Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
1.
Pharmacol Res ; 208: 107400, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39251100

RESUMEN

In aqueous environment amphiphilic molecules organize themselves into supramolecular structures deeply affecting the chemo-physical properties. Supramolecular assemby is also crucial in the pharmaceutical development of bioactive lipophilic molecules whose attitude to self-aggregate is a recognized factor affecting the in vivo pharmacokinetic, but can also play a crucial role in the interaction with the biological targets in in vitro tests. In aqueous solution, amphiphilic drugs exist in a complex equilibrium involving free monomers, oligomers and larger supramolecular aggregates held together by noncovalent bonds. In this review we focus our attention on the dual effect of drugs self-assembly, which can both reduce the availability of active compounds and create multivalent scaffolds, potentially improving binding affinity and avidity to cellular targets. We examine the effect of aggregation on different classes of amphiphatic molecules with significant biological activities, such as immunomodulatory, anti-tumor, antiviral, and antibiotic. Our purpose is to provide a comprehensive overview of how supramolecular chemistry influences the pharmacological and biological responses of amphiphilic molecules, emphasizing the need to consider these effects in early-stage drug development and in vitro testing. By elucidating these phenomena, this review aims to offer insights into optimizing drug design and formulation to overcome challenges posed by self-aggregation.


Asunto(s)
Coloides , Tensoactivos , Humanos , Animales , Tensoactivos/química , Tensoactivos/farmacología , Preparaciones Farmacéuticas/química
2.
Chirality ; 35(6): 355-364, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-36843149

RESUMEN

Conjugated polymers have demonstrated to express chirality, for instance, by strong circular dichroism (CD). However, the shape and intensity of the spectra can be quite different and are very difficult to predict. Molecular irregularity, star-shapes, and linking polymers have demonstrated to affect the CD, often in a positive way. In this research, we design two different chiral arms, in which the molecular irregularity results in a significantly different CD. Next, the arms are coupled to a linear core in all possible combinations. In this way, we demonstrate that rather small irregularities and linking arms to a central core increases CD, whereas heterogenous combinations result in smaller CD.

3.
Nano Lett ; 22(6): 2350-2357, 2022 03 23.
Artículo en Inglés | MEDLINE | ID: mdl-35274950

RESUMEN

Protein crystallization is a prevalent phenomenon existing in the formation of intricate protein-assembled structures in living cells. Whether the crystallization of a protein would exert a specific biological function, however, remains poorly understood. Here, we reconstructed a recombinant galectin-10 (gal-10) protein and artificially engineered a gal-10 protein assembly in two distinguishable states: i.e., an insoluble crystalline state and a soluble state. The potency of the gal-10 protein in either the crystalline state or the soluble state to induce chemokine or cytokine release in the primary human nasal epithelial cells and nasal polyps derived from chronic rhinosinusitis patients with nasal polyps was investigated. The crystalline gal-10 upregulated the gene expression of chemokines or cytokines, including IL-1ß, IL-6, IL-8, TNF-α, and GM-CSF, in patient-derived primary cells and nasal polyps. In contrast, soluble gal-10 displayed a diminished potency to induce inflammation. Our results demonstrate that the gal-10 protein potency of activating inflammation is correlated with its crystalline state.


Asunto(s)
Glicoproteínas , Inflamación , Lisofosfolipasa , Pólipos Nasales , Sinusitis , Cristalización , Citocinas , Glicoproteínas/química , Glicoproteínas/metabolismo , Humanos , Inflamación/metabolismo , Inflamación/patología , Lisofosfolipasa/química , Lisofosfolipasa/metabolismo , Pólipos Nasales/metabolismo , Pólipos Nasales/patología , Sinusitis/metabolismo
4.
Int J Mol Sci ; 24(3)2023 Jan 17.
Artículo en Inglés | MEDLINE | ID: mdl-36768156

RESUMEN

Pathogenic changes in γ-secretase activity, along with its response to different drugs, can be affected by changes in the saturation of γ-secretase with its substrate. We analyze the saturation of γ-secretase with its substrate using multiscale molecular dynamics studies. We found that an increase in the saturation of γ-secretase with its substrate could result in the parallel binding of different substrate molecules at the docking site and the active site. The C-terminal domain of the substrate bound at the docking site can interact with the most dynamic presenilin sites at the cytosolic end of the active site tunnel. Such interactions can inhibit the ongoing catalytic activity and increase the production of the longer, more hydrophobic, and more toxic Aß proteins. Similar disruptions in dynamic presenilin structures can be observed with different drugs and disease-causing mutations. Both, C99-ßCTF-APP substrate and its different Aß products, can support the toxic aggregation. The aggregation depends on the substrate N-terminal domain. Thus, the C99-ßCTF-APP substrate and ß-secretase path can be more toxic than the C83-αCTF-APP substrate and α-secretase path. Nicastrin can control the toxic aggregation in the closed conformation. The binding of the C99-ßCTF-APP substrate to γ-secretase can be controlled by substrate channeling between the nicastrin and ß-secretase. We conclude that the presented two-substrate mechanism could explain the pathogenic changes in γ-secretase activity and Aß metabolism in different sporadic and familial cases of Alzheimer's disease. Future drug-development efforts should target different cellular mechanisms that regulate the optimal balance between γ-secretase activity and amyloid metabolism.


Asunto(s)
Enfermedad de Alzheimer , Humanos , Enfermedad de Alzheimer/metabolismo , Péptidos beta-Amiloides/metabolismo , Precursor de Proteína beta-Amiloide/metabolismo , Secretasas de la Proteína Precursora del Amiloide/genética , Secretasas de la Proteína Precursora del Amiloide/metabolismo , Dominio Catalítico , Presenilina-1/genética , Presenilinas
5.
J Biol Chem ; 295(43): 14537-14545, 2020 10 23.
Artículo en Inglés | MEDLINE | ID: mdl-32561642

RESUMEN

An intriguing molecular architecture called the "semi-crystalline photosystem II (PSII) array" has been observed in the thylakoid membranes in vascular plants. It is an array of PSII-light-harvesting complex II (LHCII) supercomplexes that only appears in low light, but its functional role has not been clarified. Here, we identified PSII-LHCII supercomplexes in their monomeric and multimeric forms in low light-acclimated spinach leaves and prepared them using sucrose-density gradient ultracentrifugation in the presence of amphipol A8-35. When the leaves were acclimated to high light, only the monomeric forms were present, suggesting that the multimeric forms represent a structural adaptation to low light and that disaggregation of the PSII-LHCII supercomplex represents an adaptation to high light. Single-particle EM revealed that the multimeric PSII-LHCII supercomplexes are composed of two ("megacomplex") or three ("arraycomplex") units of PSII-LHCII supercomplexes, which likely constitute a fraction of the semi-crystalline PSII array. Further characterization with fluorescence analysis revealed that multimeric forms have a higher light-harvesting capability but a lower thermal dissipation capability than the monomeric form. These findings suggest that the configurational conversion of PSII-LHCII supercomplexes may serve as a structural basis for acclimation of plants to environmental light.


Asunto(s)
Chlamydomonas reinhardtii/química , Complejos de Proteína Captadores de Luz/química , Complejo de Proteína del Fotosistema II/química , Hojas de la Planta/química , Aclimatación , Chlamydomonas reinhardtii/fisiología , Luz , Complejos de Proteína Captadores de Luz/metabolismo , Complejos de Proteína Captadores de Luz/ultraestructura , Complejo de Proteína del Fotosistema II/metabolismo , Complejo de Proteína del Fotosistema II/ultraestructura , Hojas de la Planta/fisiología , Conformación Proteica , Multimerización de Proteína , Tilacoides/química , Tilacoides/metabolismo
6.
Chemistry ; 26(5): 1082-1090, 2020 Jan 22.
Artículo en Inglés | MEDLINE | ID: mdl-31729787

RESUMEN

One of the major goals in systems chemistry is to create molecular assemblies with emergent properties that are characteristic of life. An interesting approach toward this goal is based on merging different biological building blocks into synthetic systems with properties arising from the combination of their molecular components. The covalent linkage of nucleic acids (or their constituents: nucleotides, nucleosides and nucleobases) with lipids in the same hybrid molecule leads, for example, to the so-called nucleolipids. Herein, we describe nucleolipids with a very short sequence of two nucleobases per lipid, which, in combination with hydrophobic effects promoted by the lipophilic chain, allow control of the self-assembly of lipidic amphiphiles to be achieved. The present work describes a spectroscopic and microscopy study of the structural features and dynamic self-assembly of dinucleolipids that contain adenine or thymine moieties, either pure or in mixtures. This approach leads to different self-assembled nanostructures, which include spherical, rectangular and fibrillar assemblies, as a function of the sequence of nucleobases and chiral effects of the nucleolipids involved. We also show evidence that the resulting architectures can encapsulate hydrophobic molecules, revealing their potential as drug delivery vehicles or as compartments to host interesting chemistries in their interior.

7.
Int J Mol Sci ; 21(20)2020 Oct 19.
Artículo en Inglés | MEDLINE | ID: mdl-33086771

RESUMEN

In the last few years, ionic liquids (ILs) have been the focus of extensive studies concerning the relationship between structure and properties and how this impacts their application. Despite a large number of studies, several topics remain controversial or not fully answered, such as: the existence of ion pairs, the concept of free volume and the effect of water and its implications in the modulation of ILs physicochemical properties. In this paper, we present a critical review of state-of-the-art literature regarding structure-property relationship of ILs, we re-examine analytical theories on the structure-property correlations and present new perspectives based on the existing data. The interrelation between transport properties (viscosity, diffusion, conductivity) of IL structure and free volume are analysed and discussed at a molecular level. In addition, we demonstrate how the analysis of microscopic features (particularly using NMR-derived data) can be used to explain and predict macroscopic properties, reaching new perspectives on the properties and application of ILs.


Asunto(s)
Líquidos Iónicos/química , Difusión , Conductividad Eléctrica , Iones , Relación Estructura-Actividad , Viscosidad
8.
Biochim Biophys Acta ; 1837(10): 1665-73, 2014 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-25017691

RESUMEN

Photosynthesis in purple bacteria is performed by pigment-protein complexes that are closely packed within specialized intracytoplasmic membranes. Here we report on the influence of carotenoid composition on the organization of RC-LH1 pigment-protein complexes in intact membranes and cells of Rhodobacter sphaeroides. Mostly dimeric RC-LH1 complexes could be isolated from strains expressing native brown carotenoids when grown under illuminated/anaerobic conditions, or from strains expressing green carotenoids when grown under either illuminated/anaerobic or dark/semiaerobic conditions. However, mostly monomeric RC-LH1 complexes were isolated from strains expressing the native photoprotective red carotenoid spheroidenone, which is synthesized during phototrophic growth in the presence of oxygen. Despite this marked difference, linear dichroism (LD) and light-minus-dark LD spectra of oriented intact intracytoplasmic membranes indicated that RC-LH1 complexes are always assembled in ordered arrays, irrespective of variations in the relative amounts of isolated dimeric and monomeric RC-LH1 complexes. We propose that part of the photoprotective response to the presence of oxygen mediated by synthesis of spheroidenone may be a switch of the structure of the RC-LH1 complex from dimers to monomers, but that these monomers are still organized into the photosynthetic membrane in ordered arrays. When levels of the dimeric RC-LH1 complex were very high, and in the absence of LH2, LD and ∆LD spectra from intact cells indicated an ordered arrangement of RC-LH1 complexes. Such a degree of ordering implies the presence of highly elongated, tubular membranes with dimensions requiring orientation along the length of the cell and in a proportion larger than previously observed.


Asunto(s)
Carotenoides/metabolismo , Fotosíntesis , Proteobacteria/fisiología , Proteínas Bacterianas/fisiología , Dimerización , Complejos de Proteína Captadores de Luz/metabolismo , Proteobacteria/metabolismo
9.
Molecules ; 20(7): 12341-63, 2015 Jul 07.
Artículo en Inglés | MEDLINE | ID: mdl-26198221

RESUMEN

The synthesis and structural characterization of five transition metal complexes with different dimensionality and incorporating residues of 3-amino-1H-1,2,4-triazole-5-carboxylic acid (H2atrc) is reported: [Zn(Hatrc)2(H2O)] (1), [Mn(Hatrc)2(H2O)2]·2H2O (2), [Fe2(Hatrc)4(OH)2]·6H2O (3), [Cd(Hatrc)2(H2O)]n (4), and [Mn(atrc)(H2O)]n·nH2O (5). These materials could be prepared from solution (1-3), diffusion (4), or hydrothermal reactions (5) with various anions and L:M ratios. Structural details were revealed by single crystal X-ray diffraction. The discrete units composing compounds 1-3, the polymeric 1D chain of 4 and the 2D layer of 5 are further extended into 3D supramolecular architectures through the formation of hydrogen bonds.


Asunto(s)
Ácidos Carboxílicos/química , Metales Pesados/química , Triazoles/química , Ligandos , Modelos Moleculares , Polímeros/química
10.
J Biol Chem ; 288(46): 32821-6, 2013 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-24097972

RESUMEN

Plants are exposed to continuous changes in light quality and quantity that challenge the performance of the photosynthetic apparatus and have evolved a series of mechanisms to face this challenge. In this work, we have studied state transitions, the process that redistributes the excitation pressure between photosystems I and II (PSI/PSII) by the reversible association of LHCII, the major antenna complex of higher plants, with either one of them upon phosphorylation/dephosphorylation. By combining biochemical analysis and electron microscopy, we have studied the effect of state transitions on the composition and organization of photosystem II in Arabidopsis thaliana. Two LHCII trimers (called trimers M and S) are part of the PSII supercomplex, whereas up to two more are loosely associated with PSII in state 1 in higher plants (called "extra" trimers). Here, we show that the LHCII from the extra pool migrates to PSI in state 2, thus leaving the PSII supercomplex and the semicrystalline PSII arrays intact. In state 2, not only is the mobile LHCII phosphorylated, but also the LHCII in the PSII supercomplexes. This demonstrates that PSII phosphorylation is not sufficient for disconnecting LHCII trimers S and M from PSII and for their migration to PSI.


Asunto(s)
Arabidopsis/metabolismo , Fotosíntesis/fisiología , Complejo de Proteína del Fotosistema I/metabolismo , Complejo de Proteína del Fotosistema II/metabolismo , Arabidopsis/genética , Fosforilación/fisiología , Complejo de Proteína del Fotosistema I/genética , Complejo de Proteína del Fotosistema II/genética
11.
Biopolymers ; 101(1): 96-106, 2014 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-23703327

RESUMEN

Gliadin, a protein present in wheat, rye, and barley, undergoes incomplete enzymatic degradation during digestion, producing an immunogenic 33-mer peptide, LQLQPF(PQPQLPY)3 PQPQPF. The special features of 33-mer that provoke a break in its tolerance leading to gliadin sensitivity and celiac disease remains elusive. Herein, it is reported that 33-mer gliadin peptide was not only able to fold into polyproline II secondary structure but also depending on concentration resulted in conformational transition and self-assembly under aqueous condition, pH 7.0. A 33-mer dimer is presented as one initial possible step in the self-assembling process obtained by partial electrostatics charge distribution calculation and molecular dynamics. In addition, electron microscopy experiments revealed supramolecular organization of 33-mer into colloidal nanospheres. In the presence of 1 mM sodium citrate, 1 mM sodium borate, 1 mM sodium phosphate buffer, 15 mM NaCl, the nanospheres were stabilized, whereas in water, a linear organization and formation of fibrils were observed. It is hypothesized that the self-assembling process could be the result of the combination of hydrophobic effect, intramolecular hydrogen bonding, and electrostatic complementarity due to 33-mer's high content of proline and glutamine amino acids and its calculated nonionic amphiphilic character. Although, performed in vitro, these experiments have revealed new features of the 33-mer gliadin peptide that could represent an important and unprecedented event in the early stage of 33-mer interaction with the gut mucosa prior to onset of inflammation. Moreover, these findings may open new perspectives for the understanding and treatment of gliadin intolerance disorders.


Asunto(s)
Dicroismo Circular , Gliadina , Microscopía Electrónica , Fragmentos de Péptidos/química , Péptidos/química
12.
Angew Chem Int Ed Engl ; 53(31): 8079-83, 2014 Jul 28.
Artículo en Inglés | MEDLINE | ID: mdl-24841757

RESUMEN

The orientations of liquid crystals (LCs) anchored on monolayers formed from mixtures of chiral versus achiral molecules were compared. Changes in the enantiomeric excess of mixed monolayers of chiral dipeptides gave rise to continuous changes in the orientations of nematic LCs, allowing arbitrary tuning of the azimuthal orientations of LCs over a range of ≈100°. In contrast, the same LCs exhibited discontinuous changes in orientation on surfaces presenting mixtures of achiral molecules. These striking differences in the anchoring of LCs on surfaces presenting chiral versus achiral molecules provide insights into the molecular origins of ordering transitions of LCs, and provide new principles based on chiral monolayers for the rational design of surfaces that permit continuous tuning of the orientations of LCs.


Asunto(s)
Cristales Líquidos , Estereoisomerismo
13.
Adv Mater ; 35(45): e2304627, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37467489

RESUMEN

Supramolecular chiral organization gives π-conjugated molecules access to fascinating specific interactions with circularly polarized light (CPL). Such a feature enables the fabrication of high-performance chiral organic electronic devices that detect or emit CPL directly. Herein, it is shown that chiral fused-ring electron-acceptor BTP-4F single-crystal-based phototransistors demonstrate distinguished CPL discrimination capability with current dissymmetry factor exceeding 1.4, one of the highest values among state-of-the-art direct CPL detectors. Theoretical calculations prove that the chirality at the supramolecular level in these enantiomeric single crystals originates from chiral exciton coupling of a unique quasi-2D supramolecular organization consisting of interlaced molecules with opposite helical conformation. Impressively, such supramolecular organization produces a higher dissymmetry factor along the preferred growth direction of the chiral single crystals in comparison to that of the short axis direction. Furthermore, the amplified, inverted, and also anisotropic current dissymmetry compared to optical dissymmetry is studied by finite element simulations. Therefore, a unique chiral supramolecular organization that is responsible for the excellent chiroptical response and anisotropic electronic properties is developed, which not only enables the construction of high-performance CPL detection devices but also allows a better understanding of the structure-property relationships in chiral organic optoelectronics.

14.
J Colloid Interface Sci ; 633: 566-574, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-36470137

RESUMEN

From the 15th century onwards, painters began to treat their oils with lead compounds before grinding them with pigments. Such a treatment induces the partial hydrolysis of the oil triglycerides and the formation of lead soaps, which significantly modify the rheological properties of the oil paint. Organization at the supramolecular scale is thus expected to explain these macroscopic changes. Synchrotron Rheo-SAXS (Small Angle X-ray Scattering) measurements were carried out on lead-treated oils, with different lead contents. We can now propose a full picture of the relationship between structure and rheological properties of historical saponified oils. At rest, lead soaps in oil are organized as lamellar phases with a characteristic period of 50 Å. Under shear, the loss of viscoelastic properties can be linked to the modification of this organization. Continuous shear resulted in a preferential and reversible orientation of the lamellar domains which increased with the concentration of lead soaps. The parallel orientation predominates over the entire shear range (0-1000 s-1). Conversely, oscillatory shear coiled the lamellae into cylinders that oriented themselves vertically in the rheometer cell. This is the first report of such a vertical cylindrical structure obtained under shear from lamellae.


Asunto(s)
Aceites , Jabones , Difracción de Rayos X , Dispersión del Ángulo Pequeño
15.
Pharmaceutics ; 15(3)2023 Mar 08.
Artículo en Inglés | MEDLINE | ID: mdl-36986739

RESUMEN

Intermolecular interactions, in particular hydrogen bonds, play a key role in crystal engineering. The ability to form hydrogen bonds of various types and strengths causes competition between supramolecular synthons in pharmaceutical multicomponent crystals. In this work, we investigate the influence of positional isomerism on the packing arrangements and the network of hydrogen bonds in multicomponent crystals of the drug riluzole with hydroxyl derivatives of salicylic acid. The supramolecular organization of the riluzole salt containing 2,6-dihydroxybenzoic acid differs from that of the solid forms with 2,4- and 2,5-dihydroxybenzoic acids. Because the second OH group is not at position 6 in the latter crystals, intermolecular charge-assisted hydrogen bonds are formed. According to periodic DFT calculations, the enthalpy of these H-bonds exceeds 30 kJ·mol-1. The positional isomerism appears to have little effect on the enthalpy of the primary supramolecular synthon (65-70 kJ·mol-1), but it does result in the formation of a two-dimensional network of hydrogen bonds and an increase in the overall lattice energy. According to the results of the present study, 2,6-dihydroxybenzoic acid can be treated as a promising counterion for the design of pharmaceutical multicomponent crystals.

16.
ACS Biomater Sci Eng ; 8(2): 579-587, 2022 02 14.
Artículo en Inglés | MEDLINE | ID: mdl-35050574

RESUMEN

Matrix metalloproteinase (MMP) enzymes are over-expressed by some metastatic cancers, in which they are responsible for the degradation and remodeling of the extracellular matrix. In recent years, MMPs have emerged as promising targets for enzyme-responsive diagnostic probes because oligopeptides can be designed to be selectively hydrolyzed by exposure to these enzymes. With the ultimate goal of developing radio-iodinated peptides as supramolecular building blocks for MMP-sensitive tools for nuclear imaging and therapy, we designed three MMP-9-responsive peptides containing either tyrosine or iodotyrosine to assess the impact of iodotyrosine introduction to the peptide structure and cleavage kinetics. We found that the peptides containing iodotyrosine underwent more rapid and more complete hydrolysis by MMP-9. While the peptides under investigation were predominantly disordered, it was found that iodination increased the degree of aromatic residue-driven aggregation of the peptides. We determined that these iodination-related trends stem from the improved overall intramolecular order through H- and halogen bonding, in addition to intermolecular organization of the self-assembled peptides due to steric and electrostatic effects introduced by the halogenated tyrosine. These fundamental observations provide insights for the development of enzyme-triggered peptide aggregation tools for localized radioactive iodine-based tumor imaging.


Asunto(s)
Metaloproteinasa 9 de la Matriz , Neoplasias de la Tiroides , Halogenación , Humanos , Radioisótopos de Yodo , Cinética , Metaloproteinasa 9 de la Matriz/metabolismo , Péptidos/química , Péptidos/metabolismo , Tirosina/metabolismo
17.
Int J Biol Macromol ; 193(Pt B): 1623-1634, 2021 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-34742836

RESUMEN

The holo form of Cytochrome-C which is involved in the electron transfer chain of aerobic and anaerobic respiration remains structurally intact by its complex with heme. However, when a prolonged thermal and pH stress was applied, heme was found to abruptly dissociate from the holo protein, resulting in complete collapse of the three-dimensional functional structure. Interestingly, two distinct structures were formed as the consequence of the dissociation event: (i) A macromolecular amyloid-network formed by the collapsed protein fragments, generated by self-oxidation, and (ii) Fe-containing Quantum-Dots (FeQDs) with 2-3 nm diameter formed by heme reorganization. Further adding to intrigue, the FeQDs were re-adsorbed on the surface of the amyloid network leading to FeQD-decorated macromolecular amyloid matrix. The heme-interactant Met80, constituting the amyloidogenic region, initiates the amylogenic cascade, and gradual exposure of Trp59 synergistically emit intrinsic fluorescence alongside FeQDs. The development of the aforementioned events were probed through a multitude of biophysical, chemical and computational analyses like ThT/ANS/intrinsic fluorescence assays, CD-spectroscopy, FETEM/STEM/elemental mapping, Foldamyloid/Foldunfold/Isunstruct/H-protection/LIGplot analyses, etc. The FeQD-decorated amyloid-network was found to exhibit gel-like property, which supported the growth of BHK-21 fibroblast without cytotoxicity. Further studies on FeQD-decorated Cytochrome C amyloid network might open possibilities to design advanced biomaterial for diverse biological applications.


Asunto(s)
Citocromos c/química , Amiloide/química , Dicroismo Circular/métodos , Hemo/química , Concentración de Iones de Hidrógeno , Oxidación-Reducción , Pliegue de Proteína , Teoría Cuántica
18.
Polymers (Basel) ; 13(7)2021 Mar 26.
Artículo en Inglés | MEDLINE | ID: mdl-33810519

RESUMEN

Three novel conjugated polyazomethines have been obtained by polycondensation of diamines consisting of the diimine system, with either 2,5-bis(octyloxy)terephthalaldehyde or 9-(2-ethylhexyl)carbazole-3,6-dicarboxaldehyde. Partial replacement of bulky solubilizing substituents with the smaller side groups has allowed to investigate the effect of supramolecular organization. All obtained compounds have been subsequently identified using the NMR and FTIR spectroscopies and characterized by the thermogravimetric analysis, differential scanning calorimetry, cyclic voltammetry, UV-Vis spectroscopy, and X-ray diffraction. Investigated polymers have shown a good thermal stability and high glass transition temperatures. X-ray measurements have proven that partial replacement of octyloxy side chains with smaller methoxy groups induced a better planarization of macromolecule. Such modification has tuned the LUMO level of this molecule and caused a bathochromic shift of the lowest energy absorption band. On the contrary, imines consisting of N-ethylhexyl substituted carbazole units have not been so clearly affected by alkyl chain length modification. Photovoltaic activity of imines (acting as a donor) in bulk-heterojunction systems has been observed for almost all studied compounds, blended with the fullerene derivative (PCBM) in various weight ratios.

19.
J Photochem Photobiol B ; 202: 111722, 2020 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-31785445

RESUMEN

Nowadays, the study of well-known sensitizers for photodynamic therapy and search for new ones are intensively conducted. In the present work supramolecular organization of crown-ether and phosphoryl-containing phthalocyanines ({Mgcr8Pc, I, and М[R4Pc] (M = Zn2+, R = -OPhP(O)(OH)(OC5H11), II; M = 2H+, R = -OPhP(O)(OH)(OC5H11), III; M = 2H+, -OPhP(O)(OH)2), IIIa}, respectively) was studied in microheterogeneous media. The role of a metal ion of a macrocycle in monomerization of phosphoryl-containing Pc in the presence of water-soluble poly(N-vinylpyrrolidone) was revealed. Some photobiological properties of compound I as possible photosensitizer with respect to human adenocarcinoma cells, HeLa, were analyzed. So, the light and dark cytotoxicity of I (IC50 dose) was 1.83 µÐœ and higher than 25 µÐœ, respectively. The reactive oxygen species (ROS) formation studied with use of fluorescent ROS detector DCFH2 revealed the plateau on the curves of fluorescence intensity vs time after 30 min of irradiation and ROS are almost not produced after the end of irradiation. In HeLa cells, accumulation of compounds I and II as well as fluorescent DCF presence were shown by confocal microscopic images. At concentration of 5 µM, compound I easily penetrates into the cell localizing primarily in the perinuclear region, whereas compound II mainly remains in the periphery of the cells in the fluorescent-active state. The results obtained allow us to continue the study of these interesting compounds.


Asunto(s)
Éteres Corona/química , Indoles/química , Metales/química , Fármacos Fotosensibilizantes/química , Polivinilos/química , Pirrolidinas/química , Especies Reactivas de Oxígeno/metabolismo , Supervivencia Celular/efectos de los fármacos , Células HeLa , Humanos , Isoindoles , Luz , Microscopía Confocal , Fármacos Fotosensibilizantes/metabolismo , Fármacos Fotosensibilizantes/farmacología
20.
Biochim Biophys Acta Biomembr ; 1861(10): 183000, 2019 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-31152688

RESUMEN

The supramolecular organization of the visual pigment rhodopsin in the photoreceptor membrane remains contentious. Specifically, whether this G protein-coupled receptor functions as a monomer or dimer remains unknown, as does the presence or absence of ordered packing of rhodopsin molecules in the photoreceptor membrane. Completely opposite opinions have been expressed on both issues. Herein, using small-angle neutron and X-ray scattering approaches, we performed a comparative analysis of the structural characteristics of the photoreceptor membrane samples in buffer, both in the outer segment of photoreceptor cells, and in the free photoreceptor disks. The average distance between the centers of two neighboring rhodopsin molecules was found to be ~5.8 nm in both cases. The results indicate an unusually high packing density of rhodopsin molecules in the photoreceptor membrane, but molecules appear to be randomly distributed in the membrane without any regular ordering.


Asunto(s)
Células Fotorreceptoras/química , Células Fotorreceptoras/fisiología , Rodopsina/química , Animales , Bovinos , Membrana Celular/química , Membranas , Difracción de Neutrones/métodos , Neutrones , Células Fotorreceptoras/metabolismo , Células Fotorreceptoras/ultraestructura , Retina/metabolismo , Rodopsina/metabolismo , Rodopsina/ultraestructura , Dispersión del Ángulo Pequeño
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda