHA preferentially reduces AMPAR function, which may potentially be used for the treatment of CNS disorders, especially infantile neuronal ceroid lipofuscinosis (Batten disease).


Asunto(s)
Hidroxilaminas/farmacología , Palmitatos/metabolismo , Receptores AMPA/antagonistas & inhibidores , Sinapsis/metabolismo , Transmisión Sináptica/efectos de los fármacos , Animales , Biotina/metabolismo , Canales de Calcio/efectos de los fármacos , Canales de Calcio/metabolismo , Homólogo 4 de la Proteína Discs Large/efectos de los fármacos , Homólogo 4 de la Proteína Discs Large/metabolismo , Potenciales Postsinápticos Excitadores/efectos de los fármacos , Hipocampo/efectos de los fármacos , Hipocampo/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Lipofuscinosis Ceroideas Neuronales/tratamiento farmacológico , Técnicas de Placa-Clamp , Receptores AMPA/metabolismo , Sinapsis/efectos de los fármacos
11.
Neuron ; 104(3): 529-543.e6, 2019 11 06.
Artículo en Inglés | MEDLINE | ID: mdl-31492534

RESUMEN

Transmembrane AMPA receptor (AMPAR) regulatory proteins (TARPs) modulate AMPAR synaptic trafficking and transmission via disc-large (DLG) subfamily of membrane-associated guanylate kinases (MAGUKs). Despite extensive studies, the molecular mechanism governing specific TARP/MAGUK interaction remains elusive. Using stargazin and PSD-95 as the representatives, we discover that the entire tail of stargazin (Stg_CT) is required for binding to PSD-95. The PDZ binding motif (PBM) and an Arg-rich motif upstream of PBM conserved in TARPs bind to multiple sites on PSD-95, thus resulting in a highly specific and multivalent stargazin/PSD-95 complex. Stargazin in complex with PSD-95 or PSD-95-assembled postsynaptic complexes form highly concentrated and dynamic condensates via phase separation, reminiscent of stargazin/PSD-95-mediated AMPAR synaptic clustering and trapping. Importantly, charge neutralization mutations in TARP_CT Arg-rich motif weakened TARP's condensation with PSD-95 and impaired TARP-mediated AMPAR synaptic transmission in mice hippocampal neurons. The TARP_CT/PSD-95 interaction mode may have implications for understanding clustering of other synaptic transmembrane proteins.


Asunto(s)
Canales de Calcio/metabolismo , Homólogo 4 de la Proteína Discs Large/metabolismo , Neuronas/metabolismo , Receptores AMPA/metabolismo , Transmisión Sináptica , Animales , Guanilato-Quinasas/metabolismo , Hipocampo/citología , Hipocampo/metabolismo , Ratones , Densidad Postsináptica/metabolismo , Transporte de Proteínas
12.
Biochem Pharmacol ; 148: 308-314, 2018 02.
Artículo en Inglés | MEDLINE | ID: mdl-29330065

RESUMEN

It was previously reported that Stargazin (STG) enhances the surface expression of AMPA receptors, controls receptor gating and slows channel desensitization as an auxiliary subunit of the receptors. Ampakines are a class of AMPA receptor positive allosteric modulators that modify rates of transmitter binding, channel activity and desensitization parameters. As such, they have shown efficacy in animal models of neurodegenerative diseases, where excitatory synaptic transmission is compromised. Given the functional similarities between STG and ampakines, the current study sought to probe interactions between STG and ampakine gating properties. The effects of the high impact ampakines, CX614 and cyclothiazide (CTZ), were compared with homomeric GluR1-flip (Glur1i) and GluR2-flop (Glur2o) receptors expressed in HEK293 cells by transient transfection with or without STG gene. STG dramatically enhanced the surface expression of AMPA receptors and increased glutamate-induced steady-state currents during desensitization. STG also increased ratios of 500 µM kainate and 500 µM glutamate activated steady-state currents. STG reduced association rates of ampakines and differentially affected the dissociation rates for both CX614 and CTZ on desensitized receptors. The estimated Kd value for CX614 was lowered from 340 µM to 70 µM, whereas that for CTZ was lowered from 170 µM to 6 µM by STG. The data suggest that Stargazin can dramatically alter the conformation of the receptor dimer interface where CX614 and CTZ are known to bind. This work also demonstrates the importance of considering STG interactions when developing ampakines to treat neurodegenerative diseases in which AMPAergic signaling is compromised.


Asunto(s)
Canales de Calcio/metabolismo , Receptores AMPA/metabolismo , Benzotiadiazinas/farmacología , Canales de Calcio/genética , Regulación de la Expresión Génica/efectos de los fármacos , Ácido Glutámico/farmacología , Células HEK293 , Humanos , Potenciales de la Membrana , Oxazinas/farmacología , Receptores AMPA/genética
13.
Biochem Pharmacol ; 154: 446-451, 2018 08.
Artículo en Inglés | MEDLINE | ID: mdl-29906466

RESUMEN

Transmembrane AMPA receptor regulatory proteins (TARPs) govern AMPA receptor cell surface expression and distinct physiological properties including agonist affinity, desensitization and deactivation kinetics. The prototypical TARP, STG or γ2 and TARPs γ3, γ4, γ7 and γ8 are all expressed to varying degrees in the mammalian brain and differentially regulate AMPAR gating parameters. Positive allosteric AMPA receptor modulators or ampakines alter receptor rates of agonist binding/unbinding, channel opening and can offset receptor desensitization and deactivation. The effects of the two ampakines, CX614 and cyclothiazide (CTZ) were evaluated on homomeric GluR1-flip receptors and GluR2-flop receptors expressed on HEK293 cells by transient transfection with or without different TARPs γ2, γ3, γ4 or γ8 genes. γ4 was the most robust TARP in increasing the affinities of CX614 and CTZ on GluR1-flip receptors, but had no such effect on GluR2-flop receptors. However, γ8 gave the most significant increases in affinities of CX614 and CTZ on GluR2-flop. These data show that TARPs differentially affect the surface expression and kinetics of the AMPA receptor, as well as the pharmacology of ampakines for the AMPA receptor. The modulatory effects of TARPs on ampakine pharmacology are complex, being dependent on both the TARP subtype and the AMPA receptor subtypes/isoforms.


Asunto(s)
Canales de Calcio/metabolismo , Oxazinas/farmacología , Receptores AMPA/agonistas , Receptores AMPA/metabolismo , Animales , Relación Dosis-Respuesta a Droga , Células HEK293 , Humanos , Oxazinas/metabolismo , Ratas
14.
Front Mol Neurosci ; 11: 328, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30271322

RESUMEN

Synaptic scaling is a form of homeostatic plasticity that is critical for maintaining neuronal activity within a dynamic range, and which alters synaptic strength through changes in postsynaptic AMPA-type glutamate receptors. Homeostatic scaling down of excitatory synapses has been shown to occur during sleep, and to contribute to synapse remodeling and memory consolidation, but the underlying mechanisms are only partially known. Here, we report that synaptic downscaling in cortical neurons is accompanied by dephosphorylation of the transmembrane AMPA receptor regulatory protein stargazin, and by an increase in its cell surface mobility. The changes in stargazin surface diffusion were paralleled by an increase in the mobility of GluA1-containing AMPA receptors at synaptic sites. In addition, stargazin dephosphorylation was required for the downregulation of surface levels of GluA1-containing AMPA receptors promoted by chronic elevation of neuronal activity, specifically by mediating the interaction with the adaptor proteins AP-2 and AP-3A. Disruption of the stargazin-AP-3A interaction was sufficient to prevent the decrease in cell surface GluA1-AMPA receptor levels associated with chronically enhanced synaptic activity, suggesting that scaling down is accomplished through decreased AMPA receptor recycling and enhanced lysosomal degradation. Thus, synaptic downscaling is associated with both increased stargazin and AMPA receptor cell surface diffusion, as well as with stargazin-mediated AMPA receptor endocytosis and lysosomal degradation.

15.
ACS Chem Neurosci ; 8(12): 2631-2647, 2017 12 20.
Artículo en Inglés | MEDLINE | ID: mdl-28825787

RESUMEN

The forebrain specific AMPA receptor antagonist, LY3130481/CERC-611, which selectively antagonizes the AMPA receptors associated with TARP γ-8, an auxiliary subunit enriched in the forebrain, has potent antiepileptic activities without motor side effects. We designated the compounds with such activities as γ-8 TARP dependent AMPA receptor antagonists (γ-8 TDAAs). In this work, we further investigated the mechanisms of action using a radiolabeled γ-8 TDAA and ternary structural modeling with mutational validations to characterize the LY3130481 binding to γ-8. The radioligand binding to the cells heterologously expressing GluA1 and/or γ-8 revealed that γ-8 TDAAs binds to γ-8 alone without AMPA receptors. Homology modeling of γ-8, based on the crystal structures of a distant TARP homologue, murine claudin 19, in conjunction with knowledge of two γ-8 residues previously identified as critical for the LY3130481 TARP-dependent selectivity provided the basis for a binding mode prediction. This allowed further rational mutational studies for characterization of the structural determinants in TARP γ-8 for LY3130481 activities, both thermodynamically as well as kinetically.


Asunto(s)
Benzotiazoles/química , Simulación del Acoplamiento Molecular , Neuronas/química , Pirazoles/química , Receptores AMPA/antagonistas & inhibidores , Receptores AMPA/ultraestructura , Animales , Sitios de Unión , Hipocampo/química , Masculino , Ratones , Modelos Biológicos , Modelos Químicos , Unión Proteica , Conformación Proteica , Relación Estructura-Actividad
16.
Neuron ; 93(5): 1126-1137.e4, 2017 Mar 08.
Artículo en Inglés | MEDLINE | ID: mdl-28238551

RESUMEN

AMPA receptors (AMPARs) mediate the majority of fast excitatory transmission in the brain and critically contribute to synaptic plasticity and pathology. AMPAR trafficking and gating are tightly controlled by auxiliary transmembrane AMPAR regulatory proteins (TARPs). Here, using systematic domain swaps with the TARP-insensitive kainate receptor GluK2, we show that AMPAR interaction with the prototypical TARP stargazin/γ2 primarily involves the AMPAR membrane domains M1 and M4 of neighboring subunits, initiated or stabilized by the AMPAR C-tail, and that these interactions are sufficient to enable full receptor modulation. Moreover, employing TARP chimeras disclosed a key role in this process also for the TARP transmembrane domains TM3 and TM4 and extracellular loop 2. Mechanistically, our data support a two-step action in which binding of TARP to the AMPAR membrane domains destabilizes the channel closed state, thereby enabling an efficient opening upon agonist binding, which then stabilizes the open state via subsequent interactions.


Asunto(s)
Canales de Calcio/metabolismo , Proteínas Nucleares/metabolismo , Receptores AMPA/metabolismo , Transmisión Sináptica/fisiología , Proteínas de Xenopus/metabolismo , Animales , Transporte de Proteínas/fisiología , Receptores de Ácido Kaínico/metabolismo , Xenopus , Receptor de Ácido Kaínico GluK2
17.
Front Mol Neurosci ; 10: 434, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-29311821

RESUMEN

Feedforward inhibition is essential to prevent run away excitation within the brain. Recent evidence suggests that a loss of feed-forward inhibition in the corticothalamocortical circuitry may underlie some absence seizures. However, it is unclear if this aberration is specifically linked to loss of synaptic excitation onto local fast-spiking parvalbumin-containing (PV+) inhibitory interneurons, which are responsible for mediating feedforward inhibition within cortical networks. We recently reported a global tissue loss of AMPA receptors (AMPARs), and a specific mistrafficking of these AMPARs in PV+ interneurons in the stargazer somatosensory cortex. The current study was aimed at investigating if cellular changes in AMPAR expression were translated into deficits in receptors at specific synapses in the feedforward inhibitory microcircuit. Using western blot immunolabeling on biochemically isolated synaptic fractions, we demonstrate a loss of AMPAR GluA1-4 subunits in the somatosensory cortex of stargazers compared to non-epileptic control mice. Furthermore, using double post-embedding immunogold-cytochemistry, we show a loss of GluA1-4-AMPARs at excitatory synapses onto cortical PV+ interneurons. Altogether, these data indicate a loss of synaptic AMPAR-mediated excitation of cortical PV+ inhibitory neurons. As the cortex is considered the site of initiation of spike wave discharges (SWDs) within the corticothalamocortical circuitry, loss of AMPARs at cortical PV+ interneurons likely impairs feed-forward inhibitory output, and contributes to the generation of SWDs and absence seizures in stargazers.

18.
Dev Neurobiol ; 76(5): 487-506, 2016 May.
Artículo en Inglés | MEDLINE | ID: mdl-26178704

RESUMEN

Fast excitatory synaptic transmission in the CNS is mediated by the neurotransmitter glutamate, binding to and activating AMPA receptors (AMPARs). AMPARs are known to interact with auxiliary proteins that modulate their behavior. One such family of proteins is the transmembrane AMPA receptor-related proteins, known as TARPs. Little is known about the role of TARPs during development, or about their function in non-mammalian organisms. Here we report the presence of TARPs, specifically the prototypical TARP, stargazin, in developing zebrafish. We find that zebrafish express two forms of stargazin, Cacng2a and Cacng2b from as early as 12-h post fertilization (hpf). Knockdown of Cacng2a and Cacng2b via splice-blocking morpholinos resulted in embryos that exhibited deficits in C-start escape responses, showing reduced C-bend angles, smaller tail velocities and aberrant C-bend turning directions. Injection of the morphants with Cacng2a or 2b mRNA rescued the morphological phenotype and the synaptic deficits. To investigate the effect of reduced Cacng2a and 2b levels on synaptic physiology, we performed whole cell patch clamp recordings of AMPA mEPSCs from zebrafish Mauthner cells. Knockdown of Cacng2a results in reduced AMPA currents and lower mEPSC frequencies, whereas knockdown of Cacng2b displayed no significant change in mEPSC amplitude or frequency. Non-stationary fluctuation analysis confirmed a reduction in the number of active synaptic receptors in the Cacng2a but not in the Cacng2b morphants. Together, these results suggest that Cacng2a is required for normal trafficking and function of synaptic AMPARs, while Cacng2b is largely non-functional with respect to the development of AMPA synaptic transmission.


Asunto(s)
Canales de Calcio/metabolismo , Neuronas/fisiología , Receptores AMPA/metabolismo , Sinapsis/metabolismo , Proteínas de Pez Cebra/metabolismo , Pez Cebra/embriología , Pez Cebra/fisiología , Empalme Alternativo , Animales , Canales de Calcio/genética , Potenciales Postsinápticos Excitadores/efectos de los fármacos , Potenciales Postsinápticos Excitadores/fisiología , Técnicas de Silenciamiento del Gen , Potenciales Postsinápticos Miniatura/efectos de los fármacos , Morfolinos , Actividad Motora/fisiología , Neuronas/efectos de los fármacos , Neuronas/patología , Técnicas de Placa-Clamp , ARN Mensajero/metabolismo , Rombencéfalo/embriología , Rombencéfalo/metabolismo , Rombencéfalo/patología , Análisis de Secuencia de Proteína , Homología de Secuencia de Aminoácido , Sinapsis/patología , Proteínas de Pez Cebra/genética
19.
Cell Rep ; 17(2): 328-335, 2016 10 04.
Artículo en Inglés | MEDLINE | ID: mdl-27705782

RESUMEN

Fast excitatory synaptic signaling in the mammalian brain is mediated by AMPA-type ionotropic glutamate receptors. In neurons, AMPA receptors co-assemble with auxiliary proteins, such as stargazin, which can markedly alter receptor trafficking and gating. Here, we used luminescence resonance energy transfer measurements to map distances between the full-length, functional AMPA receptor and stargazin expressed in HEK293 cells and to determine the ensemble structural changes in the receptor due to stargazin. In addition, we used single-molecule fluorescence resonance energy transfer to study the structural and conformational distribution of the receptor and how this distribution is affected by stargazin. Our nanopositioning data place stargazin below the AMPA receptor ligand-binding domain, where it is well poised to act as a scaffold to facilitate the long-range conformational selection observations seen in single-molecule experiments. These data support a model of stargazin acting to stabilize or select conformational states that favor activation.


Asunto(s)
Canales de Calcio/genética , Neuronas/metabolismo , Receptores AMPA/genética , Ácido alfa-Amino-3-hidroxi-5-metil-4-isoxazol Propiónico/metabolismo , Células HEK293 , Humanos , Ligandos , Unión Proteica , Dominios Proteicos/genética , Transporte de Proteínas/genética , Receptores AMPA/metabolismo
20.
Neuropharmacology ; 77: 28-38, 2014 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-24035918

RESUMEN

Behavioral sensitization to cocaine is associated with increased AMPA receptor (AMPAR) surface expression in the nucleus accumbens (NAc). This upregulation is withdrawal-dependent, as it is not detected on withdrawal day (WD) 1, but is observed on WD7-21. Its underlying mechanisms have not been clearly established. Nitric oxide (NO) regulates AMPAR trafficking in the brain by S-nitrosylation of the AMPAR auxiliary subunit, stargazin, leading to increased AMPAR surface expression. Our goal was to determine if stargazin S-nitrosylation contributes to AMPAR upregulation during sensitization. First, we measured stargazin S-nitrosylation in NAc core and shell subregions on WD14 after 8 daily injections of saline or 15 mg/kg cocaine. Stargazin S-nitrosylation was markedly increased in NAc shell but not core. To determine if this is associated with AMPAR upregulation, rats received 8 cocaine or saline injections followed by twice-daily treatments with vehicle or the nitric oxide synthase inhibitor l-NAME (50 mg/kg) on WD1-6, the time when AMPAR upregulation is developing in cocaine-exposed rats. Cocaine/vehicle rats showed elevated stargazin and GluA1 surface expression on WD7 compared to saline/vehicle rats; the GluA1 increase was more robust in core, while stargazin increased more robustly in shell. These effects of cocaine were attenuated in shell but not core when cocaine injections were followed by l-NAME treatment on WD1-6. Together, these results indicate that elevated S-nitrosylation of stargazin contributes to AMPAR upregulation during sensitization selectively in the NAc shell. It is possible that AMPAR upregulation in core involves a different TARP, γ4, which also upregulates in the NAc of sensitized rats.


Asunto(s)
Canales de Calcio/metabolismo , Trastornos Relacionados con Cocaína/metabolismo , Cocaína/administración & dosificación , Núcleo Accumbens/metabolismo , Receptores AMPA/metabolismo , Regulación hacia Arriba/efectos de los fármacos , Animales , Trastornos Relacionados con Cocaína/genética , Masculino , Actividad Motora/efectos de los fármacos , Núcleo Accumbens/efectos de los fármacos , Ratas , Ratas Sprague-Dawley , Receptores AMPA/genética , Ácido alfa-Amino-3-hidroxi-5-metil-4-isoxazol Propiónico/metabolismo
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda