Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 20 de 15.808
Filtrar
Más filtros

Publication year range
1.
Cell ; 2024 Jun 21.
Artículo en Inglés | MEDLINE | ID: mdl-38908368

RESUMEN

In aging, physiologic networks decline in function at rates that differ between individuals, producing a wide distribution of lifespan. Though 70% of human lifespan variance remains unexplained by heritable factors, little is known about the intrinsic sources of physiologic heterogeneity in aging. To understand how complex physiologic networks generate lifespan variation, new methods are needed. Here, we present Asynch-seq, an approach that uses gene-expression heterogeneity within isogenic populations to study the processes generating lifespan variation. By collecting thousands of single-individual transcriptomes, we capture the Caenorhabditis elegans "pan-transcriptome"-a highly resolved atlas of non-genetic variation. We use our atlas to guide a large-scale perturbation screen that identifies the decoupling of total mRNA content between germline and soma as the largest source of physiologic heterogeneity in aging, driven by pleiotropic genes whose knockdown dramatically reduces lifespan variance. Our work demonstrates how systematic mapping of physiologic heterogeneity can be applied to reduce inter-individual disparities in aging.

2.
Cell ; 186(3): 497-512.e23, 2023 02 02.
Artículo en Inglés | MEDLINE | ID: mdl-36657443

RESUMEN

The human embryo breaks symmetry to form the anterior-posterior axis of the body. As the embryo elongates along this axis, progenitors in the tail bud give rise to tissues that generate spinal cord, skeleton, and musculature. This raises the question of how the embryo achieves axial elongation and patterning. While ethics necessitate in vitro studies, the variability of organoid systems has hindered mechanistic insights. Here, we developed a bioengineering and machine learning framework that optimizes organoid symmetry breaking by tuning their spatial coupling. This framework enabled reproducible generation of axially elongating organoids, each possessing a tail bud and neural tube. We discovered that an excitable system composed of WNT/FGF signaling drives elongation by inducing a neuromesodermal progenitor-like signaling center. We discovered that instabilities in the excitable system are suppressed by secreted WNT inhibitors. Absence of these inhibitors led to ectopic tail buds and branches. Our results identify mechanisms governing stable human axial elongation.


Asunto(s)
Tipificación del Cuerpo , Mesodermo , Humanos , Vía de Señalización Wnt , Embrión de Mamíferos , Organoides
3.
Cell ; 185(16): 3041-3055.e25, 2022 08 04.
Artículo en Inglés | MEDLINE | ID: mdl-35917817

RESUMEN

Rare copy-number variants (rCNVs) include deletions and duplications that occur infrequently in the global human population and can confer substantial risk for disease. In this study, we aimed to quantify the properties of haploinsufficiency (i.e., deletion intolerance) and triplosensitivity (i.e., duplication intolerance) throughout the human genome. We harmonized and meta-analyzed rCNVs from nearly one million individuals to construct a genome-wide catalog of dosage sensitivity across 54 disorders, which defined 163 dosage sensitive segments associated with at least one disorder. These segments were typically gene dense and often harbored dominant dosage sensitive driver genes, which we were able to prioritize using statistical fine-mapping. Finally, we designed an ensemble machine-learning model to predict probabilities of dosage sensitivity (pHaplo & pTriplo) for all autosomal genes, which identified 2,987 haploinsufficient and 1,559 triplosensitive genes, including 648 that were uniquely triplosensitive. This dosage sensitivity resource will provide broad utility for human disease research and clinical genetics.


Asunto(s)
Variaciones en el Número de Copia de ADN , Genoma Humano , Variaciones en el Número de Copia de ADN/genética , Dosificación de Gen , Haploinsuficiencia/genética , Humanos
4.
Cell ; 185(3): 530-546.e25, 2022 02 03.
Artículo en Inglés | MEDLINE | ID: mdl-35085485

RESUMEN

The metabolic activities of microbial communities play a defining role in the evolution and persistence of life on Earth, driving redox reactions that give rise to global biogeochemical cycles. Community metabolism emerges from a hierarchy of processes, including gene expression, ecological interactions, and environmental factors. In wild communities, gene content is correlated with environmental context, but predicting metabolite dynamics from genomes remains elusive. Here, we show, for the process of denitrification, that metabolite dynamics of a community are predictable from the genes each member of the community possesses. A simple linear regression reveals a sparse and generalizable mapping from gene content to metabolite dynamics for genomically diverse bacteria. A consumer-resource model correctly predicts community metabolite dynamics from single-strain phenotypes. Our results demonstrate that the conserved impacts of metabolic genes can predict community metabolite dynamics, enabling the prediction of metabolite dynamics from metagenomes, designing denitrifying communities, and discovering how genome evolution impacts metabolism.


Asunto(s)
Genómica , Metabolómica , Microbiota/genética , Biomasa , Desnitrificación , Genoma , Modelos Biológicos , Nitratos/metabolismo , Nitritos/metabolismo , Fenotipo , Análisis de Regresión , Reproducibilidad de los Resultados
5.
Cell ; 184(7): 1836-1857.e22, 2021 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-33713619

RESUMEN

COVID-19 exhibits extensive patient-to-patient heterogeneity. To link immune response variation to disease severity and outcome over time, we longitudinally assessed circulating proteins as well as 188 surface protein markers, transcriptome, and T cell receptor sequence simultaneously in single peripheral immune cells from COVID-19 patients. Conditional-independence network analysis revealed primary correlates of disease severity, including gene expression signatures of apoptosis in plasmacytoid dendritic cells and attenuated inflammation but increased fatty acid metabolism in CD56dimCD16hi NK cells linked positively to circulating interleukin (IL)-15. CD8+ T cell activation was apparent without signs of exhaustion. Although cellular inflammation was depressed in severe patients early after hospitalization, it became elevated by days 17-23 post symptom onset, suggestive of a late wave of inflammatory responses. Furthermore, circulating protein trajectories at this time were divergent between and predictive of recovery versus fatal outcomes. Our findings stress the importance of timing in the analysis, clinical monitoring, and therapeutic intervention of COVID-19.


Asunto(s)
COVID-19/inmunología , Citocinas/metabolismo , Células Dendríticas/metabolismo , Expresión Génica/inmunología , Células Asesinas Naturales/metabolismo , Índice de Severidad de la Enfermedad , Adulto , Anciano , Anciano de 80 o más Años , Biomarcadores/metabolismo , COVID-19/mortalidad , Estudios de Casos y Controles , Células Dendríticas/citología , Femenino , Humanos , Células Asesinas Naturales/citología , Estudios Longitudinales , Masculino , Persona de Mediana Edad , Transcriptoma/inmunología , Adulto Joven
6.
Cell ; 168(3): 460-472.e14, 2017 01 26.
Artículo en Inglés | MEDLINE | ID: mdl-28089356

RESUMEN

Certain cell types function as factories, secreting large quantities of one or more proteins that are central to the physiology of the respective organ. Examples include surfactant proteins in lung alveoli, albumin in liver parenchyma, and lipase in the stomach lining. Whole-genome sequencing analysis of lung adenocarcinomas revealed noncoding somatic mutational hotspots near VMP1/MIR21 and indel hotspots in surfactant protein genes (SFTPA1, SFTPB, and SFTPC). Extrapolation to other solid cancers demonstrated highly recurrent and tumor-type-specific indel hotspots targeting the noncoding regions of highly expressed genes defining certain secretory cellular lineages: albumin (ALB) in liver carcinoma, gastric lipase (LIPF) in stomach carcinoma, and thyroglobulin (TG) in thyroid carcinoma. The sequence contexts of indels targeting lineage-defining genes were significantly enriched in the AATAATD DNA motif and specific chromatin contexts, including H3K27ac and H3K36me3. Our findings illuminate a prevalent and hitherto unrecognized mutational process linking cellular lineage and cancer.


Asunto(s)
Linaje de la Célula , Mutación INDEL , Mutación , Neoplasias/genética , Neoplasias/patología , Regiones no Traducidas 3' , Adulto , Anciano , Anciano de 80 o más Años , Femenino , Humanos , Masculino , Proteínas de la Membrana/genética , MicroARNs/genética , Persona de Mediana Edad , Motivos de Nucleótidos , Polimorfismo de Nucleótido Simple , Proteínas Asociadas a Surfactante Pulmonar/genética
7.
Cell ; 167(1): 158-170.e12, 2016 Sep 22.
Artículo en Inglés | MEDLINE | ID: mdl-27662088

RESUMEN

Protein flexibility ranges from simple hinge movements to functional disorder. Around half of all human proteins contain apparently disordered regions with little 3D or functional information, and many of these proteins are associated with disease. Building on the evolutionary couplings approach previously successful in predicting 3D states of ordered proteins and RNA, we developed a method to predict the potential for ordered states for all apparently disordered proteins with sufficiently rich evolutionary information. The approach is highly accurate (79%) for residue interactions as tested in more than 60 known disordered regions captured in a bound or specific condition. Assessing the potential for structure of more than 1,000 apparently disordered regions of human proteins reveals a continuum of structural order with at least 50% with clear propensity for three- or two-dimensional states. Co-evolutionary constraints reveal hitherto unseen structures of functional importance in apparently disordered proteins.


Asunto(s)
Proteínas Intrínsecamente Desordenadas/química , Evolución Molecular Dirigida/métodos , Genómica , Humanos , Proteínas Intrínsecamente Desordenadas/genética , Estructura Secundaria de Proteína , Estructura Terciaria de Proteína , Proteoma/química , Proteoma/genética
8.
Am J Hum Genet ; 111(4): 654-667, 2024 Apr 04.
Artículo en Inglés | MEDLINE | ID: mdl-38471507

RESUMEN

Allele-specific methylation (ASM) is an epigenetic modification whereby one parental allele becomes methylated and the other unmethylated at a specific locus. ASM is most often driven by the presence of nearby heterozygous variants that influence methylation, but also occurs somatically in the context of genomic imprinting. In this study, we investigate ASM using publicly available single-cell reduced representation bisulfite sequencing (scRRBS) data on 608 B cells sampled from six healthy B cell samples and 1,230 cells from 11 chronic lymphocytic leukemia (CLL) samples. We developed a likelihood-based criterion to test whether a CpG exhibited ASM, based on the distributions of methylated and unmethylated reads both within and across cells. Applying our likelihood ratio test, 65,998 CpG sites exhibited ASM in healthy B cell samples according to a Bonferroni criterion (p < 8.4 × 10-9), and 32,862 CpG sites exhibited ASM in CLL samples (p < 8.5 × 10-9). We also called ASM at the sample level. To evaluate the accuracy of our method, we called heterozygous variants from the scRRBS data, which enabled variant-based calls of ASM within each cell. Comparing sample-level ASM calls to the variant-based measures of ASM, we observed a positive predictive value of 76%-100% across samples. We observed high concordance of ASM across samples and an overrepresentation of ASM in previously reported imprinted genes and genes with imprinting binding motifs. Our study demonstrates that single-cell bisulfite sequencing is a potentially powerful tool to investigate ASM, especially as studies expand to increase the number of samples and cells sequenced.


Asunto(s)
Metilación de ADN , Leucemia Linfocítica Crónica de Células B , Sulfitos , Humanos , Metilación de ADN/genética , Alelos , Leucemia Linfocítica Crónica de Células B/genética , Funciones de Verosimilitud , Impresión Genómica/genética , Islas de CpG/genética
9.
Am J Hum Genet ; 2024 May 23.
Artículo en Inglés | MEDLINE | ID: mdl-38821058

RESUMEN

Both trio and population designs are popular study designs for identifying risk genetic variants in genome-wide association studies (GWASs). The trio design, as a family-based design, is robust to confounding due to population structure, whereas the population design is often more powerful due to larger sample sizes. Here, we propose KnockoffHybrid, a knockoff-based statistical method for hybrid analysis of both the trio and population designs. KnockoffHybrid provides a unified framework that brings together the advantages of both designs and produces powerful hybrid analysis while controlling the false discovery rate (FDR) in the presence of linkage disequilibrium and population structure. Furthermore, KnockoffHybrid has the flexibility to leverage different types of summary statistics for hybrid analyses, including expression quantitative trait loci (eQTL) and GWAS summary statistics. We demonstrate in simulations that KnockoffHybrid offers power gains over non-hybrid methods for the trio and population designs with the same number of cases while controlling the FDR with complex correlation among variants and population structure among subjects. In hybrid analyses of three trio cohorts for autism spectrum disorders (ASDs) from the Autism Speaks MSSNG, Autism Sequencing Consortium, and Autism Genome Project with GWAS summary statistics from the iPSYCH project and eQTL summary statistics from the MetaBrain project, KnockoffHybrid outperforms conventional methods by replicating several known risk genes for ASDs and identifying additional associations with variants in other genes, including the PRAME family genes involved in axon guidance and which may act as common targets for human speech/language evolution and related disorders.

10.
Proc Natl Acad Sci U S A ; 121(15): e2322083121, 2024 Apr 09.
Artículo en Inglés | MEDLINE | ID: mdl-38568975

RESUMEN

While reliable data-driven decision-making hinges on high-quality labeled data, the acquisition of quality labels often involves laborious human annotations or slow and expensive scientific measurements. Machine learning is becoming an appealing alternative as sophisticated predictive techniques are being used to quickly and cheaply produce large amounts of predicted labels; e.g., predicted protein structures are used to supplement experimentally derived structures, predictions of socioeconomic indicators from satellite imagery are used to supplement accurate survey data, and so on. Since predictions are imperfect and potentially biased, this practice brings into question the validity of downstream inferences. We introduce cross-prediction: a method for valid inference powered by machine learning. With a small labeled dataset and a large unlabeled dataset, cross-prediction imputes the missing labels via machine learning and applies a form of debiasing to remedy the prediction inaccuracies. The resulting inferences achieve the desired error probability and are more powerful than those that only leverage the labeled data. Closely related is the recent proposal of prediction-powered inference [A. N. Angelopoulos, S. Bates, C. Fannjiang, M. I. Jordan, T. Zrnic, Science 382, 669-674 (2023)], which assumes that a good pretrained model is already available. We show that cross-prediction is consistently more powerful than an adaptation of prediction-powered inference in which a fraction of the labeled data is split off and used to train the model. Finally, we observe that cross-prediction gives more stable conclusions than its competitors; its CIs typically have significantly lower variability.

11.
Proc Natl Acad Sci U S A ; 121(8): e2310238121, 2024 Feb 20.
Artículo en Inglés | MEDLINE | ID: mdl-38359294

RESUMEN

The adaptive and surprising emergent properties of biological materials self-assembled in far-from-equilibrium environments serve as an inspiration for efforts to design nanomaterials. In particular, controlling the conditions of self-assembly can modulate material properties, but there is no systematic understanding of either how to parameterize external control or how controllable a given material can be. Here, we demonstrate that branched actin networks can be encoded with metamaterial properties by dynamically controlling the applied force under which they grow and that the protocols can be selected using multi-task reinforcement learning. These actin networks have tunable responses over a large dynamic range depending on the chosen external protocol, providing a pathway to encoding "memory" within these structures. Interestingly, we obtain a bound that relates the dissipation rate and the rate of "encoding" that gives insight into the constraints on control-both physical and information theoretical. Taken together, these results emphasize the utility and necessity of nonequilibrium control for designing self-assembled nanostructures.


Asunto(s)
Actinas , Nanoestructuras , Actinas/metabolismo , Nanoestructuras/química
12.
Proc Natl Acad Sci U S A ; 121(25): e2322962121, 2024 Jun 18.
Artículo en Inglés | MEDLINE | ID: mdl-38870054

RESUMEN

Metallic alloys often form phases-known as solid solutions-in which chemical elements are spread out on the same crystal lattice in an almost random manner. The tendency of certain chemical motifs to be more common than others is known as chemical short-range order (SRO), and it has received substantial consideration in alloys with multiple chemical elements present in large concentrations due to their extreme configurational complexity (e.g., high-entropy alloys). SRO renders solid solutions "slightly less random than completely random," which is a physically intuitive picture, but not easily quantifiable due to the sheer number of possible chemical motifs and their subtle spatial distribution on the lattice. Here, we present a multiscale method to predict and quantify the SRO state of an alloy with atomic resolution, incorporating machine learning techniques to bridge the gap between electronic-structure calculations and the characteristic length scale of SRO. The result is an approach capable of predicting SRO length scale in agreement with experimental measurements while comprehensively correlating SRO with fundamental quantities such as local lattice distortions. This work advances the quantitative understanding of solid-solution phases, paving the way for the rigorous incorporation of SRO length scales into predictive mechanical and thermodynamic models.

13.
Proc Natl Acad Sci U S A ; 121(27): e2311878121, 2024 Jul 02.
Artículo en Inglés | MEDLINE | ID: mdl-38913889

RESUMEN

The population loss of trained deep neural networks often follows precise power-law scaling relations with either the size of the training dataset or the number of parameters in the network. We propose a theory that explains the origins of and connects these scaling laws. We identify variance-limited and resolution-limited scaling behavior for both dataset and model size, for a total of four scaling regimes. The variance-limited scaling follows simply from the existence of a well-behaved infinite data or infinite width limit, while the resolution-limited regime can be explained by positing that models are effectively resolving a smooth data manifold. In the large width limit, this can be equivalently obtained from the spectrum of certain kernels, and we present evidence that large width and large dataset resolution-limited scaling exponents are related by a duality. We exhibit all four scaling regimes in the controlled setting of large random feature and pretrained models and test the predictions empirically on a range of standard architectures and datasets. We also observe several empirical relationships between datasets and scaling exponents under modifications of task and architecture aspect ratio. Our work provides a taxonomy for classifying different scaling regimes, underscores that there can be different mechanisms driving improvements in loss, and lends insight into the microscopic origin and relationships between scaling exponents.

14.
Proc Natl Acad Sci U S A ; 121(13): e2309372121, 2024 Mar 26.
Artículo en Inglés | MEDLINE | ID: mdl-38498707

RESUMEN

Renewable power generation is the key to decarbonizing the electricity system. Wind power is the fastest-growing renewable source of electricity in the United States. However, expanding wind capacity often faces local opposition, partly due to a perceived visual disamenity from large wind turbines. Here, we provide a US-wide assessment of the externality costs of wind power generation through the visibility impact on property values. To this end, we create a database on wind turbine visibility, combining information on the site and height of each utility-scale turbine having fed power into the U.S. grid, with a high-resolution elevation map to account for the underlying topography of the landscape. Building on hedonic valuation theory, we statistically estimate the impact of wind turbine visibility on home values, informed by data from the majority of home sales in the United States since 1997. We find that on average, wind turbine visibility negatively affects home values in an economically and statistically significant way in close proximity ([Formula: see text]5 miles/8 km). However, the effect diminishes over time and in distance and is indistinguishable from zero for larger distances and toward the end of our sample.

15.
Proc Natl Acad Sci U S A ; 121(19): e2219385121, 2024 May 07.
Artículo en Inglés | MEDLINE | ID: mdl-38701120

RESUMEN

Odd viscosity couples stress to strain rate in a dissipationless way. It has been studied in plasmas under magnetic fields, superfluid [Formula: see text], quantum-Hall fluids, and recently in the context of chiral active matter. In most of these studies, odd terms in the viscosity obey Onsager reciprocal relations. Although this is expected in equilibrium systems, it is not obvious that Onsager relations hold in active materials. By directly coarse-graining the kinetic energy and independently using both the Poisson-bracket formalism and a kinetic theory derivation, we find that the appearance of a nonvanishing angular momentum density, which is a hallmark of chiral active materials, necessarily breaks Onsager reciprocal relations. This leads to a non-Hermitian dynamical matrix for the total hydrodynamic momentum and to the appearance of odd viscosity and other nondissipative contributions to the viscosity. Furthermore, by accounting for both the angular momentum density and interactions that lead to odd viscosity, we find regions in the parameter space in which 3D odd mechanical waves propagate and regions in which they are mechanically unstable. The lines separating these regions are continuous lines of exceptional points, suggesting a possible nonreciprocal phase transition.

16.
Proc Natl Acad Sci U S A ; 121(8): e2309504121, 2024 Feb 20.
Artículo en Inglés | MEDLINE | ID: mdl-38346190

RESUMEN

Graph neural networks (GNNs) excel in modeling relational data such as biological, social, and transportation networks, but the underpinnings of their success are not well understood. Traditional complexity measures from statistical learning theory fail to account for observed phenomena like the double descent or the impact of relational semantics on generalization error. Motivated by experimental observations of "transductive" double descent in key networks and datasets, we use analytical tools from statistical physics and random matrix theory to precisely characterize generalization in simple graph convolution networks on the contextual stochastic block model. Our results illuminate the nuances of learning on homophilic versus heterophilic data and predict double descent whose existence in GNNs has been questioned by recent work. We show how risk is shaped by the interplay between the graph noise, feature noise, and the number of training labels. Our findings apply beyond stylized models, capturing qualitative trends in real-world GNNs and datasets. As a case in point, we use our analytic insights to improve performance of state-of-the-art graph convolution networks on heterophilic datasets.

17.
Am J Hum Genet ; 110(1): 23-29, 2023 01 05.
Artículo en Inglés | MEDLINE | ID: mdl-36480927

RESUMEN

We present LDAK-GBAT, a tool for gene-based association testing using summary statistics from genome-wide association studies that is computationally efficient, produces well-calibrated p values, and is significantly more powerful than existing tools. LDAK-GBAT takes approximately 30 min to analyze imputed data (2.9M common, genic SNPs), requiring less than 10 Gb memory. It shows good control of type 1 error given an appropriate reference panel. Across 109 phenotypes (82 from the UK Biobank, 18 from the Million Veteran Program, and nine from the Psychiatric Genetics Consortium), LDAK-GBAT finds on average 19% (SE: 1%) more significant genes than the existing tool sumFREGAT-ACAT, with even greater gains in comparison with MAGMA, GCTA-fastBAT, sumFREGAT-SKAT-O, and sumFREGAT-PCA.


Asunto(s)
Pruebas Genéticas , Estudio de Asociación del Genoma Completo , Fenotipo , Polimorfismo de Nucleótido Simple/genética
18.
Am J Hum Genet ; 110(8): 1304-1318, 2023 08 03.
Artículo en Inglés | MEDLINE | ID: mdl-37433298

RESUMEN

Multimorbidity is a rising public health challenge with important implications for health management and policy. The most common multimorbidity pattern is the combination of cardiometabolic and osteoarticular diseases. Here, we study the genetic underpinning of the comorbidity between type 2 diabetes and osteoarthritis. We find genome-wide genetic correlation between the two diseases and robust evidence for association-signal colocalization at 18 genomic regions. We integrate multi-omics and functional information to resolve the colocalizing signals and identify high-confidence effector genes, including FTO and IRX3, which provide proof-of-concept insights into the epidemiologic link between obesity and both diseases. We find enrichment for lipid metabolism and skeletal formation pathways for signals underpinning the knee and hip osteoarthritis comorbidities with type 2 diabetes, respectively. Causal inference analysis identifies complex effects of tissue-specific gene expression on comorbidity outcomes. Our findings provide insights into the biological basis for the type 2 diabetes-osteoarthritis disease co-occurrence.


Asunto(s)
Diabetes Mellitus Tipo 2 , Osteoartritis , Humanos , Diabetes Mellitus Tipo 2/complicaciones , Diabetes Mellitus Tipo 2/genética , Comorbilidad , Osteoartritis/epidemiología , Osteoartritis/genética , Obesidad/complicaciones , Obesidad/epidemiología , Obesidad/genética , Causalidad , Estudio de Asociación del Genoma Completo , Análisis de la Aleatorización Mendeliana , Polimorfismo de Nucleótido Simple , Dioxigenasa FTO Dependiente de Alfa-Cetoglutarato/genética
19.
Brief Bioinform ; 25(2)2024 Jan 22.
Artículo en Inglés | MEDLINE | ID: mdl-38324621

RESUMEN

Single-cell clustered regularly interspaced short palindromic repeats-sequencing (scCRISPR-seq) is an emerging high-throughput CRISPR screening technology where the true cellular response to perturbation is coupled with infected proportion bias of guide RNAs (gRNAs) across different cell clusters. The mixing of these effects introduces noise into scCRISPR-seq data analysis and thus obstacles to relevant studies. We developed scDecouple to decouple true cellular response of perturbation from the influence of infected proportion bias. scDecouple first models the distribution of gene expression profiles in perturbed cells and then iteratively finds the maximum likelihood of cell cluster proportions as well as the cellular response for each gRNA. We demonstrated its performance in a series of simulation experiments. By applying scDecouple to real scCRISPR-seq data, we found that scDecouple enhances the identification of biologically perturbation-related genes. scDecouple can benefit scCRISPR-seq data analysis, especially in the case of heterogeneous samples or complex gRNA libraries.


Asunto(s)
Ensayos Analíticos de Alto Rendimiento , ARN Guía de Sistemas CRISPR-Cas
20.
Brief Bioinform ; 25(3)2024 Mar 27.
Artículo en Inglés | MEDLINE | ID: mdl-38711368

RESUMEN

Common genetic variants and susceptibility loci associated with Alzheimer's disease (AD) have been discovered through large-scale genome-wide association studies (GWAS), GWAS by proxy (GWAX) and meta-analysis of GWAS and GWAX (GWAS+GWAX). However, due to the very low repeatability of AD susceptibility loci and the low heritability of AD, these AD genetic findings have been questioned. We summarize AD genetic findings from the past 10 years and provide a new interpretation of these findings in the context of statistical heterogeneity. We discovered that only 17% of AD risk loci demonstrated reproducibility with a genome-wide significance of P < 5.00E-08 across all AD GWAS and GWAS+GWAX datasets. We highlighted that the AD GWAS+GWAX with the largest sample size failed to identify the most significant signals, the maximum number of genome-wide significant genetic variants or maximum heritability. Additionally, we identified widespread statistical heterogeneity in AD GWAS+GWAX datasets, but not in AD GWAS datasets. We consider that statistical heterogeneity may have attenuated the statistical power in AD GWAS+GWAX and may contribute to explaining the low repeatability (17%) of genome-wide significant AD susceptibility loci and the decreased AD heritability (40-2%) as the sample size increased. Importantly, evidence supports the idea that a decrease in statistical heterogeneity facilitates the identification of genome-wide significant genetic loci and contributes to an increase in AD heritability. Collectively, current AD GWAX and GWAS+GWAX findings should be meticulously assessed and warrant additional investigation, and AD GWAS+GWAX should employ multiple meta-analysis methods, such as random-effects inverse variance-weighted meta-analysis, which is designed specifically for statistical heterogeneity.


Asunto(s)
Enfermedad de Alzheimer , Predisposición Genética a la Enfermedad , Estudio de Asociación del Genoma Completo , Enfermedad de Alzheimer/genética , Humanos , Estudio de Asociación del Genoma Completo/métodos , Polimorfismo de Nucleótido Simple , Heterogeneidad Genética
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda