Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 20 de 41
Filtrar
1.
Mol Biol Evol ; 41(3)2024 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-38401527

RESUMEN

Following invasion, insects can become adapted to conditions experienced in their invasive range, but there are few studies on the speed of adaptation and its genomic basis. Here, we examine a small insect pest, Thrips palmi, following its contemporary range expansion across a sharp climate gradient from the subtropics to temperate areas. We first found a geographically associated population genetic structure and inferred a stepping-stone dispersal pattern in this pest from the open fields of southern China to greenhouse environments of northern regions, with limited gene flow after colonization. In common garden experiments, both the field and greenhouse groups exhibited clinal patterns in thermal tolerance as measured by critical thermal maximum (CTmax) closely linked with latitude and temperature variables. A selection experiment reinforced the evolutionary potential of CTmax with an estimated h2 of 6.8% for the trait. We identified 3 inversions in the genome that were closely associated with CTmax, accounting for 49.9%, 19.6%, and 8.6% of the variance in CTmax among populations. Other genomic variations in CTmax outside the inversion region were specific to certain populations but functionally conserved. These findings highlight rapid adaptation to CTmax in both open field and greenhouse populations and reiterate the importance of inversions behaving as large-effect alleles in climate adaptation.


Asunto(s)
Adaptación Fisiológica , Inversión Cromosómica , Animales , Adaptación Fisiológica/genética , Clima , Temperatura , Insectos
2.
Nano Lett ; 24(26): 7843-7851, 2024 Jul 03.
Artículo en Inglés | MEDLINE | ID: mdl-38912682

RESUMEN

Two-dimensional-material-based memristors are emerging as promising enablers of new computing systems beyond von Neumann computers. However, the most studied anion-vacancy-enabled transition metal dichalcogenide memristors show many undesirable performances, e.g., high leakage currents, limited memory windows, high programming currents, and limited endurance. Here, we demonstrate that the emergent van der Waals metal phosphorus trisulfides with unconventional nondefective vacancy provide a promising paradigm for high-performance memristors. The different vacancy types (i.e., defective and nondefective vacancies) induced memristive discrepancies are uncovered. The nondefective vacancies can provide an ultralow diffusion barrier and good memristive structure stability giving rise to many desirable memristive performances, including high off-state resistance of 1012 Ω, pA-level programming currents, large memory window up to 109, more than 7-bit conductance states, and good endurance. Furthermore, a high-yield (94%) memristor crossbar array is fabricated and implements multiple image processing successfully, manifesting the potential for in-memory computing hardware.

3.
BMC Biol ; 21(1): 20, 2023 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-36726089

RESUMEN

BACKGROUND: DNA mutations of diverse types provide the raw material required for phenotypic variation and evolution. In the case of crop species, previous research aimed to elucidate the changing patterns of repetitive sequences, single-nucleotide polymorphisms (SNPs), and small InDels during domestication to explain morphological evolution and adaptation to different environments. Additionally, structural variations (SVs) encompassing larger stretches of DNA are more likely to alter gene expression levels leading to phenotypic variation affecting plant phenotypes and stress resistance. Previous studies on SVs in rice were hampered by reliance on short-read sequencing limiting the quantity and quality of SV identification, while SV data are currently only available for cultivated rice, with wild rice largely uncharacterized. Here, we generated two genome assemblies for O. rufipogon using long-read sequencing and provide insights on the evolutionary pattern and effect of SVs on morphological traits during rice domestication. RESULTS: In this study, we identified 318,589 SVs in cultivated and wild rice populations through a comprehensive analysis of 13 high-quality rice genomes and found that wild rice genomes contain 49% of unique SVs and an average of 1.76% of genes were lost during rice domestication. These SVs were further genotyped for 649 rice accessions, their evolutionary pattern during rice domestication and potential association with the diversity of important agronomic traits were examined. Genome-wide association studies between these SVs and nine agronomic traits identified 413 candidate causal variants, which together affect 361 genes. An 824-bp deletion in japonica rice, which encodes a serine carboxypeptidase family protein, is shown to be associated with grain length. CONCLUSIONS: We provide relatively accurate and complete SV datasets for cultivated and wild rice accessions, especially in TE-rich regions, by comparing long-read sequencing data for 13 representative varieties. The integrated rice SV map and the identified candidate genes and variants represent valuable resources for future genomic research and breeding in rice.


Asunto(s)
Domesticación , Oryza , Genoma de Planta , Oryza/genética , Estudio de Asociación del Genoma Completo , Variación Genética , Fitomejoramiento , Fenotipo
4.
BMC Bioinformatics ; 23(Suppl 8): 568, 2023 Jan 27.
Artículo en Inglés | MEDLINE | ID: mdl-36707775

RESUMEN

BACKGROUND: Structural variation (SV), which ranges from 50 bp to [Formula: see text] 3 Mb in size, is an important type of genetic variations. Deletion is a type of SV in which a part of a chromosome or a sequence of DNA is lost during DNA replication. Three types of signals, including discordant read-pairs, reads depth and split reads, are commonly used for SV detection from high-throughput sequence data. Many tools have been developed for detecting SVs by using one or multiple of these signals. RESULTS: In this paper, we develop a new method called EigenDel for detecting the germline submicroscopic genomic deletions. EigenDel first takes advantage of discordant read-pairs and clipped reads to get initial deletion candidates, and then it clusters similar candidates by using unsupervised learning methods. After that, EigenDel uses a carefully designed approach for calling true deletions from each cluster. We conduct various experiments to evaluate the performance of EigenDel on low coverage sequence data. CONCLUSIONS: Our results show that EigenDel outperforms other major methods in terms of improving capability of balancing accuracy and sensitivity as well as reducing bias. EigenDel can be downloaded from https://github.com/lxwgcool/EigenDel .


Asunto(s)
Secuenciación de Nucleótidos de Alto Rendimiento , Aprendizaje Automático no Supervisado , Humanos , Secuenciación de Nucleótidos de Alto Rendimiento/métodos , Genómica/métodos , Genoma Humano , Análisis de Secuencia de ADN , Variación Estructural del Genoma , Programas Informáticos
5.
Plant Biotechnol J ; 21(5): 990-1004, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-36648398

RESUMEN

High-quality radish (Raphanus sativus) genome represents a valuable resource for agronomical trait improvements and understanding genome evolution among Brassicaceae species. However, existing radish genome assembly remains fragmentary, which greatly hampered functional genomics research and genome-assisted breeding. Here, using a NAU-LB radish inbred line, we generated a reference genome of 476.32 Mb with a scaffold N50 of 56.88 Mb by incorporating Illumina, PacBio and BioNano optical mapping techniques. Utilizing Hi-C data, 448.12 Mb (94.08%) of the assembled sequences were anchored to nine radish chromosomes with 40 306 protein-coding genes annotated. In total, 249.14 Mb (52.31%) comprised the repetitive sequences, among which long terminal repeats (LTRs, 30.31%) were the most abundant class. Beyond confirming the whole-genome triplication (WGT) event in R. sativus lineage, we found several tandem arrayed genes were involved in stress response process, which may account for the distinctive phenotype of high disease resistance in R. sativus. By comparing against the existing Xin-li-mei radish genome, a total of 2 108 573 SNPs, 7740 large insertions, 7757 deletions and 84 inversions were identified. Interestingly, a 647-bp insertion in the promoter of RsVRN1 gene can be directly bound by the DOF transcription repressor RsCDF3, resulting into its low promoter activity and late-bolting phenotype of NAU-LB cultivar. Importantly, introgression of this 647-bp insertion allele, RsVRN1In-536 , into early-bolting genotype could contribute to delayed bolting time, indicating that it is a potential genetic resource for radish late-bolting breeding. Together, this genome resource provides valuable information to facilitate comparative genomic analysis and accelerate genome-guided breeding and improvement in radish.


Asunto(s)
Raphanus , Raphanus/genética , Genoma de Planta/genética , Fitomejoramiento , Genotipo , Cromosomas
6.
Int J Mol Sci ; 24(3)2023 Jan 29.
Artículo en Inglés | MEDLINE | ID: mdl-36768875

RESUMEN

Radish is an economically important root vegetable worldwide. In this study, the 217 cultivated radish accessions were collected and genotyped. To detect the genotypes of these accessions, a total of 24 structure variation (SV) markers distributed on nine chromosomes were employed to analyze genetic diversity and construct a core germplasm collection of radish. The results of polymorphism information content (PIC) indicated a good polymorphism of these SV markers. Population structure analysis and principal component analysis (PCA) results showed that the 217 radish accessions fell into three main populations (P1, P2, and P3). Genetic diversity analysis showed that these populations were highly associated with geographical distribution. The values of the fixation index (FST) indicated a high genetic diversity between P2 and P3, and a moderate genetic diversity between P1 and P2, and P1 and P3. Furthermore, the 43 core germplasm were exploited for creating cytoplasmic male sterility (CMS) lines and cultivating new radish varieties. The high genetic diversity of 217 radish germplasms will not only provide valuable resources for future genetic mapping and functional genomic research, but also facilitate core germplasm utilization and the molecular breeding of radish.


Asunto(s)
Variación Genética , Raphanus , Raphanus/genética , Polimorfismo Genético , Genotipo , Mapeo Cromosómico
7.
Cytogenet Genome Res ; 161(3-4): 213-222, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34233333

RESUMEN

The genera of the tribe Triticeae (family Poaceae), constituting many economically important plants with abundant genetic resources, carry genomes such as St, H, P, and Y. The genome symbol of Roegneria C. Koch (Triticeae) is StY. The St and Y genomes are crucial in Triticeae, and tetraploid StY species participate extensively in polyploid speciation. Characterization of St and Y nonhomologous chromosomes in StY-genome species could help understand variation in the chromosome structure and differentiation of StY-containing species. However, the high genetic affinity between St and Y genome and the deficiency of a complete set of StY nonhomologous probes limit the identification of St and Y genomes and variation of chromosome structures among Roegneria species. We aimed to identify St- and Y-enhanced repeat clusters and to study whether homoeologous chromosomes between St and Y genomes could be accurately identified due to high affinity. We employed comparative genome analyses to identify St- and Y-enhanced repeat clusters and generated a FISH-based karyotype of R. grandis (Keng), one of the taxonomically controversial StY species, for the first time. We explored 4 novel repeat clusters (StY_34, StY_107, StY_90, and StY_93), which could specifically identify individual St and Y nonhomologous chromosomes. The clusters StY_107 and StY_90 could identify St and Y addition/substitution chromosomes against common wheat genetic backgrounds. The chromosomes V_St, VII_St, I_Y, V_Y, and VII_Y displayed similar probe distribution patterns in the proximal region, indicating that the high affinity between St and Y genome might result from chromosome rearrangements or transposable element insertion among V_St/Y, VII_St/Y, and I_Y chromosomes during allopolyploidization. Our results can be used to employ FISH further to uncover the precise karyotype based on colinearity of Triticeae species by using the wheat karyotype as reference, to analyze diverse populations of the same species to understand the intraspecific structural changes, and to generate the karyotype of different StY-containing species to understand the interspecific chromosome variation.


Asunto(s)
Cromosomas de las Plantas/genética , Elymus/genética , Genoma de Planta/genética , Hibridación Fluorescente in Situ/métodos , Evolución Molecular , Marcadores Genéticos/genética , Cariotipo , Región Organizadora del Nucléolo/genética , Poliploidía , Secuencias Repetitivas de Ácidos Nucleicos/genética , Tetraploidía , Triticum/genética
8.
Sensors (Basel) ; 21(2)2021 Jan 06.
Artículo en Inglés | MEDLINE | ID: mdl-33419075

RESUMEN

Cyclic wetting and drying treatment is commonly used to accelerate the weakening process of reservoir rock. The weakening is reflected in strength variation and structure variation, while the latter receives less attention. Based on a series of cyclic wetting and drying tests, this study tentatively applied the uniaxial compressive test, computed tomography (CT) test and digital image correlation (DIC) test to investigate the weakening of slate in a reservoir area. Test results show that the weakening is mainly reflected in the reduction of compressive strength, followed by the decrease of ability to resist cracking and elastic deformation. The weakening seems more likely to be caused by structure variation rather than composition change. Two failure modes, e.g., splitting and splitting-tension, are concluded based on the crack paths: the splitting failure mode occurs in the highly weathered samples and the splitting-tension failure mode appears in the low-weathered samples. The transition zones of deformation are inside samples. The nephogram maps quantify the continuous deformation and correspond to the aforementioned structure variation process. This study offers comprehensive methods to the weakening investigation of slate in reservoir area and may provide qualitative reference in the stability evaluation of related slate rock slope.

9.
BMC Musculoskelet Disord ; 21(1): 76, 2020 Feb 05.
Artículo en Inglés | MEDLINE | ID: mdl-32024499

RESUMEN

BACKGROUND: Ulnar neuropathy is a common reason for referral to hand surgeons, and 10 to 30% of cubital tunnel syndrome (CuTS) is idiopathic. We hypothesized that the cause of idiopathic CuTS is in the bony structure. METHODS: We analyzed 79 elbows (39 idiopathic CuTS and 40 without CuTS symptom) using computed tomography and Materialize Mimics software to compare the differences between the two groups. We proposed a new bony cubital tunnel with a new boundary that could play a role in ulnar nerve compression symptom. RESULTS: The mean cubital tunnel volume was 1245.6 mm3 in all patients, 1180.6 mm3 in CuTS patients, and 1282.3 mm3 in the control group. A significant difference (p = 0.015) between two groups was found. Bony cubital tunnel cross-sectional area, cubital tunnel depth, and cubital tunnel angle also showed significant differences. CONCLUSION: The shape of the bony cubital tunnel is an important cause of CuTS, and the normal variation of the volume and cross-sectional area of the cubital tunnel and cubital tunnel angle could influence the occurrence of idiopathic CuTS.


Asunto(s)
Síndrome del Túnel Cubital/diagnóstico , Articulación del Codo/diagnóstico por imagen , Imagenología Tridimensional , Tomografía Computarizada por Rayos X , Adulto , Variación Anatómica , Anatomía Transversal , Síndrome del Túnel Cubital/etiología , Articulación del Codo/inervación , Femenino , Humanos , Cabeza Humeral/anatomía & histología , Cabeza Humeral/diagnóstico por imagen , Masculino , Persona de Mediana Edad , Olécranon/anatomía & histología , Olécranon/diagnóstico por imagen , Programas Informáticos , Nervio Cubital/anatomía & histología
11.
Mikrochim Acta ; 186(7): 478, 2019 06 27.
Artículo en Inglés | MEDLINE | ID: mdl-31250209

RESUMEN

A ratiometric electrochemical aptamer-based assay is described for the ultrasensitive and highly specific determination of adenosine triphosphate (ATP). It is based on ATP aptamer-mediated triple-helix molecular switch (THMS). The method uses (a) a hairpin DNA (MB-DNA-SH) labeled with the redox probe Methylene Blue (MB) at the 3' end, and a thiol group at the 5' end, and (b) a single strand ATP aptamer modified with two ferrocenes at each end (Fc-DNA-Fc). The labeled probe of type MB-DNA-SH was self-assembled onto the surface of a gold electrode via gold-thiol binding. On exposure to Fc-DNA-Fc, it will hybridize with MB-DNA-SH to form a stable THMS structure on electrode surface. In the presence of ATP, it hybridizes with the loop portion of Fc-DNA-Fc, and this results in the unwinding of the THMS structure. Such variation caused the changes of the differential pulse voltammetry (DPV) peak currents of both MB (at around -0.25 V) and Fc (at around 0.39 V; both vs. Ag/AgCl). A significant enhancement is found for the ratio of the two DPV peaks. Under the optimum experimental conditions, this assay has a response that covers the 0.05 to 100 pM ATP concentration range, and the detection limit is 5.2 fM (for S/N = 3). The method is highly selective for ATP over its analogs. Graphical abstract Schematic presentation of a novel ratiometric electrochemical aptasensor for ATP via triple-helix molecular switch (THMS) strategy. MB-DNA-SH was self-assembled on GE surface through gold-thiol binding. Fc-DNA-Fc hybridized with MB-DNA-SH to form THMS structure. ATP specifically bond with its aptamer sequence of Fc-DNA-Fc to unwind the THMS structure. The ratio of DPV peak currents of MB and Fc was applied to monitor the concentration of ATP in real samples over its analogs.

12.
Plant J ; 89(3): 617-635, 2017 02.
Artículo en Inglés | MEDLINE | ID: mdl-27754575

RESUMEN

Spirodela polyrhiza is a fast-growing aquatic monocot with highly reduced morphology, genome size and number of protein-coding genes. Considering these biological features of Spirodela and its basal position in the monocot lineage, understanding its genome architecture could shed light on plant adaptation and genome evolution. Like many draft genomes, however, the 158-Mb Spirodela genome sequence has not been resolved to chromosomes, and important genome characteristics have not been defined. Here we deployed rapid genome-wide physical maps combined with high-coverage short-read sequencing to resolve the 20 chromosomes of Spirodela and to empirically delineate its genome features. Our data revealed a dramatic reduction in the number of the rDNA repeat units in Spirodela to fewer than 100, which is even fewer than that reported for yeast. Consistent with its unique phylogenetic position, small RNA sequencing revealed 29 Spirodela-specific microRNA, with only two being shared with Elaeis guineensis (oil palm) and Musa balbisiana (banana). Combining DNA methylation data and small RNA sequencing enabled the accurate prediction of 20.5% long terminal repeats (LTRs) that doubled the previous estimate, and revealed a high Solo:Intact LTR ratio of 8.2. Interestingly, we found that Spirodela has the lowest global DNA methylation levels (9%) of any plant species tested. Taken together our results reveal a genome that has undergone reduction, likely through eliminating non-essential protein coding genes, rDNA and LTRs. In addition to delineating the genome features of this unique plant, the methodologies described and large-scale genome resources from this work will enable future evolutionary and functional studies of this basal monocot family.


Asunto(s)
Araceae/genética , Mapeo Cromosómico/métodos , Genoma de Planta/genética , Análisis de Secuencia de ADN/métodos , Cromosomas de las Plantas/genética , Metilación de ADN , Regulación de la Expresión Génica de las Plantas , Ontología de Genes , Genes de Plantas/genética , Variación Genética , Proteínas de Plantas/genética
13.
Mol Phylogenet Evol ; 126: 181-195, 2018 09.
Artículo en Inglés | MEDLINE | ID: mdl-29684597

RESUMEN

Mikania micrantha and Mikania cordata are the only two species in genus Mikania (Asteraceae) in China. They share very similar morphological and life-history characteristics but occupy quite different habitats. Most importantly, they generate totally different ecological consequences. While M. micrantha has become an exotic invasive weed, M. cordata exists as an indigenous species with no harmful effects on native plants or habitats. As a continuous study of our previously reported M. micrantha chloroplast (cp) genome, in this study we have further sequenced the M. cordata cp genome to (1) conduct a comparative genome analysis to gain insights into the mechanism of invasiveness; (2) develop cp markers to examine the population genetic adaptation of M. micrantha; and (3) screen variable genome regions of phylogenetic utility. The M. cordata chloroplast genome is 151,984 bp in length and displays a typical quadripartite structure. The number and distribution of protein coding genes, tRNA genes, and rRNA genes of M. cordata are identical to those of M. micrantha. The main difference lays in that the pseudogenization of ndhF and a 118-bp palindromic repeat only arises in M. cordata. Fourteen highly divergent regions, 235 base substitutions, and 58 indels were identified between the two cp genomes. Phylogenetic inferences revealed a sister relationship between M. micrantha and M. cordata whose divergence was estimated to occur around 1.78 million years ago (MYA). Twelve cpSSR loci were detected to be polymorphic and adopted to survey the genetic adaptation of M. micrantha populations. No cpSSR loci were found to undergo selection. Our results build a foundation to examine the invasive mechanism of Mikania weed.


Asunto(s)
Genoma del Cloroplasto , Genómica , Especies Introducidas , Mikania/clasificación , Mikania/genética , Filogenia , Malezas/clasificación , Malezas/genética , Asteraceae/genética , China , Cloroplastos , Mapeo Cromosómico , Repeticiones de Microsatélite/genética , Mutación/genética , Sistemas de Lectura Abierta/genética , Análisis de Secuencia de ADN , Factores de Tiempo
15.
Acta Biochim Biophys Sin (Shanghai) ; 46(10): 837-50, 2014 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-25246433

RESUMEN

Thrombin binding aptamer (TBA), a 15-mer oligonucleotide of d(GGTTGGTGTGGTTGG) sequence, folds into a chair-type antiparallel G-quadruplex in the K(+) environment, and each of two G-tetrads is characterized by a syn-anti-syn-anti glycosidic conformation arrangement. To explore its folding topology and structural stability, 2'-O-methyl nucleotide (OMe) with the C3'-endo sugar pucker conformation and anti glycosidic angle was used to selectively substitute for the guanine residues of G-tetrads of TBA, and these substituted TBAs were characterized using a circular dichroism spectrum, thermally differential spectrum, ultraviolet stability analysis, electrophoresis mobility shift assay, and thermodynamic analysis in K(+) and Ca(2+) environments. Results showed that single substitutions for syn-dG residues destabilized the G-quadruplex structure, while single substitutions for anti-dG residues could preserve the G-quadruplex in the K(+) environment. When one or two G-tetrads were modified with OMe, TBA became unstructured. In contrast, in Ca(2+) environment, the native TBA appeared to be unstructured. When two G-tetrads were substituted with OMe, TBA seemed to become a more stable parallel G-4 structure. Further thermodynamic data suggested that OMe-substitutions were an enthalpy-driven event. The results in this study enrich our understanding about the effects of nucleotide derivatives on the G-quadruplex structure stability in different ionic environments, which will help to design G-quadruplex for biological and medical applications.


Asunto(s)
Calcio/metabolismo , G-Cuádruplex , Nucleótidos/química , Potasio/metabolismo , Secuencia de Bases , Ensayo de Cambio de Movilidad Electroforética , Conformación de Ácido Nucleico , Rayos Ultravioleta
16.
Genome Biol ; 25(1): 116, 2024 05 07.
Artículo en Inglés | MEDLINE | ID: mdl-38715020

RESUMEN

BACKGROUND: Structural variations (SVs) have significant impacts on complex phenotypes by rearranging large amounts of DNA sequence. RESULTS: We present a comprehensive SV catalog based on the whole-genome sequence of 1060 pigs (Sus scrofa) representing 101 breeds, covering 9.6% of the pig genome. This catalog includes 42,487 deletions, 37,913 mobile element insertions, 3308 duplications, 1664 inversions, and 45,184 break ends. Estimates of breed ancestry and hybridization using genotyped SVs align well with those from single nucleotide polymorphisms. Geographically stratified deletions are observed, along with known duplications of the KIT gene, responsible for white coat color in European pigs. Additionally, we identify a recent SINE element insertion in MYO5A transcripts of European pigs, potentially influencing alternative splicing patterns and coat color alterations. Furthermore, a Yorkshire-specific copy number gain within ABCG2 is found, impacting chromatin interactions and gene expression across multiple tissues over a stretch of genomic region of ~200 kb. Preliminary investigations into SV's impact on gene expression and traits using the Pig Genotype-Tissue Expression (PigGTEx) data reveal SV associations with regulatory variants and gene-trait pairs. For instance, a 51-bp deletion is linked to the lead eQTL of the lipid metabolism regulating gene FADS3, whose expression in embryo may affect loin muscle area, as revealed by our transcriptome-wide association studies. CONCLUSIONS: This SV catalog serves as a valuable resource for studying diversity, evolutionary history, and functional shaping of the pig genome by processes like domestication, trait-based breeding, and adaptive evolution.


Asunto(s)
Genoma , Variación Estructural del Genoma , Animales , Sus scrofa/genética , Polimorfismo de Nucleótido Simple , Porcinos/genética , Mapeo Cromosómico
17.
Front Bioeng Biotechnol ; 12: 1465328, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39229456

RESUMEN

Introduction: Due to its unique structural features and bioactivities, the lignin-carbohydrate complex (LCC) displays great potential in vast industrial applications. However, the elucidation of how various pretreatment methods affect the structure and bioactivities remains unaddressed. Method: The three pretreatment methods were systematically studied on the variations of structures and bioactivities, and the Gramineae plant, i.e., wheat straw, was adopted in this study. The structures and bioactivities variation caused by different pretreatments were studied in detail. Result and Discussion: The results showed that compared to physical or chemical pretreatments, biological pretreatment was the most effective approach in improving the bioactivities of LCC. The LCC from biological pretreatment (enzymatic hydrolysis, ELCC4) had more functional groups while the lower weight-average molecular weight (Mw) and polydispersity index (PDI) were well-endowed. The highest antioxidant abilities against ABTS and DPPH of ELCC4 were high up to 95% and 84%, respectively. Furthermore, ELCC4 also showed the best ultraviolet (UV)-blocking rate of 96%, which was increased by 6% and 2% compared to LCC8 (physical pretreatment) and LLCC4 (chemical pretreatment). This work prospectively boosts the understanding of pretreatment strategies on the structures and bioactivities variation of LCC and facilitates its utilization as sustainable and biologically active materials in various fields.

18.
Water Res ; 265: 122259, 2024 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-39154398

RESUMEN

As a pervasive microbial aggregate found at the water-soil interface in paddy fields, periphyton plays crucial roles in modulating nutrient biogeochemical cycling. Consequently, it effectively mitigates non-point source pollution due to its diverse composition. Despite its significance, the mechanisms governing periphyton diversity across different rice planting regions remain poorly understood. To bridge this gap, we investigated periphyton grown in 200 paddy fields spanning 25° of latitude. Initially, we analyzed local diversity and latitudinal variations in prokaryotic communities within paddy field periphyton, identifying 7 abundant taxa, 42 moderate taxa, and 39 rare taxa as the fundamental prokaryotic framework. Subsequently, to elucidate the mechanisms governing periphyton diversity across large scales, we constructed interaction models illustrating triangular relationships among local richness, assembly, and regional variation of prokaryotic subcommunities. Our findings suggest that accumulated temperature-driven environmental filtering partially influences the assembly process of prokaryotes, thereby impacting local species richness and ultimately governing regional structural variations in periphyton. Furthermore, we determined that a latitude of 39° represents the critical threshold maximizing local species richness of periphyton in paddy fields. This study advances our understanding of the factors shaping periphyton geo-imprints and provides valuable insights into predicting their responses to environmental changes, potentially influencing rice production outcomes.


Asunto(s)
Oryza , Microbiología del Suelo , Suelo , Temperatura , Suelo/química , Perifiton , Agua , Biodiversidad , Bacterias
19.
Plants (Basel) ; 12(18)2023 Sep 21.
Artículo en Inglés | MEDLINE | ID: mdl-37765500

RESUMEN

Plant height is an important agronomic trait associated with plant architecture and grain yield in rice (Oryza sativa L.). In this study, we report the identification of quantitative trait loci (QTL) for plant height using a chromosomal segment substitution line (CSSL) population with substituted segments from japonica variety Nipponbare (NIP) in the background of the indica variety 9311. Eight stable QTLs for plant height were identified in three environments. Among them, six loci were co-localized with known genes such as semidwarf-1 (sd1) and Grain Number per Panicle1 (GNP1) involved in gibberellin biosynthesis. A minor QTL qPH8.2 on chromosome 8 was verified and fine-mapped to a 74 kb region. Sequence comparison of the genomic region revealed the presence/absence of a 42 kb insertion between NIP and 9311. This insertion occurred predominantly in temperate japonica rice. Comparisons on the near-isogenic lines showed that the qPH8.2 allele from NIP exhibits pleiotropic effects on plant growth, including reduced plant height, leaf length, photosynthetic capacity, delayed heading date, decreased yield, and increased tiller angle. These results indicate that qPH8.2 from temperate japonica triggers adverse effects on plant growth and yield when introduced into the indica rice, highlighting the importance of the inter-subspecies crossing breeding programs.

20.
PeerJ ; 10: e13107, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35321410

RESUMEN

Background: Apple is one of the most important temperate deciduous fruit trees worldwide, with a wide range of cultivation. In this study, we assessed the variations and phylogenetic relationships between the complete chloroplast genomes of wild and cultivated apples (Malus spp.). Method: We obtained the complete chloroplast genomes of 24 apple varieties using next-generation sequencing technology and compared them with genomes of (downloaded from NCBI) the wild species. Result: The chloroplast genome of Malus is highly conserved, with a genome length of 160,067-160,290 bp, and all have a double-stranded circular tetrad structure. The gene content and sequences of genomes of wild species and cultivated apple were almost the same, but several mutation hotspot regions (psbI-atpA, psbM-psbD, and ndhC-atpE) were detected in these genomes. These regions can provide valuable information for solving specific molecular markers in taxonomic research. Phylogenetic analysis revealed that Malus formed a new clade and four cultivated varieties clustered into a branch with M. sylvestris and M. sieversii, which indicated that M. sylvestris and M. sieversii were the ancestor species of the cultivated apple.


Asunto(s)
Genoma del Cloroplasto , Malus , Malus/genética , Filogenia , Genoma del Cloroplasto/genética , Variación Genética , Frutas/genética
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda