Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 20 de 33
Filtrar
1.
Int J Mol Sci ; 25(15)2024 Jul 28.
Artículo en Inglés | MEDLINE | ID: mdl-39125815

RESUMEN

Neurological symptoms associated with COVID-19, acute and long term, suggest SARS-CoV-2 affects both the peripheral and central nervous systems (PNS/CNS). Although studies have shown olfactory and hematogenous invasion into the CNS, coinciding with neuroinflammation, little attention has been paid to susceptibility of the PNS to infection or to its contribution to CNS invasion. Here we show that sensory and autonomic neurons in the PNS are susceptible to productive infection with SARS-CoV-2 and outline physiological and molecular mechanisms mediating neuroinvasion. Our infection of K18-hACE2 mice, wild-type mice, and golden Syrian hamsters, as well as primary peripheral sensory and autonomic neuronal cultures, show viral RNA, proteins, and infectious virus in PNS neurons, satellite glial cells, and functionally connected CNS tissues. Additionally, we demonstrate, in vitro, that neuropilin-1 facilitates SARS-CoV-2 neuronal entry. SARS-CoV-2 rapidly invades the PNS prior to viremia, establishes a productive infection in peripheral neurons, and results in sensory symptoms often reported by COVID-19 patients.


Asunto(s)
COVID-19 , Neuropilina-1 , SARS-CoV-2 , Animales , SARS-CoV-2/fisiología , SARS-CoV-2/patogenicidad , COVID-19/virología , COVID-19/patología , COVID-19/metabolismo , Ratones , Neuropilina-1/metabolismo , Neuropilina-1/genética , Viremia/virología , Sistema Nervioso Central/virología , Sistema Nervioso Central/patología , Sistema Nervioso Central/metabolismo , Células Receptoras Sensoriales/virología , Células Receptoras Sensoriales/metabolismo , Células Receptoras Sensoriales/patología , Mesocricetus , Humanos , Enzima Convertidora de Angiotensina 2/metabolismo , Ratones Endogámicos C57BL , Internalización del Virus , Masculino
2.
J Pharmacol Sci ; 148(1): 103-107, 2022 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-34924113

RESUMEN

We have reported that nicotine has a neurotrophic action on peripheral adrenergic nerves in vivo, which is mediated by α7 nicotinic acetylcholine receptors (nAChRs). To clarify the possible mechanisms, the present study further investigated the effect of nicotine on neurite outgrowth in tyrosine hydroxylase (TH)-positive superior cervical ganglia (SCG) cells isolated from neonatal rats in vitro. Nicotine at low concentrations (0.01-0.3 mM) increased the number of neurite outgrowths in TH-immunopositive SCG cells, while high concentrations of nicotine (1-10 mM) gradually reduced it, and only 10 mM nicotine was markedly inhibited compared to the control. A 100 µM of nicotine-induced increase in neurite numbers depended on the exposure time and was inhibited by treatment with the nAChR antagonist hexamethonium (Hex) and α7 nAChR antagonist α-bungarotoxin (α-Bgtx). The nicotine (10 mM)-induced a significant decrease in neurite outgrowth in SCG, which was perfectly canceled by Hex to the control level but not by α-Bgtx. These results suggest that nicotine has a regulatory neurotrophic action mediated by both α7 nAChR and other subtypes in TH-positive SCG cells of rats.


Asunto(s)
Factores de Crecimiento Nervioso , Neuritas/efectos de los fármacos , Neuritas/fisiología , Proyección Neuronal/efectos de los fármacos , Nicotina/farmacología , Ganglio Cervical Superior/citología , Ganglio Cervical Superior/fisiología , Animales , Células Cultivadas , Ratas , Receptor Nicotínico de Acetilcolina alfa 7/fisiología
3.
Int J Mol Sci ; 21(5)2020 Mar 06.
Artículo en Inglés | MEDLINE | ID: mdl-32155697

RESUMEN

Pharmacological concentrations of melatonin reduce reperfusion arrhythmias, but less is known about the antiarrhythmic protection of the physiological circadian rhythm of melatonin. Bilateral surgical removal of the superior cervical ganglia irreversibly suppresses melatonin rhythmicity. This study aimed to analyze the cardiac electrophysiological effects of the loss of melatonin circadian oscillation and the role played by myocardial melatonin membrane receptors, SERCA2A, TNFα, nitrotyrosine, TGFß, KATP channels, and connexin 43. Three weeks after bilateral removal of the superior cervical ganglia or sham surgery, the hearts were isolated and submitted to ten minutes of regional ischemia followed by ten minutes of reperfusion. Arrhythmias, mainly ventricular tachycardia, increased during reperfusion in the ganglionectomy group. These hearts also suffered an epicardial electrical activation delay that increased during ischemia, action potential alternants, triggered activity, and dispersion of action potential duration. Hearts from ganglionectomized rats showed a reduction of the cardioprotective MT2 receptors, the MT1 receptors, and SERCA2A. Markers of nitroxidative stress (nitrotyrosine), inflammation (TNFα), and fibrosis (TGFß and vimentin) did not change between groups. Connexin 43 lateralization and the pore-forming subunit (Kir6.1) of KATP channels increased in the experimental group. We conclude that the loss of the circadian rhythm of melatonin predisposes the heart to suffer cardiac arrhythmias, mainly ventricular tachycardia, due to conduction disorders and changes in repolarization.


Asunto(s)
Arritmias Cardíacas/patología , Ganglionectomía/efectos adversos , Corazón/fisiopatología , Daño por Reperfusión Miocárdica/cirugía , Animales , Arritmias Cardíacas/etiología , Arritmias Cardíacas/metabolismo , Ritmo Circadiano , Conexina 43/genética , Conexina 43/metabolismo , Masculino , Melatonina/metabolismo , Ratas , Ratas Wistar , Receptores de Melatonina/genética , Receptores de Melatonina/metabolismo , ATPasas Transportadoras de Calcio del Retículo Sarcoplásmico/genética , ATPasas Transportadoras de Calcio del Retículo Sarcoplásmico/metabolismo
4.
J Neurochem ; 150(6): 666-677, 2019 09.
Artículo en Inglés | MEDLINE | ID: mdl-31306490

RESUMEN

In the sympatho-adrenal system, angiotensin II (Ang II) acts as a key neuromodulatory component. At sympathetic nerve terminals, Ang II influences sympathetic transmission by enhancing norepinephrine (NE) synthesis, facilitating NE release and inhibiting NE uptake. Previously, it was demonstrated that tyrosine hydroxylase (TH) mRNA is trafficked to the distal axons of primary superior cervical ganglia (SCG) neurons, directed by a cis-acting regulatory element (i.e. zipcode) located in the 3'UTR of the transcript. Results of metabolic labeling studies established that the mRNA is locally translated. It was further shown that the axonal trafficking of the mRNA encoding the enzyme plays an important role in mediating dopamine (DA) and NE synthesis and may facilitate the maintenance of axonal catecholamine levels. In the present study, the hypothesis was tested that Ang II induces NE synthesis in rat primary SCG neurons via the modulation of the trafficking of the mRNAs encoding the catecholamine synthesizing enzymes TH and dopamine ß-hydroxylase (DBH). Treatment of SCG neurons with the Ang II receptor type 1 (AT1R) agonist, L-162,313, increases the axonal levels of TH and DBH mRNA and protein and results in elevated NE levels. Conversely, treatment of rat SCG neurons with the AT1R antagonist, Eprosartan, abolished the L-162,313-mediated increase in axonal levels of TH and DBH mRNA and protein. In a first attempt to identify the proteins involved in the Ang II-mediated axonal transport of TH mRNA, we used a biotinylated 50-nucleotide TH RNA zipcode as bait in the affinity purification of TH zipcode-associated proteins. Mass spectrometric analysis of the TH zipcode ribonucleoprotein (RNP) complex immune-purified from SCG neurons led to the identification of 163 somal and 127 axonal proteins functionally involved in binding nucleic acids, the translational machinery or acting as subunits of cytoskeletal and motor proteins. Surprisingly, immune-purification of the TH axonal trafficking complex, results in the acquisition of DBH mRNA, suggesting that these mRNAs maybe transported to the axon together, possibly in the same RNP complex. Taken together, our results point to a novel mechanism by which Ang II participates in the regulation of axonal synthesis of NE by modulating the local trafficking and expression of TH and DBH, two key enzymes involved in the catecholamine biosynthetic pathway.


Asunto(s)
Angiotensina II/metabolismo , Axones/metabolismo , Dopamina beta-Hidroxilasa/metabolismo , Norepinefrina/biosíntesis , Tirosina 3-Monooxigenasa/metabolismo , Fibras Adrenérgicas/metabolismo , Animales , Transporte Axonal/fisiología , Células Cultivadas , Neuronas/metabolismo , Transporte de Proteínas/fisiología , ARN Mensajero , Ratas , Ratas Sprague-Dawley , Ganglio Cervical Superior/metabolismo
5.
J Cell Physiol ; 233(4): 3375-3383, 2018 04.
Artículo en Inglés | MEDLINE | ID: mdl-28949406

RESUMEN

Superior cervical ganglia (SCG) innervate the myocardium and participate in sympathoexcitatory transmission. P2Y12 receptor is expressed in satellite glial cells (SGCs). This study seeks to clarify whether the P2Y12 receptor is involved in the sympathoexcitation reflex after myocardial ischemia (MI). MI model was induced by occlusion of the left coronary artery. P2Y12 were assayed by real time PCR and Western blotting. Our results showed that expression levels of P2Y12 mRNA and protein were significantly higher in the MI group than in the sham group. Administration of P2Y12 short hairpin RNA (shRNA) caused downregulation of the P2Y12 receptor in the SCG. In MI rats plus P2Y12 shRNA treatment group, the abnormal changes in diastolic blood pressure (DBP), systolic blood pressure (SBP), heart rate (HR), electrocardiograms (ECGs), and cardiac tissue structures were alleviated. When the treatment of P2Y12 shRNA in MI rats, upregulated co-expression values of P2Y12 and glial fibrillary acidic protein (GFAP), the upregulation of tumor necrosis factor α (TNF-α) and phosphorylated P38 mitogen activated protein kinase (p-P38 MAPK) in the SCG were decreased. Downregulation of the P2Y12 receptor in the SCG after MI may improve cardiac function by alleviating the sympathoexcitatory reflex.


Asunto(s)
Isquemia Miocárdica/metabolismo , Miocardio/metabolismo , Receptores Purinérgicos P2Y12/metabolismo , Reflejo/fisiología , Animales , Presión Sanguínea/fisiología , Regulación hacia Abajo/fisiología , Corazón/fisiología , Frecuencia Cardíaca/fisiología , Isquemia Miocárdica/patología , Ratas Sprague-Dawley
6.
J Neurosci Res ; 95(8): 1690-1699, 2017 08.
Artículo en Inglés | MEDLINE | ID: mdl-27991686

RESUMEN

Cardiac autonomic neuropathy in Type 2 diabetes (T2D) is often a devastating complication. Long non-coding RNAs (lncRNAs) have important effects on both normal development and disease pathogenesis. In this study, we explored the expression profiles of some lncRNAs involved in inflammation which may be co-expressed with messenger RNA (mRNA) in superior cervical and stellate ganglia after type 2 diabetic injuries. Total RNA isolated from 10 pairs of superior cervical and stellate ganglia in diabetic and normal male rats was hybridized to lncRNA arrays for detections. Pathway analysis indicated that the most significant gene ontology (GO) processes that were upregulated in diabetes were associated with immune response, cell migration, defense response, taxis, and chemotaxis. The Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway revealed that most of the target genes of the lncRNAs were located in cytokine-cytokine receptor interactions, the chemokine signaling pathway and cell adhesion molecules, which were involved in T2D. Gene co-expression network construction showed that the co-expression network in the experimental rats consisted of 268 regulation edges among 105 lncRNAs and 11 mRNAs. Our studies demonstrated the co-expression profile of lncRNAs and mRNAs in diabetic cardiac autonomic ganglia, suggesting possible roles for multiple lncRNAs as potential targets for the development of therapeutic strategies or biomarkers for diabetic cardiac autonomic neuropathy. © 2016 Wiley Periodicals, Inc.


Asunto(s)
Neuropatías Diabéticas/metabolismo , Neuropatías Diabéticas/patología , ARN Largo no Codificante/metabolismo , ARN Mensajero/metabolismo , Ganglio Cervical Superior/metabolismo , Animales , Presión Sanguínea/fisiología , Colesterol/metabolismo , Diabetes Mellitus Experimental , Modelos Animales de Enfermedad , Perfilación de la Expresión Génica , Redes Reguladoras de Genes , Frecuencia Cardíaca/fisiología , Masculino , Análisis de Secuencia por Matrices de Oligonucleótidos , ARN Largo no Codificante/genética , Ratas , Ratas Sprague-Dawley , Ganglio Cervical Superior/patología
7.
Purinergic Signal ; 12(3): 521-35, 2016 09.
Artículo en Inglés | MEDLINE | ID: mdl-27215605

RESUMEN

Previous studies showed that the upregulation of the P2X7 receptor in cervical sympathetic ganglia was involved in myocardial ischemic (MI) injury. The dysregulated expression of long noncoding RNAs (lncRNAs) participates in the onset and progression of many pathological conditions. The aim of this study was to investigate the effects of a small interfering RNA (siRNA) against the NONRATT021972 lncRNA on the abnormal changes of cardiac function mediated by the up-regulation of the P2X7 receptor in the superior cervical ganglia (SCG) after myocardial ischemia. When the MI rats were treated with NONRATT021972 siRNA, their increased systolic blood pressure (SBP), diastolic blood pressure (DBP), heart rate (HR), low-frequency (LF) power, and LF/HF ratio were reduced to normal levels. However, the decreased high-frequency (HF) power was increased. GAP43 and tyrosine hydroxylase (TH) are markers of nerve sprouting and sympathetic nerve fibers, respectively. We found that the TH/GAP43 value was significantly increased in the MI group. However, it was reduced after the MI rats were treated with NONRATT021972 siRNA. The serum norepinephrine (NE) and epinephrine (EPI) concentrations were decreased in the MI rats that were treated with NONRATT021972 siRNA. Meanwhile, the increased P2X7 mRNA and protein levels and the increased p-ERK1/2 expression in the SCG were also reduced. NONRATT021972 siRNA treatment inhibited the P2X7 agonist BzATP-activated currents in HEK293 cells transfected with pEGFP-P2X7. Our findings suggest that NONRATT021972 siRNA could decrease the upregulation of the P2X7 receptor and improve the abnormal changes in cardiac function after myocardial ischemia.


Asunto(s)
Isquemia Miocárdica/metabolismo , ARN Largo no Codificante/metabolismo , Receptores Purinérgicos P2X7/biosíntesis , Ganglio Cervical Superior/metabolismo , Animales , Western Blotting , Modelos Animales de Enfermedad , Ensayo de Inmunoadsorción Enzimática , Células HEK293 , Hemodinámica/efectos de los fármacos , Hemodinámica/fisiología , Humanos , Inmunohistoquímica , Hibridación in Situ , Isquemia Miocárdica/fisiopatología , Técnicas de Placa-Clamp , ARN Largo no Codificante/farmacología , Distribución Aleatoria , Ratas , Ratas Sprague-Dawley , Reacción en Cadena en Tiempo Real de la Polimerasa , Sistema Nervioso Simpático/fisiopatología , Regulación hacia Arriba
8.
Biochem Biophys Res Commun ; 438(3): 563-7, 2013 Aug 30.
Artículo en Inglés | MEDLINE | ID: mdl-23899526

RESUMEN

Autonomic neurons innervate pancreatic islets of Langerhans and maintain blood glucose homeostasis by regulating hormone levels. We previously showed that cell adhesion molecule 1 (CADM1) mediated the attachment and interaction between nerves and aggregated pancreatic islet α cells. In this study, we cocultured αTC6 cells, a murine α cell line, with mouse superior cervical ganglion (SCG) neurons. The oscillation of intracellular Ca(2+) concentration ([Ca(2+)]i) was observed in 27% and 14% of αTC6 and CADM1-knockdown αTC6 cells (αTC6(siRNA-CADM1) cells) in aggregates, respectively, within 1min after specific SCG nerve stimulation with scorpion venom. In αTC6(siRNA-CADM1) cells, the responding rate during 3min after SCG nerve stimulation significantly increased compared with that within 1min, whereas the increase in the responding rate was not significantly different in αTC6 cells. This indicated that the response of αTC6 cells according to nerve stimulation occurred more rapidly and effectively than that of αTC6(siRNA-CADM1) cells, suggesting CADM1 involvement in promoting the interaction between nerves and α cells and among α cells. In addition, because we found that neurokinin (NK)-1 receptors, which are neuropeptide substance P receptors, were expressed to a similar extent by both cells, we investigated the effect of substance P on nerve-α cell interaction. Pretreatment with CP99,994 (0.1µg/ml), an NK-1 receptor antagonist, reduced the responding rate of both cells, suggesting that substance P released from stimulated neurites was a mediator to activate αTC6 cells. In addition, α cells that were attached to neurites in a CADM1-mediated manner appeared to respond effectively to neurite activation via substance P/NK-1 receptors.


Asunto(s)
Moléculas de Adhesión Celular/fisiología , Células Secretoras de Glucagón/fisiología , Inmunoglobulinas/fisiología , Receptores de Neuroquinina-1/fisiología , Sustancia P/fisiología , Ganglio Cervical Superior/fisiología , Animales , Calcio/metabolismo , Molécula 1 de Adhesión Celular , Moléculas de Adhesión Celular/biosíntesis , Comunicación Celular/efectos de los fármacos , Línea Celular , Técnicas de Cocultivo , Inmunoglobulinas/biosíntesis , Ratones , Receptores de Neuroquinina-1/biosíntesis , Venenos de Escorpión/farmacología , Ganglio Cervical Superior/efectos de los fármacos
9.
Methods Mol Biol ; 2597: 89-104, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36374416

RESUMEN

The mechanisms underlying nervous system injury, such as spinal cord injury (SCI), traumatic brain injury (TBI), and peripheral nerve injury are complex and not well understood. Following acute tissue damage and cell death, inflammatory processes cause ongoing damage. Many factors regulate this inflammation, including factors that modulate chemokine expression. Serine proteases, including those of the thrombotic and thrombolytic pathways (e.g., thrombin, tPA, uPA) are upregulated during nervous system damage and can modulate the release and bioavailability of many chemokines. Virus-derived immunomodulators, such as Serp-1, a serine protease inhibitor (serpin), have protective effects by reducing inflammation and tissue damage. However, the precise mechanisms of Serp-1 neuroprotection are still being studied. Compartmentalized in vitro neuron culture systems, such as the Campenot trichamber, are useful for such mechanistic studies. This chapter provides a protocol for assembling and culturing rodent embryonic superior cervical ganglion (SCG) and dorsal root ganglion (DRG) neurons in Campenot trichambers, as well as instructive examples of the types of experiments enabled by these methods.


Asunto(s)
Serpinas , Humanos , Serpinas/farmacología , Serpinas/metabolismo , Inflamación/metabolismo , Inhibidores de Serina Proteinasa , Fibrinolíticos , Serina Endopeptidasas/metabolismo , Ganglios Espinales/metabolismo
10.
Methods Mol Biol ; 2550: 53-62, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36180677

RESUMEN

The sympathetic nervous system has been implicated in various physiological and pathological processes, including regulation of homeostatic functions, maintenance of the circadian rhythms, and neuronal disruption and recovery after injury. Of special interest is focus on the role of the superior cervical ganglion (SCG) in regulating the daily changes in pineal function. Removal of the superior cervical ganglion (SCGx) and decentralization have served as valuable microsurgical models to investigate the effects of surgical denervation on this gland or organ. In this chapter, we offer information about methodologies for performing SCGx along with decentralization and denervation procedures, including details about recommended equipment as well as tips that can improve these techniques.


Asunto(s)
Ganglionectomía , Ganglio Cervical Superior , Animales , Ritmo Circadiano/fisiología , Ganglios Simpáticos , Ganglionectomía/métodos , Neuronas , Política , Ratas
11.
Auton Neurosci ; 241: 102987, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-35567916

RESUMEN

INTRODUCTION: Cerebral vasospasm is a complex disease resulting in reversible narrowing of blood vessels, stroke, and poor patient outcomes. Sympathetic perivascular nerve fibers originate from the superior cervical ganglion (SCG) to innervate the cerebral vasculature, with activation resulting in vasoconstriction. Sympathetic pathways are thought to be a significant contributor to cerebral vasospasm. OBJECTIVE: We sought to demonstrate that stimulation of SCG in swine can cause ipsilateral cerebral perfusion deficit similar to that of significant human cerebral vasospasm. Furthermore, we aimed to show that inhibition of SCG can block the effects of sympathetic-mediated cerebral hypoperfusion. METHODS: SCG were surgically identified in 15 swine and were electrically stimulated to achieve sympathetic activation. CT perfusion scans were performed to assess for changes in cerebral blood flow (CBF), cerebral blood volume (CBV), mean transit time (MTT) and time-to-maximum (TMax). Syngo.via software was used to determine regions of interest and quantify perfusion measures. RESULTS: SCG stimulation resulted in 20-30% reduction in mean ipsilateral CBF compared to its contralateral unaffected side (p < 0.001). Similar results of hypoperfusion were seen with CBV, MTT and TMax with SCG stimulation. Prior injection of lidocaine to SCG inhibited the effects of SCG stimulation and restored perfusion comparable to baseline (p > 0.05). CONCLUSION: In swine, SCG stimulation resulted in significant cerebral perfusion deficit, and this was inhibited by prior local anesthetic injection into the SCG. Inhibiting sympathetic activation by targeting the SCG may be an effective treatment for sympathetic mediated cerebral hypoperfusion.


Asunto(s)
Vasoespasmo Intracraneal , Animales , Circulación Cerebrovascular , Ganglio Cervical Superior , Porcinos , Sistema Nervioso Simpático/fisiología
12.
Front Pharmacol ; 13: 873090, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35529431

RESUMEN

Diabetes mellitus (DM), an emerging chronic epidemic, contributes to mortality and morbidity around the world. Diabetic cardiac autonomic neuropathy (DCAN) is one of the most common complications associated with DM. Previous studies have shown that satellite glial cells (SGCs) in the superior cervical ganglia (SCG) play an indispensable role in DCAN progression. In addition, it has been shown that purinergic neurotransmitters, as well as metabotropic GPCRs, are involved in the pathophysiological process of DCAN. Furthermore, one traditional Chinese medicine, naringin may potently alleviate the effects of DCAN. Ferroptosis may be involved in DCAN progression. However, the role of naringin in DCAN as well as its detailed mechanism requires further investigation. In this research, we attempted to identify the effect and relevant mechanism of naringin in DCAN mitigation. We observed that compared with those of normal subjects, there were significantly elevated expression levels of P2Y14 and IL-1ß in diabetic rats, both of which were remarkably diminished by treatment with either P2Y14 shRNA or naringin. In addition, abnormalities in blood pressure (BP), heart rate (HR), heart rate variability (HRV), sympathetic nerve discharge (SND), and cardiac structure in the diabetic model can also be partially returned to normal through the use of those treatments. Furthermore, a reduced expression of NRF2 and GPX4, as well as an elevated level of ROS, were detected in diabetic cases, which can also be improved with those treatments. Our results showed that naringin can effectively relieve DCAN mediated by the P2Y14 receptor of SGCs in the SCG. Moreover, the NRF2/GPX4 pathway involved in ferroptosis may become one of the principal mechanisms participating in DCAN progression, which can be modulated by P2Y14-targeted naringin and thus relieve DCAN. Hopefully, our research can supply one novel therapeutic target and provide a brilliant perspective for the treatment of DCAN.

13.
Methods Mol Biol ; 2431: 181-206, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35412277

RESUMEN

The development of compartmentalized neuron culture systems has been invaluable in the study of neuroinvasive viruses, including the alpha herpesviruses Herpes Simplex Virus 1 (HSV-1) and Pseudorabies Virus (PRV). This chapter provides updated protocols for assembling and culturing rodent embryonic superior cervical ganglion (SCG) and dorsal root ganglion (DRG) neurons in Campenot trichamber cultures. In addition, we provide several illustrative examples of the types of experiments that are enabled by Campenot cultures: (1) Using fluorescence microscopy to investigate axonal outgrowth/extension through the chambers, and alpha herpesvirus infection, intracellular trafficking, and cell-cell spread via axons. (2) Using correlative fluorescence microscopy and cryo electron tomography to investigate the ultrastructure of virus particles trafficking in axons.


Asunto(s)
Herpesvirus Humano 1 , Herpesvirus Suido 1 , Animales , Transporte Axonal/fisiología , Axones/metabolismo , Herpesvirus Humano 1/fisiología , Neuronas
14.
Acta Physiol (Oxf) ; 227(2): e13315, 2019 10.
Artículo en Inglés | MEDLINE | ID: mdl-31116911

RESUMEN

AIM: Overactivation of the sympathetic nerve may lead to severe ventricular arrhythmias (VAs) after myocardial infarction (MI). Thus, targeting sympathetic nerve activity is an effective strategy to prevent VAs clinically. The superior cervical ganglion (SCG), the extracardiac sympathetic ganglion innervating cardiac muscles, has been found to have a GABAergic signalling system, the physiological significance of which is obscure. We aimed to explore the functional significance of SCG post MI and whether the GABAergic signal system is involved in the process. METHODS: Adult male Sprague-Dawley rats were divided into seven different groups. Rats in the MI groups underwent ligation of the left anterior descending coronary artery. All animals were used for electrophysiological testing, renal sympathetic nerve activity (RSNA) testing, and ELISA. Primary SCG sympathetic neurons were used for the in vitro study. RESULTS: The GABAA receptor agonist muscimol significantly decreased the ATP-induced increase in intracellular Ca2+ (P < 0.05). GABA treatment in MI rats significantly attenuated the level of serum and cardiac norepinephrine (NE; P < 0.05). Sympathetic activity and inducible VAs were also lower in MI + GABA rats than in MI rats (P < 0.05). Knockdown of the GABAA Rs ß2 subunit (GABAA Rß2 ) in the SCG of MI rats increased the NE levels in serum and cardiac tissue, RSNA and inducible VAs compared with vehicle shRNA (P < 0.05). CONCLUSION: The GABAergic signalling system is functionally expressed in SCG sympathetic neurons, and activation of this system suppresses sympathetic activity, thereby facilitating cardiac protection and making it a potential target to alleviate VAs.


Asunto(s)
Arritmias Cardíacas/prevención & control , Neuronas GABAérgicas/fisiología , Infarto del Miocardio/complicaciones , Norepinefrina/metabolismo , Animales , Calcio/metabolismo , Técnicas de Silenciamiento del Gen , Masculino , Infarto del Miocardio/metabolismo , Ratas , Ratas Sprague-Dawley , Receptores de GABA-A/genética , Receptores de GABA-A/metabolismo , Transducción de Señal
15.
eNeuro ; 4(5)2017.
Artículo en Inglés | MEDLINE | ID: mdl-29067356

RESUMEN

The majority of multiexon mammalian genes contain alternatively spliced exons that have unique expression patterns in different cell populations and that have important cell functions. The expression profiles of alternative exons are controlled by cell-specific splicing factors that can promote exon inclusion or exon skipping but with few exceptions we do not know which specific splicing factors control the expression of alternatively spliced exons of known biological function. Many ion channel genes undergo extensive alternative splicing including Cacna1b that encodes the voltage-gated CaV2.2 α1 subunit. Alternatively spliced exon 18a in Cacna1b RNA encodes 21 amino acids in the II-III loop of CaV2.2, and its expression differs across the nervous system and over development. Genome-wide, protein-RNA binding analyses coupled to high-throughput RNA sequencing show that RNA binding Fox (Rbfox) proteins associate with CaV2.2 (Cacna1b) pre-mRNAs. Here, we link Rbfox2 to suppression of e18a. We show increased e18a inclusion in CaV2.2 mRNAs: (1) after siRNA knockdown of Rbfox2 in a neuronal cell line and (2) in RNA from sympathetic neurons of adult compared to early postnatal mice. By immunoprecipitation of Rbfox2-RNA complexes followed by qPCR, we demonstrate reduced Rbfox2 binding upstream of e18a in RNA from sympathetic neurons of adult compared to early postnatal mice. CaV2.2 currents in cell lines and in sympathetic neurons expressing only e18a-CaV2.2 are larger compared to currents from those expressing only Δ18a-CaV2.2. We conclude that Rbfox2 represses e18a inclusion during pre-mRNA splicing of CaV2.2, limiting the size of CaV2.2 currents early in development in certain neuronal populations.


Asunto(s)
Canales de Calcio Tipo N/genética , Exones/genética , Regulación del Desarrollo de la Expresión Génica/genética , Neuronas/fisiología , Factores de Empalme de ARN/metabolismo , ARN Mensajero/metabolismo , Potenciales de Acción/genética , Animales , Animales Recién Nacidos , Canales de Calcio Tipo N/metabolismo , Células Cultivadas , Femenino , Humanos , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Modelos Moleculares , Factores de Empalme de ARN/genética , ARN Mensajero/genética , ARN Interferente Pequeño/genética , ARN Interferente Pequeño/metabolismo , Ratas , Ganglio Cervical Superior/citología
16.
Auton Neurosci ; 201: 1-7, 2016 12.
Artículo en Inglés | MEDLINE | ID: mdl-27519467

RESUMEN

Diabetic cardiac autonomic neuropathy (DCAN) is a serious and common complication in diabetes mellitus (DM). Long noncoding RNAs (lncRNAs), an important class of regulatory molecules in diverse biological processes, have attracted considerable interest in DCAN. Our previous study has indicated a lncRNA, NONRATT021972 (NONCODE ID), was enhanced in sympathetic neuronal-like PC12 cells in the setting of high glucose (HG) and high FFAs (HF); its silence was found to significantly alleviate HGHF-induced tumor necrosis factor-α (TNF-α) release in PC12 cells. Here we further explore the effects of NONRATT021972 small interference RNA (siRNA) on heart rate variability (HRV) mediated by superior cervical ganglia (SCG) in diabetic rats and the possible mechanism underlying. We found an increment of NONRATT021972 in SCG of DM rats. Treatment of NONRATT021972 siRNA in DM rats decreased the elevated expression of TNF-α, blocked serine phosphorylation of insulin receptor substrate (IRS) 1 and increased the down-regulated expression of IRS1 in SCG. Meanwhile, NONRATT021972 siRNA rescued decreased HRV in DM rats. Therefore, inhibition of NONRATT021972 may serve as a novel therapeutic strategy for preventing the development of DCAN.


Asunto(s)
Arritmias Cardíacas/terapia , Diabetes Mellitus Experimental/terapia , Cardiomiopatías Diabéticas/terapia , Ganglios Espinales/metabolismo , ARN Largo no Codificante/metabolismo , Tratamiento con ARN de Interferencia , Animales , Arritmias Cardíacas/metabolismo , Arritmias Cardíacas/patología , Vértebras Cervicales , Diabetes Mellitus Experimental/metabolismo , Diabetes Mellitus Experimental/patología , Cardiomiopatías Diabéticas/metabolismo , Cardiomiopatías Diabéticas/patología , Ganglios Espinales/patología , Frecuencia Cardíaca/fisiología , Proteínas Sustrato del Receptor de Insulina/metabolismo , Masculino , ARN Largo no Codificante/genética , ARN Interferente Pequeño/administración & dosificación , Distribución Aleatoria , Ratas , Ratas Sprague-Dawley , Factor de Necrosis Tumoral alfa/metabolismo
17.
Neuropharmacology ; 110(Pt A): 493-502, 2016 11.
Artículo en Inglés | MEDLINE | ID: mdl-27553120

RESUMEN

Though amyloid precursor protein (APP) can potentially be cleaved to generate the pathological amyloid ß peptide (Aß), APP itself plays an important role in regulating neuronal activity. APP deficiency causes functional impairment in cholinergic synaptic transmission and cognitive performance. However, the mechanisms underlying altered cholinergic synaptic transmission in APP knock-out mice (APP(-/-)) are poorly understood. In this study, we conducted in vivo extracellular recording to investigate cholinergic compound action potentials (CAPs) of the superior cervical ganglion (SCG) in APP(-/-) and littermate wild-type (WT) mice. Our results demonstrate that APP not only regulates presynaptic activity, but also affects postsynaptic function at cholinergic synapses in SCG. APP deficiency reduces the number of vesicles in presynaptic terminalsand attenuatesthe amplitude of CAPs, likely due to dysfunction of high-affinity choline transporters. Pharmacological and biochemical examination showed that postsynaptic responsesmediated by α4ß2 and α7 nicotinic acetylcholine receptors are reduced in the absence of APP. Our research provides evidences on how APP regulates cholinergic function and therefore may help to identify potential therapeutic targets to treat cholinergic dysfunction associated with Alzheimer's disease pathogenesis.


Asunto(s)
Precursor de Proteína beta-Amiloide/deficiencia , Receptores Nicotínicos/metabolismo , Ganglio Cervical Superior/metabolismo , Sinapsis/metabolismo , Transmisión Sináptica/fisiología , Receptor Nicotínico de Acetilcolina alfa 7/metabolismo , Acetilcolina/metabolismo , Precursor de Proteína beta-Amiloide/genética , Animales , Colinérgicos/farmacología , Anomalías del Ojo/metabolismo , Anomalías del Ojo/patología , Ratones Noqueados , Ganglio Cervical Superior/efectos de los fármacos , Ganglio Cervical Superior/patología , Sinapsis/patología , Transmisión Sináptica/efectos de los fármacos
18.
Auton Neurosci ; 197: 14-8, 2016 05.
Artículo en Inglés | MEDLINE | ID: mdl-27118262

RESUMEN

Diabetic autonomic neuropathy includes the sympathetic ganglionic dysfunction. P2X7 receptor in superior cervical ganglia (SCG) participated in the pathological changes of cardiac dysfunction. Abnormal expression of long noncoding RNAs (lncRNAs) was reported to be involved in nervous system diseases. Our preliminary results obtained from rat lncRNA array profiling revealed that the expression of the uc.48+ was significantly increased in the rat SCG in response to diabetic sympathetic pathology. In this study, we found that lncRNAuc.48+ and P2X7 receptor in the SCG were increased in type 2 diabetic rats and were associated with the cardiac dysfunction. The uc.48+ small interference RNA (siRNA) improved the cardiac autonomic dysfunction and decreased the up-regulation P2X7 and the ratio of phosphorylated extracellular regulated protein kinases1/2 (p-ERK1/2) to ERK1/2 in SCG of type 2 diabetic rats. In conclusion, lncRNA uc.48+ siRNA improved diabetic sympathetic neuropathy in type 2 diabetic rats through regulating the expression of P2X7 and ERK signaling in SCG.


Asunto(s)
ARN Largo no Codificante/genética , Receptores Purinérgicos P2X7/metabolismo , Ganglio Cervical Superior/metabolismo , Animales , Diabetes Mellitus Experimental/genética , Diabetes Mellitus Experimental/metabolismo , Neuropatías Diabéticas/metabolismo , Neuropatías Diabéticas/fisiopatología , Modelos Animales de Enfermedad , Ganglios Simpáticos/metabolismo , Masculino , Isquemia Miocárdica/metabolismo , Isquemia Miocárdica/fisiopatología , ARN Largo no Codificante/metabolismo , ARN Interferente Pequeño/metabolismo , Ratas Sprague-Dawley , Receptores Purinérgicos P2X7/genética
19.
Exp Ther Med ; 12(5): 3381-3386, 2016 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-27882167

RESUMEN

Chronic myeloid leukemia (CML) is a blood cell cancer with increased proliferation of granulocytes. Signal transducers and activators of transcription 3 (STAT3) is an important regulator of CML. To investigate the possible downstream factors of STAT3 and gain more insight into CML-related pathways, this study focused on the superior cervical ganglia protein 10-like protein (SCLIP, or SCG 10-like protein) and analyzed the functions of the STAT3-SCLIP pathway. The effects of STAT3 phosphorylation on SCLIP expression were examined by western blotting. Specific small interfering RNA (siRNA) was then used to knockdown SCLIP in the CML cell line K562 and the expression changes of STAT3 and factors further downstream, namely Bcl-2 and cyclin E1, were detected by RT-qPCR. Cell viability and apoptosis were also analyzed following the knockdown of SCLIP. Results showed a positive association between the phosphorylation of STAT3 and the expression of SCLIP. Knockdown of SCLIP inhibited the viability and induced the apoptosis of K562 cells. Knockdown of SCLIP did not affect the expression of STAT3 mRNA but downregulated the mRNA levels of Bcl-2 and cyclin E1. In conclusion, the results indicate that SCLIP is a direct downstream factor of STAT3, regulates Bcl-2 and cyclin E1 and mediates the viability and apoptosis of CML cells. Consisting of at least these four factors, the STAT3-SCLIP pathway might play critical roles in the regulation of CML. These data provided a more profound understanding of CML-related pathways.

20.
Auton Neurosci ; 189: 8-15, 2015 May.
Artículo en Inglés | MEDLINE | ID: mdl-25554221

RESUMEN

After the myocardial ischemia, injured myocardial tissues released large quantity of ATP, which activated P2X3 receptor in superior cervical ganglia and made the SCG postganglionic neurons excited. Excitatory of sympathetic postganglionic efferent neurons increased the blood pressure and heart rates, which aggravated the myocardial ischemic injury. Baicalin has anti-inflammatory and anti-oxidant properties. Our study showed that baicalin reduced the incremental concentration of serum CK-MB, cTn-T, epinephrine and ATP, decreased the up-regulated expression levels of P2X3 mRNA and protein in SCG after MI, and then inhibited the sympathetic excitatory activity triggered by MI injury. These results indicated that baicalin acted on P2X3 receptor was involved in the transmission of sympathetic excitation after the myocardial ischemic injury. Baicalin might decrease sympathetic activity via inhibiting P2X3 receptor in rat SCG to protect the myocardium.


Asunto(s)
Flavonoides/farmacología , Isquemia Miocárdica/tratamiento farmacológico , Antagonistas del Receptor Purinérgico P2X/farmacología , Receptores Purinérgicos P2X3/metabolismo , Ganglio Cervical Superior/efectos de los fármacos , Adenosina Trifosfato/sangre , Animales , Presión Sanguínea/efectos de los fármacos , Modelos Animales de Enfermedad , Epinefrina/sangre , Corazón/efectos de los fármacos , Corazón/fisiopatología , Frecuencia Cardíaca/efectos de los fármacos , Inyecciones Intraperitoneales , Masculino , Isquemia Miocárdica/patología , Isquemia Miocárdica/fisiopatología , Miocardio/patología , ARN Mensajero/metabolismo , Distribución Aleatoria , Ratas Sprague-Dawley , Ganglio Cervical Superior/metabolismo
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda