Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Banco de datos
Tipo del documento
Publication year range
1.
Angew Chem Int Ed Engl ; 58(13): 4323-4327, 2019 Mar 22.
Artículo en Inglés | MEDLINE | ID: mdl-30710397

RESUMEN

Lattice-oxygen redox (l-OR) has become an essential companion to the traditional transition-metal (TM) redox charge compensation to achieve high capacity in Li-rich cathode oxides. However, the understanding of l-OR chemistry remains elusive, and a critical question is the structural effect on the stability of l-OR reactions. Herein, the coupling between l-OR and structure dimensionality is studied. We reveal that the evolution of the oxygen-lattice structure upon l-OR in Li-rich TM oxides which have a three-dimensional (3D)-disordered cation framework is relatively stable, which is in direct contrast to the clearly distorted oxygen-lattice framework in Li-rich oxides which have a two-dimensional (2D)/3D-ordered cation structure. Our results highlight the role of structure dimensionality in stabilizing the oxygen lattice in reversible l-OR, which broadens the horizon for designing high-energy-density Li-rich cathode oxides with stable l-OR chemistry.

2.
Adv Mater ; 35(21): e2205410, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-36517207

RESUMEN

Halide perovskites have gained tremendous attention in the past decade owing to their excellent properties in optoelectronics. Recently, a fascinating property, ferroelectricity, has been discovered in halide perovskites and quickly attracted widespread interest. Compared with traditional perovskite oxide ferroelectrics, halide perovskites display natural advantages such as structural softness, low weight, and easy processing, which are highly desirable in applications pursuing miniaturization and flexibility. This review focuses on the current research progress in halide perovskite ferroelectrics, encompassing the emerging materials systems and their potential applications in ferroelectric photovoltaics, self-powered photodetection, and X-ray detection. The main challenges and possible solutions in the future development of halide perovskite ferroelectric materials are also attempted to be pointed out.

3.
Adv Mater ; 33(32): e2008574, 2021 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-34060151

RESUMEN

Lead halide perovskites have emerged in the last decade as advantageous high-performance optoelectronic semiconductors, and have undergone rapid development for diverse applications such as solar cells, light-emitting diodes , and photodetectors. While material instability and lead toxicity are still major concerns hindering their commercialization, they offer promising prospects and design principles for developing promising optoelectronic materials. The distinguished optoelectronic properties of lead halide perovskites stem from the Pb2+ cation with a lone-pair 6s2 electronic configuration embedded in a mixed covalent-ionic bonding lattice. Herein, we summarize alternative Pb-free semiconductors containing lone-pair ns2 cations, intending to offer insights for developing potential optoelectronic materials other than lead halide perovskites. We start with the physical underpinning of how the ns2 cations within the material lattice allow for superior optoelectronic properties. We then review the emerging Pb-free semiconductors containing ns2 cations in terms of structural dimensionality, which is crucial for optoelectronic performance. For each category of materials, the research progresses on crystal structures, electronic/optical properties, device applications, and recent efforts for performance enhancements are overviewed. Finally, the issues hindering the further developments of studied materials are surveyed along with possible strategies to overcome them, which also provides an outlook on the future research in this field.

SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda