Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
1.
Acta Pharmacol Sin ; 44(7): 1416-1428, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-36721007

RESUMEN

Non-alcoholic fatty liver disease (NAFLD) is a major health concern worldwide, and the incidence of metabolic disorders associated with NAFLD is rapidly increasing because of the obesity epidemic. There are currently no approved drugs that prevent or treat NAFLD. Recent evidence shows that bavachin, a flavonoid isolated from the seeds and fruits of Psoralea corylifolia L., increases the transcriptional activity of PPARγ and insulin sensitivity during preadipocyte differentiation, but the effect of bavachin on glucose and lipid metabolism remains unclear. In the current study we investigated the effects of bavachin on obesity-associated NAFLD in vivo and in vitro. In mouse primary hepatocytes and Huh7 cells, treatment with bavachin (20 µM) significantly suppressed PA/OA or high glucose/high insulin-induced increases in the expression of fatty acid synthesis-related genes and the number and size of lipid droplets. Furthermore, bavachin treatment markedly elevated the phosphorylation levels of AKT and GSK-3ß, improving the insulin signaling activity in the cells. In HFD-induced obese mice, administration of bavachin (30 mg/kg, i.p. every other day for 8 weeks) efficiently attenuated the increases in body weight, liver weight, blood glucose, and liver and serum triglyceride contents. Moreover, bavachin administration significantly alleviated hepatic inflammation and ameliorated HFD-induced glucose intolerance and insulin resistance. We demonstrated that bavachin protected against HFD-induced obesity by inducing fat thermogenesis and browning subcutaneous white adipose tissue (subWAT). We revealed that bavachin repressed the expression of lipid synthesis genes in the liver of obese mice, while promoting the expression of thermogenesis, browning, and mitochondrial respiration-related genes in subWAT and brown adipose tissue (BAT) in the mice. In conclusion, bavachin attenuates hepatic steatosis and obesity by repressing de novo lipogenesis, inducing fat thermogenesis and browning subWAT, suggesting that bavachin is a potential drug for NAFLD therapy.


Asunto(s)
Resistencia a la Insulina , Enfermedad del Hígado Graso no Alcohólico , Animales , Ratones , Enfermedad del Hígado Graso no Alcohólico/metabolismo , Ratones Obesos , Glucógeno Sintasa Quinasa 3 beta/metabolismo , Hígado/metabolismo , Obesidad/complicaciones , Obesidad/tratamiento farmacológico , Obesidad/genética , Flavonoides/farmacología , Dieta , Glucosa/metabolismo , Insulina/metabolismo , Dieta Alta en Grasa , Ratones Endogámicos C57BL
2.
J Dairy Sci ; 106(7): 5018-5028, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-37268588

RESUMEN

Ketosis is a common nutritional metabolic disease during the perinatal period in dairy cows. Although various risk factors have been identified, the molecular mechanism underlying ketosis remains elusive. In this study, subcutaneous white adipose tissue (sWAT) was biopsied for transcriptome sequencing on 10 Holstein cows with type II ketosis [blood ß-hydroxybutyric acid (BHB) >1.4 mmol/L; Ket group] and another 10 cows without type II ketosis (BHB ≤1.4 mmol/L; Nket group) at d 10 after calving. Serum concentrations of nonesterified fatty acids (NEFA) and BHB, as indicators of excessive fat mobilization and circulating ketone bodies, respectively, were significantly higher in the Ket group than in the Nket group. Aspartate transaminase (AST) and total bilirubin (TBIL), as indicators of liver damage, were higher in the Ket group than in the Nket group. Weighted gene co-expression network analysis (WGCNA) of the sWAT transcriptome revealed modules significantly correlated with serum BHB, NEFA, AST, TBIL, and total cholesterol. The genes in these modules were enriched in the regulation of the lipid biosynthesis process. Neurotrophic tyrosine kinase receptor type 2 (NTRK2) was identified as the key hub gene by intramodular connectivity, gene significance, and module membership. Quantitative reverse transcription PCR analyses for these samples, as well as a set of independent samples, validated the downregulation of NTRK2 expression in the sWAT of dairy cows with type II ketosis. NTRK2 encodes tyrosine protein kinase receptor B (TrkB), which is a high-affinity receptor for brain-derived neurotrophic factor, suggesting that abnormal lipid mobilization in cows with type II ketosis might be associated with impaired central nervous system regulation of adipose tissue metabolism, providing a novel insight into the pathogenesis underlying type II ketosis in dairy cows.


Asunto(s)
Enfermedades de los Bovinos , Cetosis , Embarazo , Femenino , Bovinos , Animales , Lactancia/metabolismo , Ácidos Grasos no Esterificados , Parto , Grasa Subcutánea/metabolismo , Cetosis/veterinaria , Bilirrubina , Ácido 3-Hidroxibutírico , Enfermedades de los Bovinos/metabolismo
3.
J Therm Biol ; 112: 103446, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-36796901

RESUMEN

White adipocytes can be transformed into beige adipocytes through the process of browning under cold exposure. To investigate the effects and underlying mechanisms of cold exposure on subcutaneous white fat in cattle, in vitro and in vivo studies were performed. Eight bulls of Jinjiang cattle breed (Bos taurus) aged 18 months were allocated to the control group (n = 4, autumn) or the cold group (n = 4, winter) by different slaughter seasons. Biochemical and histomorphological parameters were detected in blood and backfat samples. Subcutaneous adipocytes from Simental cattle (Bos taurus) were then isolated and cultured at a normal body temperature (37 °C) and at a cold temperature (31 °C) in vitro. In the in vivo study, cold exposure stimulated subcutaneous white adipose tissue (sWAT) browning by reducing adipocyte sizes and up-regulating the expression levels of browning-specific makers (UCP1, PRDM16, and PGC-1α) in cattle. In addition, cold-exposed cattle displayed lower lipogenesis transcriptional regulator levels (PPARγ and CEBPα) and higher lipolysis regulator levels (HSL) in sWAT. In the in vitro study, cold temperature inhibited subcutaneous white adipocytes (sWA) adipogenic differentiation by reducing lipid contents and decreasing the expression of adipogenic marker genes and proteins. Furthermore, cold temperature led to sWA browning which was characterized by increased browning-related genes, mitochondrial contents, and mitochondrial biogenesis-specific markers. In addition, p38 MAPK signaling pathway activity was stimulated by the incubation in cold temperature for 6 h in sWA. We concluded that the cold-induced browning of the subcutaneous white fat was beneficial to the production of heat and the maintenance of body temperature regulation in cattle.


Asunto(s)
Tejido Adiposo Pardo , Tejido Adiposo Blanco , Animales , Bovinos , Masculino , Adipocitos/metabolismo , Tejido Adiposo Pardo/metabolismo , Tejido Adiposo Blanco/metabolismo , Grasa Subcutánea , Termogénesis , Factores de Transcripción/genética , Frío
4.
J Physiol ; 600(4): 847-868, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-33724479

RESUMEN

KEY POINTS: Several distinct strategies produce and conserve heat to maintain the body temperature of mammals, each associated with unique physiologies, with consequences for wellness and disease susceptibility Highly regulated properties of skin offset the total requirement for heat production  We hypothesize that the adipose component of skin is primarily responsible for modulating heat flux; here we evaluate the relative regulation of adipose depots in mouse and human, to test their recruitment to heat production and conservation We found that insulating mouse dermal white adipose tissue accumulates in response to environmentally and genetically induced cool stress; this layer is one of two adipose depots closely apposed to mouse skin, where the subcutaneous mammary gland fat pads are actively recruited to heat production In contrast, the body-wide adipose depot associated with human skin produces heat directly, potentially creating an alternative to the centrally regulated brown adipose tissue ABSTRACT: Mammalian skin impacts metabolic efficiency system-wide, controlling the rate of heat loss and consequent heat production. Here we compare the unique fat depots associated with mouse and human skin, to determine whether they have corresponding functions and regulation. For humans, we assay a skin-associated fat (SAF) body-wide depot to distinguish it from the subcutaneous fat pads characteristic of the abdomen and upper limbs. We show that the thickness of SAF is not related to general adiposity; it is much thicker (1.6-fold) in women than men, and highly subject-specific. We used molecular and cellular assays of ß-adrenergic-induced lipolysis and found that dermal white adipose tissue (dWAT) in mice is resistant to lipolysis; in contrast, the body-wide human SAF depot becomes lipolytic, generating heat in response to ß-adrenergic stimulation. In mice challenged to make more heat to maintain body temperature (either environmentally or genetically), there is a compensatory increase in thickness of dWAT: a corresponding ß-adrenergic stimulation of human skin adipose (in vivo or in explant) depletes adipocyte lipid content. We summarize the regulation of skin-associated adipocytes by age, sex and adiposity, for both species. We conclude that the body-wide dWAT depot of mice shows unique regulation that enables it to be deployed for heat preservation; combined with the actively lipolytic subcutaneous mammary fat pads they enable thermal defence. The adipose tissue that covers human subjects produces heat directly, providing an alternative to the brown adipose tissues.


Asunto(s)
Tejido Adiposo Pardo , Termogénesis , Tejido Adiposo Pardo/fisiología , Tejido Adiposo Blanco/metabolismo , Animales , Femenino , Humanos , Lipólisis , Grasa Subcutánea/metabolismo , Termogénesis/fisiología
5.
J Intern Med ; 288(2): 219-233, 2020 08.
Artículo en Inglés | MEDLINE | ID: mdl-32406570

RESUMEN

OBJECTIVE: Patients undergoing bariatric surgery present long-term metabolic improvements and reduced type 2 diabetes risk, despite long-term weight regain. We hypothesized that part of these protective effects could be linked to altered gene expression in white adipose tissue (WAT). METHODS: Transcriptomic profiling by gene microarray was performed in abdominal subcutaneous WAT from women before (n = 50) and two (n = 49) and five (n = 38) years after Roux-en-Y gastric bypass (RYGB) surgery as well as in 28 age-matched nonoperated women. RESULTS: In the obese women, the average body weight decrease was 38 kg 2 years postsurgery followed by an 8 kg weight regain between 2 and 5 years. Most of the long-term changes in WAT gene expression occurred during the first 2 years. However, a subset of genes encoding proteins involved in inflammation displayed a continued decrease between baseline, 2 and 5 years, respectively; that is an expression pattern independent of body weight regain. Expression of 71 of these genes correlated with measurements of adipocyte morphology or serum adipokine levels. CONCLUSION: The continuous improvement in WAT inflammatory gene expression, despite body weight relapse, may contribute to the sustained effects on adipose morphology after bariatric surgery.


Asunto(s)
Derivación Gástrica , Expresión Génica , Grasa Subcutánea Abdominal/metabolismo , Adipocitos , Adiponectina/sangre , Adulto , Índice de Masa Corporal , Estudios de Casos y Controles , Recuento de Células , Tamaño de la Célula , Regulación hacia Abajo , Femenino , Estudios de Seguimiento , Ontología de Genes , Humanos , Leptina/sangre , Persona de Mediana Edad , Análisis de Matrices Tisulares , Regulación hacia Arriba
6.
Am J Physiol Endocrinol Metab ; 316(2): E145-E155, 2019 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-30398903

RESUMEN

Obesity is the result of excessive energy accumulation and is associated with many diseases. We previously reported that universal repression of vascular endothelial growth factor (VEGF) leads to brown-like adipocyte development in white adipose tissues, and that these mice are resistant to obesity (Lu X et al. Endocrinology 153: 3123-3132, 2012). Using an adipose-specific VEGF repression mouse model (aP2-rtTR-krabtg/+/VEGFtetO/tetO), we show that adipose-specific VEGF repression can repeat the previous phenotypes, including adipose browning, increased energy consumption, and reduction in body weight. Expression of brown adipose-associated genes is increased, and white adipose-associated genes are downregulated under VEGF repression. Our study demonstrates that adipose-specific VEGF repression can lead to antiobesity activity through adipose browning and has potential clinical value.


Asunto(s)
Tejido Adiposo Pardo/metabolismo , Tejido Adiposo Blanco/metabolismo , Obesidad/genética , Factor A de Crecimiento Endotelial Vascular/genética , Tejido Adiposo/metabolismo , Animales , Metabolismo Energético/genética , Ratones , Mutación , Obesidad/metabolismo , Pérdida de Peso/genética
7.
Br J Nutr ; 121(10): 1097-1107, 2019 05.
Artículo en Inglés | MEDLINE | ID: mdl-30834845

RESUMEN

Recently there has been a considerable rise in the frequency of metabolic diseases, such as obesity, due to changes in lifestyle and resultant imbalances between energy intake and expenditure. Whey proteins are considered as potentially important components of a dietary solution to the obesity problem. However, the roles of individual whey proteins in energy balance remain poorly understood. This study investigated the effects of a high-fat diet (HFD) containing α-lactalbumin (LAB), a specific whey protein, or the non-whey protein casein (CAS), on energy balance, nutrient transporters expression and enteric microbial populations. C57BL/6J mice (n 8) were given an HFD containing either 20 % CAS or LAB as protein sources or a low-fat diet containing CAS for 10 weeks. HFD-LAB-fed mice showed a significant increase in cumulative energy intake (P=0·043), without differences in body weight, energy expenditure, locomotor activity, RER or subcutaneous and epididymal white adipose tissue weight. HFD-LAB intake led to a decrease in the expression of glut2 in the ileum (P=0·05) and in the fatty acid transporter cd36 (P<0·001) in both ileum and jejunum. This suggests a reduction in absorption efficiency within the small intestine in the HFD-LAB group. DNA from faecal samples was used for 16S rRNA-based assessment of intestinal microbiota populations; the genera Lactobacillus, Parabacteroides and Bifidobacterium were present in significantly higher proportions in the HFD-LAB group. These data indicate a possible functional relationship between gut microbiota, intestinal nutrient transporters and energy balance, with no impact on weight gain.


Asunto(s)
Dieta Alta en Grasa/efectos adversos , Metabolismo Energético/efectos de los fármacos , Microbioma Gastrointestinal/efectos de los fármacos , Lactalbúmina/efectos adversos , Proteínas de Transporte de Membrana/metabolismo , Adiposidad/efectos de los fármacos , Animales , Antígenos CD36/metabolismo , Caseínas/efectos adversos , Dieta con Restricción de Grasas/efectos adversos , Ingestión de Energía/efectos de los fármacos , Heces/microbiología , Transportador de Glucosa de Tipo 2/metabolismo , Íleon/metabolismo , Yeyuno/metabolismo , Ratones , Ratones Endogámicos C57BL , ARN Ribosómico 16S/análisis , Aumento de Peso/efectos de los fármacos
8.
J Lipid Res ; 59(8): 1482-1500, 2018 08.
Artículo en Inglés | MEDLINE | ID: mdl-29866659

RESUMEN

Mice lacking perilipin-2 (Plin2-null) are resistant to obesity, insulin resistance, and fatty liver induced by Western or high-fat diets. In the current study, we found that, compared with WT mice on Western diet, Plin2-null adipose tissue was more insulin sensitive and inguinal subcutaneous white adipose tissue (iWAT) exhibited profound browning and robust induction of thermogenic and carbohydrate-responsive genetic programs at room temperature. Surprisingly, these Plin2-null responses correlated with the content of simple carbohydrates, rather than fat, in the diet, and were independent of adipose Plin2 expression. To define Plin2 and sugar effects on adipose browning, WT and Plin2-null mice were placed on chow diets containing 20% sucrose in their drinking water for 6 weeks. Compared with WT mice, iWAT of Plin2-null mice exhibited pronounced browning and striking increases in the expression of thermogenic and insulin-responsive genes on this diet. Significantly, Plin2-null iWAT browning was associated with reduced sucrose intake and elevated serum fibroblast growth factor (FGF)21 levels, which correlated with greatly enhanced hepatic FGF21 production. These data identify Plin2 actions as novel mediators of sugar-induced adipose browning through indirect effects of hepatic FGF21 expression, and suggest that adipose browning mechanisms may contribute to Plin2-null resistance to obesity.


Asunto(s)
Tejido Adiposo Pardo/citología , Tejido Adiposo Blanco/citología , Metabolismo de los Hidratos de Carbono , Eliminación de Gen , Perilipina-2/deficiencia , Perilipina-2/genética , Temperatura , Adipocitos/metabolismo , Tejido Adiposo Pardo/metabolismo , Animales , Biomarcadores/metabolismo , Factores de Crecimiento de Fibroblastos/sangre , Regulación de la Expresión Génica , Resistencia a la Insulina/genética , Lipogénesis/genética , Ratones , Termogénesis/genética
9.
Am J Physiol Endocrinol Metab ; 306(8): E945-64, 2014 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-24549398

RESUMEN

Brown adipocytes dissipate energy, whereas white adipocytes are an energy storage site. We explored the plasticity of different white adipose tissue depots in acquiring a brown phenotype by cold exposure. By comparing cold-induced genes in white fat to those enriched in brown compared with white fat, at thermoneutrality we defined a "brite" transcription signature. We identified the genes, pathways, and promoter regulatory motifs associated with "browning," as these represent novel targets for understanding this process. For example, neuregulin 4 was more highly expressed in brown adipose tissue and upregulated in white fat upon cold exposure, and cell studies showed that it is a neurite outgrowth-promoting adipokine, indicative of a role in increasing adipose tissue innervation in response to cold. A cell culture system that allows us to reproduce the differential properties of the discrete adipose depots was developed to study depot-specific differences at an in vitro level. The key transcriptional events underpinning white adipose tissue to brown transition are important, as they represent an attractive proposition to overcome the detrimental effects associated with metabolic disorders, including obesity and type 2 diabetes.


Asunto(s)
Tejido Adiposo Pardo/metabolismo , Tejido Adiposo Blanco/metabolismo , Respuesta al Choque por Frío/genética , Regulación de la Expresión Génica , Animales , Células Cultivadas , Femenino , Ratones , Ratones Endogámicos C57BL , Análisis por Micromatrices , Células PC12 , Ratas , Transcriptoma
10.
Clin Physiol Funct Imaging ; 44(2): 171-178, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-37899535

RESUMEN

BACKGROUND: Low-volume sprint exercise is likely to reduce body fat. Interleukin (IL-6) may mediate this by increasing adipose tissue (AT) lipolysis. Therefore, the exchange of AT IL-6 and glycerol, a marker of lipolysis, was examined in 10 healthy subjects performing three 30-s all-out sprints. METHODS: Blood samples were obtained from brachial artery (a) and a superficial subcutaneous vein (v) on the anterior abdominal wall up to 9 min after the last sprint and analysed for IL-6 and glycerol. RESULTS: Arterial IL-6 increased 2-fold from rest to last sprint. AT venous IL-6 increased 15-fold from 0.4 ± 0.4 at rest to 7.0 ± 4 pg × mL-1 (p < 0.0001) and AT v-a difference increased 45-fold from 0.12 ± 0.3 to 6.0 ± 5 pg x mL-1 (p < 0.0001) 9 min after last sprint. Arterial glycerol increased 2.5-fold from rest to 9 min postsprint 1 (p < 0.0001) and was maintained during the exercise period. AT venous and v-a difference of glycerol increased 2-fold from rest to 9 min postsprint 1 (p < 0.0001 and p = 0.01, respectively), decreased until 18 min postsprint 2 (p < 0.001 and p < 0.0001), and then increased again until 9 min after last sprint (both p < 0.01). CONCLUSIONS: The concurrent increase in venous IL-6 and glycerol in AT after last sprint is consistent with an IL-6 induced lipolysis in AT. Glycerol data also indicated an initial increase in lipolysis after sprint 1 that was unrelated to IL-6. Increased IL-6 in adipose tissue may, therefore, complement other sprint exercise-induced lipolytic agents.


Asunto(s)
Glicerol , Interleucina-6 , Humanos , Interleucina-6/metabolismo , Proyectos Piloto , Glicerol/metabolismo , Tejido Adiposo , Lipólisis
11.
Cell Rep Med ; 4(12): 101299, 2023 12 19.
Artículo en Inglés | MEDLINE | ID: mdl-38016481

RESUMEN

Lipid homeostasis in humans follows a diurnal pattern in muscle and pancreatic islets, altered upon metabolic dysregulation. We employ tandem and liquid-chromatography mass spectrometry to investigate daily regulation of lipid metabolism in subcutaneous white adipose tissue (SAT) and serum of type 2 diabetic (T2D) and non-diabetic (ND) human volunteers (n = 12). Around 8% of ≈440 lipid metabolites exhibit diurnal rhythmicity in serum and SAT from ND and T2D subjects. The spectrum of rhythmic lipids differs between ND and T2D individuals, with the most substantial changes observed early morning, as confirmed by lipidomics in an independent cohort of ND and T2D subjects (n = 32) conducted at a single morning time point. Strikingly, metabolites identified as daily rhythmic in both serum and SAT from T2D subjects exhibit phase differences. Our study reveals massive temporal and tissue-specific alterations of human lipid homeostasis in T2D, providing essential clues for the development of lipid biomarkers in a temporal manner.


Asunto(s)
Diabetes Mellitus Tipo 2 , Metabolismo de los Lípidos , Humanos , Metabolismo de los Lípidos/fisiología , Grasa Subcutánea/metabolismo , Tejido Adiposo Blanco/metabolismo , Lípidos , Diabetes Mellitus Tipo 2/metabolismo
12.
PeerJ ; 11: e14556, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36643642

RESUMEN

Tibetan pigs, an indigenous pig breed in China, have high overall fat deposition and flavorful and tasty meat. They are thus good models for studying adipogenesis. Few studies have been conducted focusing on expression of lipid regulated genes in different adipose tissues of Tibetan pigs. Therefore, we compared the difference of histomorphology and expression level of lipid regulated genes through qPCR and western blot in subcutaneous fat, perirenal fat, omental adipose tissue, and inguinal fat of Tibetan pigs. Our results showed that the area of subcutaneous adipocytes in Tibetan pigs was smaller, while the other three adipose tissues (perirenal fat, greater omentum fat, inguinal fat) had cell areas of similar size. The gene expression of FABP4, FASN, FABP3, and ME1 in subcutaneous fat was significantly higher than that in perirenal fat. Furthermore, the protein expression of FABP4 was significantly lower in subcutaneous fat than in perirenal fat (p < 0.05), and the expression of FASN was higher in greater omentum fat than in subcutaneous fat (p = 0.084). The difference in adipocyte cell size and expression of lipid-regulated genes in adipose tissues from the various parts of the pig body is likely due to the different cellular lipid metabolic processes. Specially, FABP4 and FASN may be involved in the regulation of fat deposition in different adipose tissues of Tibetan pigs.


Asunto(s)
Adipocitos , Tejido Adiposo , Porcinos/genética , Animales , Tibet , Tejido Adiposo/anatomía & histología , Adipocitos/metabolismo , Grasa Subcutánea/metabolismo , Lípidos
13.
Nutr Res ; 110: 74-86, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36689814

RESUMEN

Obesity is a chronic metabolic disease that involves excessive accumulation of fat in white adipose tissue (WAT). Apart from storing excess fats, WAT also serves as an important endocrine organ secreting adipocytokines such as adiponectin and leptin. Adiponectin and leptin bind to their transmembrane receptors adiponectin receptor 1 (AdipoR1)/adiponectin receptor 2 (AdipoR2) and Ob-R, respectively, and mediate their effect on metabolism by regulating multiple downstream targets. Dietary fat is considered the main culprit behind obesity development. Numerous preclinical studies have highlighted role of essential polyunsaturated fatty acids (PUFAs), particularly n-3 PUFAs, in prevention of obesity. Despite emerging data, there still is no clear understanding of the mechanism of action of n-3 PUFAs and n-6 PUFAs on adipose tissue function in two functionally and anatomically different depots of WAT: visceral and subcutaneous. We designed this study using a high fat diet (HFD) fed rodent model of obesity to test our hypothesis that n-3 and n-6 PUFAs possibly differentially modulate adipokine secretion and downstream metabolic pathways such as peroxisome proliferator-activated receptor-γ (PPAR-γ), protein kinase B (AKT)-forkhead box O1 (FOXO1), and Janus kinase-signal transducer and activator of transcription in obesity. The results of the current study showed that n-3 PUFAs upregulate the expression of AdipoR1/R2 and ameliorate the effects of HFD by modulating adipogenesis via PPAR-γ and by improving glucose tolerance and lipid metabolism via AKT-FOXO1 axis in fish oil fed rats. However, n-6 PUFAs did not show any remarkable change compared with HFD fed animals. Our study highlights that n-3 PUFAs modulate expression of various targets in adiponectin and leptin signaling cascade, bringing about an overall reduction in obesity and improvement in adipose tissue function in HFD induced obesity.


Asunto(s)
Dieta Alta en Grasa , Ácidos Grasos Omega-3 , Ratas , Animales , Dieta Alta en Grasa/efectos adversos , Adiponectina , Leptina/metabolismo , Ratas Wistar , Proteínas Proto-Oncogénicas c-akt/metabolismo , Ácidos Grasos Omega-6/farmacología , Receptores de Adiponectina/metabolismo , Receptores de Adiponectina/uso terapéutico , Receptores Activados del Proliferador del Peroxisoma/metabolismo , Receptores Activados del Proliferador del Peroxisoma/farmacología , Receptores Activados del Proliferador del Peroxisoma/uso terapéutico , Obesidad/metabolismo , Tejido Adiposo Blanco/metabolismo , Tejido Adiposo/metabolismo , Ácidos Grasos Omega-3/farmacología , Ácidos Grasos Omega-3/uso terapéutico , Adipoquinas/metabolismo , Ácidos Grasos Insaturados/metabolismo , Transducción de Señal
14.
Nutrients ; 15(14)2023 Jul 10.
Artículo en Inglés | MEDLINE | ID: mdl-37513513

RESUMEN

Combining exercise with fasting is known to boost fat mass-loss, but detailed analysis on the consequential mobilization of visceral and subcutaneous WAT-derived fatty acids has not been performed. In this study, a subset of fasted male rats (66 h) was submitted to daily bouts of mild exercise. Subsequently, by using gas chromatography-flame ionization detection, the content of 22 fatty acids (FA) in visceral (v) versus subcutaneous (sc) white adipose tissue (WAT) depots was compared to those found in response to the separate events. Findings were related to those obtained in serum and liver samples, the latter taking up FA to increase gluconeogenesis and ketogenesis. Each separate intervention reduced scWAT FA content, associated with increased levels of adipose triglyceride lipase (ATGL) protein despite unaltered AMP-activated protein kinase (AMPK) Thr172 phosphorylation, known to induce ATGL expression. The mobility of FAs from vWAT during fasting was absent with the exception of the MUFA 16:1 n-7 and only induced by combining fasting with exercise which was accompanied with reduced hormone sensitive lipase (HSL) Ser563 and increased Ser565 phosphorylation, whereas ATGL protein levels were elevated during fasting in association with the persistently increased phosphorylation of AMPK at Thr172 both during fasting and in response to the combined intervention. As expected, liver FA content increased during fasting, and was not further affected by exercise, despite additional FA release from vWAT in this condition, underlining increased hepatic FA metabolism. Both fasting and its combination with exercise showed preferential hepatic metabolism of the prominent saturated FAs C:16 and C:18 compared to the unsaturated FAs 18:1 n-9 and 18:2 n-6:1. In conclusion, depot-specific differences in WAT fatty acid molecule release during fasting, irrelevant to their degree of saturation or chain length, are mitigated when combined with exercise, to provide fuel to surrounding organs such as the liver which is correlated with increased ATGL/ HSL ratios, involving AMPK only in vWAT.


Asunto(s)
Ácidos Grasos , Esterol Esterasa , Ratas , Masculino , Animales , Esterol Esterasa/metabolismo , Ácidos Grasos/metabolismo , Proteínas Quinasas Activadas por AMP/metabolismo , Lipasa/metabolismo , Lipólisis/fisiología , Obesidad/metabolismo , Ayuno/metabolismo , Tejido Adiposo/metabolismo
15.
J Proteomics ; 255: 104500, 2022 03 20.
Artículo en Inglés | MEDLINE | ID: mdl-35101640

RESUMEN

Thermogenesis is a promising approach to limit weight gain in response to excess nutrition. In contrast to cold-induced thermogenesis, the molecular and cellular mechanisms of diet-induced thermogenesis (DIT) have not been fully characterized. Here, we explored the response of brown adipose tissue (BAT) and subcutaneous white adipose tissue (sWAT) to high fat diet (HFD) using proteome and phosphoproteome analysis. We observed that after HFD, Uncoupling protein 1 (UCP1) and its phosphorylation were only increased in BAT. Furthermore, proteins involved in fatty acid oxidation, tricarboxylic acid cycle, and oxidative phosphorylation were also upregulated in BAT. Nevertheless, most metabolic related proteins were downregulated in sWAT. We found that these metabolic changes accompanied with different variation of mitochondrial proteins between BAT and sWAT. After HFD, most mitochondrial proteins were decreased in sWAT, but not in BAT. This effect was correlated with decreased mitochondrial ribosomal proteins in sWAT. Finally, through phosphoproteomic analysis, we predicted the activities of kinases in HFD mice and observed that there were more kinases inactivated in sWAT. Finally, this dataset provides a valuable resource for molecular researchers in the fields of obesity and obesity-related disease. SIGNIFICANCE: Thermogenesis is a promising approach to combat obesity in response to excess energy. Nevertheless, the molecular and cellular mechanisms of DIT have not been fully characterized. Herein, we employed mass spectrometry (MS)-based proteomics and phosphoproteomics to identify differentially regulated proteins and phosphosites in BAT and sWAT of mice fed with HFD. This study unveils the differential regulatory networks of HFD in BAT and sWAT, which provides reference omics data to future researchers.


Asunto(s)
Dieta Alta en Grasa , Proteoma , Tejido Adiposo Pardo , Animales , Metabolismo Energético , Ratones , Ratones Endogámicos C57BL , Proteoma/metabolismo , Termogénesis , Proteína Desacopladora 1/metabolismo
16.
JID Innov ; 2(1): 100064, 2022 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-35024685

RESUMEN

Obesity is a growing epidemic worldwide, and it is also considered a major environmental factor contributing to the pathogenesis of inflammatory skin diseases, including psoriasis (PSO) and atopic dermatitis (AD). Moreover, obesity worsens the course and impairs the treatment response of these inflammatory skin diseases. Emerging evidence highlights that hypertrophied adipocytes and infiltrated immune cells secrete a variety of molecules, including fatty acids and adipokines, such as leptin, adiponectin, and a panel of cytokines/chemokines that modulate our immune system. In this review, we describe how adipose hypertrophy leads to a chronic low-grade inflammatory state in obesity and how obesity-related inflammatory factors are involved in the pathogenesis of PSO and/or AD. Finally, we discuss the potential role of antimicrobial peptides, mechanical stress and impairment of epidermal barrier function mediated by fast expansion, and dermal fat in modulating skin inflammation. Together, this review summarizes the current literature on how obesity is associated with the pathogenesis of PSO and AD, highlighting the potentially important but overlooked immunomodulatory role of adipose tissue in the skin.

17.
Cell Rep Med ; 2(10): 100407, 2021 10 19.
Artículo en Inglés | MEDLINE | ID: mdl-34755127

RESUMEN

Obesity, characterized by expansion and metabolic dysregulation of white adipose tissue (WAT), has reached pandemic proportions and acts as a primer for a wide range of metabolic disorders. Remodeling of WAT lipidome in obesity and associated comorbidities can explain disease etiology and provide valuable diagnostic and prognostic markers. To support understanding of WAT lipidome remodeling at the molecular level, we provide in-depth lipidomics profiling of human subcutaneous and visceral WAT of lean and obese individuals. We generate a human WAT reference lipidome by performing tissue-tailored preanalytical and analytical workflows, which allow accurate identification and semi-absolute quantification of 1,636 and 737 lipid molecular species, respectively. Deep lipidomic profiling allows identification of main lipid (sub)classes undergoing depot-/phenotype-specific remodeling. Previously unanticipated diversity of WAT ceramides is now uncovered. AdipoAtlas reference lipidome serves as a data-rich resource for the development of WAT-specific high-throughput methods and as a scaffold for systems medicine data integration.


Asunto(s)
Tejido Adiposo Blanco/metabolismo , Lipidómica , Anciano , Calibración , Ceramidas/química , Ceramidas/metabolismo , Fraccionamiento Químico , Etanolaminas/química , Etanolaminas/metabolismo , Ácidos Grasos Insaturados/metabolismo , Femenino , Humanos , Lípidos/aislamiento & purificación , Masculino , Persona de Mediana Edad , Fenotipo , Plasmalógenos/metabolismo , Triglicéridos/metabolismo , Regulación hacia Arriba
18.
Genes Nutr ; 15(1): 8, 2020 May 04.
Artículo en Inglés | MEDLINE | ID: mdl-32366215

RESUMEN

BACKGROUND: MicroRNAs are emerging as new mediators in the regulation of adipocyte physiology and have been approved to play a role in obesity. Despite several studies have focused on microRNA expression profiles and functions in different metabolic tissues, little is known about their response to nutritional interventions in white adipose tissue during obesity stages, and whether they differ in this response to weight-reduction strategy is poorly understood. Our objectives were to study the dysregulation of some miRNAs in subcutaneous inguinal white adipose tissue during weight change, expansion/reduction; in response to both a high-fat diet and switching to a normal diet feeding, and to evaluate them as potential biomarkers and therapeutic targets for early obesity management METHOD: A hundred 6-week-old male Wister rats were randomly divided into a normal diet group (N.D), a high-fat diet group (H.F.D), and a switched to a normal diet group (H.F.D/N.D). At the beginning and at intervals 2 weeks, serum lipid, hormone levels, total body fat mass, and inguinal subcutaneous white adipose tissue mass (WAT) measurements were recorded using dual-energy X-ray absorptiometry (DEXA). The expression levels of microRNAs were evaluated using real-time PCR. RESULTS: Significant alterations were observed in serum glucose, lipid profile, and adipokine hormones during the early stages of obesity development. Alteration in rno-mir 30a-5p, rno-mir 133a-5p, and rno-mir 107-5p expression levels were observed at more than one time point. While rno-let-7a-5p, rno-mir 193a-5p, and rno-mir125a-5p were downregulated and rno-mir130a-5p was upregulated at all time points within 2 to 4 weeks in response to H.F.D feeding for 10 weeks. The impact of switching to normal diet has a reversed effect on lipid profile, adipokine hormone levels, and some miRNAs. The bioinformatics results have identified a novel and important pathway related to inflammatory signalling. CONCLUSION: Our research demonstrated significant alterations in some adipocyte-expressed miRNAs after a short time of high caloric diet consumption. This provides further evidence of the significant role of nutrition as an epigenetic factor in regulation of lipid and glucose metabolism genes by modulating of related key miRNAs. Therefore, we suggest that miRNAs could be used as biomarkers for adiposity during diet-induced obesity. Perhaps limitation in calories intake is a way to manipulate obesity and associated metabolic disorders. Further studies are needed to fully elucidate the role of microRNAs in the development of obesity.

19.
Front Cardiovasc Med ; 7: 22, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32158768

RESUMEN

Adipose tissue plays essential roles in maintaining lipid and glucose homeostasis. To date several types of adipose tissue have been identified, namely white, brown, and beige, that reside in various specific anatomical locations throughout the body. The cellular composition, secretome, and location of these adipose depots define their function in health and metabolic disease. In obesity, adipose tissue becomes dysfunctional, promoting a pro-inflammatory, hyperlipidemic and insulin resistant environment that contributes to type 2 diabetes mellitus (T2DM). Concurrently, similar features that result from adipose tissue dysfunction also promote cardiovascular disease (CVD) by mechanisms that can be augmented by T2DM. The mechanisms by which dysfunctional adipose tissue simultaneously promote T2DM and CVD, focusing on adipose tissue depot-specific adipokines, inflammatory profiles, and metabolism, will be the focus of this review. The impact that various T2DM and CVD treatment strategies have on adipose tissue function and body weight also will be discussed.

20.
Endocrine ; 65(2): 252-262, 2019 08.
Artículo en Inglés | MEDLINE | ID: mdl-31161561

RESUMEN

PURPOSE: To verify whether the treatment with linagliptin induces the browning of the subcutaneous WAT (sWAT) and thermogenesis in murine diet-induced obesity (DIO) model. METHODS: Forty animals were randomly assigned to receive a control diet (C, 10% lipids as energy) or a high-fat diet (HF, 50% lipids as energy) for 10 weeks. Each group was re-divided to begin the 5-week treatment, totalizing four experimental groups: C, C-L (C plus linagliptin, 30 mg/kg body mass; BM), HF, and HF-L (HF plus linagliptin, 30 mg/kg BM). The drug was mixed with diet. RESULTS: HF animals showed overweight, glucose intolerance, and a greater cross-sectional area of adipocytes. The treatment with linagliptin was able to normalize the BM, restore the glucose tolerance and the cross-sectional area of adipocytes. These observations comply with the observation of UCP1-positive multilocular adipocytes in the sWAT of treated animals. Both treated groups (C-L and HF-L) showed high expression of thermogenic and type 2 cytokines genes, which agree with the enhanced body temperature and the lower respiratory exchange ratio, implying enhanced thermogenesis with the use of lipids as fuel. CONCLUSIONS: The reduced BM, the enhanced body temperature, and the presence of positive UCP1 beige cells in the sWAT point to the activation of the browning cascade on the sWAT of linagliptin-treated mice, and hence, linagliptin could induce the thermogenic pathway as a pleiotropic effect that can have translational potential.


Asunto(s)
Inhibidores de la Dipeptidil-Peptidasa IV/uso terapéutico , Linagliptina/uso terapéutico , Obesidad/tratamiento farmacológico , Grasa Subcutánea/efectos de los fármacos , Termogénesis/efectos de los fármacos , Adipocitos Marrones , Adiposidad , Animales , Biomarcadores/metabolismo , Dieta Alta en Grasa/efectos adversos , Inhibidores de la Dipeptidil-Peptidasa IV/farmacología , Modelos Animales de Enfermedad , Insulina/sangre , Linagliptina/farmacología , Masculino , Ratones Endogámicos C57BL , Obesidad/sangre , Obesidad/etiología , Distribución Aleatoria , Grasa Subcutánea/citología , Grasa Subcutánea/metabolismo
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda