Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
1.
Environ Sci Technol ; 58(1): 935-946, 2024 Jan 09.
Artículo en Inglés | MEDLINE | ID: mdl-38133817

RESUMEN

Magnetite is a common mixed Fe(II,III) iron oxide in mineral deposits and the product of (anaerobic) iron corrosion. In various Earth systems, magnetite surfaces participate in surface-mediated redox reactions. The reactivity and redox properties of the magnetite surface depend on the surface speciation, which varies with environmental conditions. In this study, Kohn-Sham density functional theory (DFT + U method) was used to examine the stability and speciation of the prevalent magnetite crystal face {111} in a wide range of pH and Eh conditions. The simulations reveal that the oxidation state and speciation of the surface depend strongly on imposed redox conditions and, in general, may differ from those of the bulk state. Corresponding predominant phase diagrams for the surface speciation and structure were calculated from first principles. Furthermore, classical molecular dynamics simulations were conducted investigating the mobility of water near the magnetite surface. The obtained knowledge of the surface structure and oxidation state of iron is essential for modeling retention of redox-sensitive nuclides.


Asunto(s)
Óxido Ferrosoférrico , Hierro , Óxido Ferrosoférrico/química , Hierro/química , Oxidación-Reducción , Minerales , Agua
2.
J Infect Dis ; 226(9): 1608-1615, 2022 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-35512326

RESUMEN

BACKGROUND: The contribution of droplet-contaminated surfaces for virus transmission has been discussed controversially in the context of the severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) pandemic. More importantly, the risk of fomite-based transmission has not been systematically addressed. Therefore, the aim of this study was to evaluate whether confirmed hospitalized coronavirus disease 2019 (COVID-19) patients can contaminate stainless steel carriers by coughing or intensive moistening with saliva and to assess the risk of SARS-CoV-2 transmission upon detection of viral loads and infectious virus in cell culture. METHODS: We initiated a single-center observational study including 15 COVID-19 patients with a high baseline viral load (cycle threshold value ≤25). We documented clinical and laboratory parameters and used patient samples to perform virus culture, quantitative polymerase chain reaction, and virus sequencing. RESULTS: Nasopharyngeal and oropharyngeal swabs of all patients were positive for viral ribonucleic acid on the day of the study. Infectious SARS-CoV-2 could be isolated from 6 patient swabs (46.2%). After coughing, no infectious virus could be recovered, however, intensive moistening with saliva resulted in successful viral recovery from steel carriers of 5 patients (38.5%). CONCLUSIONS: Transmission of infectious SARS-CoV-2 via fomites is possible upon extensive moistening, but it is unlikely to occur in real-life scenarios and from droplet-contaminated fomites.


Asunto(s)
COVID-19 , Enfermedades Transmisibles , Humanos , SARS-CoV-2 , Fómites , Pandemias , Carga Viral
3.
Appl Environ Microbiol ; 88(14): e0076422, 2022 07 26.
Artículo en Inglés | MEDLINE | ID: mdl-35867558

RESUMEN

Most studies on surface persistence of SARS-CoV-2 have been conducted at temperatures between 20°C and 30°C. There is limited data on the survival of SARS-CoV-2 at low temperatures. In this study, the stability of SARS-CoV-2 Alpha and Delta variants on stainless steel was investigated at two temperatures (4°C and 24°C). The results show that both variants decayed more rapidly at 24°C compared with 4°C. At 24°C, Alpha and Delta variants showed reductions of 0.33 log10 and 1.02 log10, respectively, within the first 2.5 h. However, at 4°C, Alpha variant showed a reduction of 0.16 log10 within the first 2.5 h while no reduction was observed with Delta variant. After remaining in situ for 24 h at 24°C, log10 reductions of 2.66 (Alpha) and 3.11 (Delta) were observed. No viable Alpha and Delta variant was recovered after 48 h and 72 h, respectively. After 24 h in a refrigerated environment (4°C) log10 reductions of 1.16 (Alpha) and 0.95 (Delta) were observed. Under these experimental conditions, both viruses survived on stainless steel for at least 1 week. No viable Alpha and Delta variant was recovered after 10 days. These findings support the potential for increased fomite transmission of SARS-CoV-2 during winter months in colder regions worldwide and in some industrial sectors. IMPORTANCE Human transmission is believed to occur primarily through direct transfer of infectious droplets or aerosols. However, fomite transmission through contact with contaminated surfaces may also play an important role. This study provides novel evidence comparing the stability of Alpha and Delta variants on stainless steel surfaces at 4°C and 24°C. At 4°C both variants were found to be still detectable for up to 7 days. At 24°C Delta variant could be recovered over 2 days compared with Alpha variant which could not be recovered after 2 days. This has implications for fomite transmission interventions for people living and working in cold environments.


Asunto(s)
COVID-19 , SARS-CoV-2 , Humanos , SARS-CoV-2/genética , Acero Inoxidable , Temperatura
4.
Environ Sci Technol ; 55(7): 4162-4173, 2021 04 06.
Artículo en Inglés | MEDLINE | ID: mdl-33227206

RESUMEN

We conducted a systematic review of hygiene intervention effectiveness against SARS-CoV-2, including developing inclusion criteria, conducting the search, selecting articles for inclusion, and summarizing included articles. Overall, 96 268 articles were screened and 78 articles met inclusion criteria with outcomes in surface contamination, stability, and disinfection. Surface contamination was assessed on 3343 surfaces using presence/absence methods. Laboratories had the highest percent positive surfaces (21%, n = 83), followed by patient-room healthcare facility surfaces (17%, n = 1170), non-COVID-patient-room healthcare facility surfaces (12%, n = 1429), and household surfaces (3%, n = 161). Surface stability was assessed using infectivity, SARS-CoV-2 survived on stainless steel, plastic, and nitrile for half-life 2.3-17.9 h. Half-life decreased with temperature and humidity increases, and was unvaried by surface type. Ten surface disinfection tests with SARS-CoV-2, and 15 tests with surrogates, indicated sunlight, ultraviolet light, ethanol, hydrogen peroxide, and hypochlorite attain 99.9% reduction. Overall there was (1) an inability to align SARS-CoV-2 contaminated surfaces with survivability data and effective surface disinfection methods for these surfaces; (2) a knowledge gap on fomite contribution to SARS-COV-2 transmission; (3) a need for testing method standardization to ensure data comparability; and (4) a need for research on hygiene interventions besides surfaces, particularly handwashing, to continue developing recommendations for interrupting SARS-CoV-2 transmission.


Asunto(s)
COVID-19 , SARS-CoV-2 , Desinfección , Fómites , Humanos , Humedad
5.
Molecules ; 26(21)2021 Oct 27.
Artículo en Inglés | MEDLINE | ID: mdl-34770889

RESUMEN

Rare earth metal oxides (REMOs) have gained considerable attention in recent years owing to their distinctive properties and potential applications in electronic devices and catalysts. Particularly, cerium dioxide (CeO2), also known as ceria, has emerged as an interesting material in a wide variety of industrial, technological, and medical applications. Ceria can be synthesized with various morphologies, including rods, cubes, wires, tubes, and spheres. This comprehensive review offers valuable perceptions into the crystal structure, fundamental properties, and reaction mechanisms that govern the well-established surface-assisted reactions over ceria. The activity, selectivity, and stability of ceria, either as a stand-alone catalyst or as supports for other metals, are frequently ascribed to its strong interactions with the adsorbates and its facile redox cycle. Doping of ceria with transition metals is a common strategy to modify the characteristics and to fine-tune its reactive properties. DFT-derived chemical mechanisms are surveyed and presented in light of pertinent experimental findings. Finally, the effect of surface termination on catalysis by ceria is also highlighted.

6.
Angew Chem Int Ed Engl ; 60(36): 19643-19647, 2021 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-34128305

RESUMEN

We report a simple route based upon seed-mediated growth to the synthesis of Pd@Aux Pd1-x (0.8≤x≤1) core-shell nanocubes. Benefiting from the well-defined {100} facets and an optimal Au/Pd ratio for the surface, the nanocubes bearing a shell made of Au0.95 Pd0.05 work as an efficient electrocatalyst toward H2 O2 production, with high selectivity of 93-100 % in the low-overpotential region of 0.4-0.7 V. When the Au0.95 Pd0.05 alloy is confined to a shell of only three atomic layers in thickness, the electrocatalyst is able to maintain its surface structure and elemental composition, endowing continuous and stable production of H2 O2 during oxygen reduction at a high rate of 1.62 mol g(Pd+Au) -1  h-1 . This work demonstrates a versatile route to the rational development of active and durable electrocatalysts based upon alloy nanocrystals.

7.
Epidemiol Prev ; 44(5-6): 330-332, 2020.
Artículo en Italiano | MEDLINE | ID: mdl-33412826

RESUMEN

Systematic reviews have shown a prevalence close to 20% of gastrointestinal symptoms in COVID-19 positive patients, with nearly 40% of patients shedding viral RNA in their faeces, even if it may not be infectious, possibly because of inactivation by colonic fluid.According to current evidence, this virus is primarily transmitted by respiratory droplets and contact routes, including contaminated surfaces. The virus is quite stable on stainless steel, being detected up to 48-72 hours after application. Therefore, some individuals can be infected touching common contaminated surfaces, such as bathroom taps. Taps can be underestimated critical points in the transmission chain of the infection. Indeed, just by turning the knob, people leave germs on it, especially after coughing over their hands, sneezing, and/or blowing their nose. After handwashing with soap, user take back their germs when turning the knob. Paradoxically, the following user collects the germs back on his/her fingers by implementing a preventive measure, maybe before putting food into the mouth or wearing contact lenses.The Italian National Institute of Health recommends to clean and disinfect high-touched surfaces, but it is unrealistic and inefficient to do so after each tap use. As an alternative, new toilets should install long elbow-levers - or at least short levers - provided that people are educated to close them with the forearm or the side of the hand. This is already a standard measure in hospitals, but it is particularly important also in high-risk communities, such as retirement homes and prisons. It would be important also in schools, in workplaces, and even in families, contributing to the prevention both of orofaecal and respiratory infections.In the meantime, people should be educated to close existing knobs with disposable paper towel wipes or with toilet paper sheets.


Asunto(s)
Aparatos Sanitarios/virología , COVID-19/prevención & control , Fómites/virología , Higiene de las Manos , Educación en Salud , SARS-CoV-2/fisiología , COVID-19/transmisión , Contaminación de Equipos , Diseño de Equipo , Heces/virología , Femenino , Humanos , Italia , Masculino , SARS-CoV-2/aislamiento & purificación , Tacto
8.
Small ; 13(27)2017 07.
Artículo en Inglés | MEDLINE | ID: mdl-28556596

RESUMEN

The surface energy and surface stability of Ag nanocrystals (NCs) are under debate because the measurable values of the surface energy are very inconsistent, and the indices of the observed thermally stable surfaces are apparently in conflict. To clarify this issue, a transmission electron microscope is used to investigate these problems in situ with elaborately designed carbon-shell-capsulated Ag NCs. It is demonstrated that the {111} surfaces are still thermally stable at elevated temperatures, and the victory of the formation of {110} surfaces over {111} surfaces on the Ag NCs during sublimation is due to the special crystal geometry. It is found that the Ag NCs behave as quasiliquids during sublimation, and the cubic NCs represent a featured shape evolution, which is codetermined by both the wetting equilibrium at the Ag-C interface and the relaxation of the system surface energy. Small Ag NCs (≈10 nm) no longer maintain the wetting equilibrium observed in larger Ag NCs, and the crystal orientations of ultrafine Ag NCs (≈6 nm) can rotate to achieve further shape relaxation. Using sublimation kinetics, the mean surface energy of Ag NCs at 1073 K is calculated to be 1.1-1.3 J m-2 .

9.
Nano Lett ; 16(1): 21-6, 2016 Jan 13.
Artículo en Inglés | MEDLINE | ID: mdl-26624938

RESUMEN

Melting in finite-sized materials differs in two ways from the solid-liquid phase transition in bulk systems. First, there is an inherent scaling of the melting temperature below that of the bulk, known as melting point depression. Second, at small sizes changes in melting temperature become nonmonotonic and show a size-dependence that is sensitive to the structure of the particle. Melting temperatures that exceed those of the bulk material have been shown to occur for a very limited range of nanoclusters, including gallium, but have still never been ascribed a convincing physical explanation. Here, we analyze the structure of the liquid phase in gallium clusters based on molecular dynamics simulations that reproduce the greater-than-bulk melting behavior observed in experiments. We observe persistent nonspherical shape distortion indicating a stabilization of the surface, which invalidates the paradigm of melting point depression. This shape distortion suggests that the surface acts as a constraint on the liquid state that lowers its entropy relative to that of the bulk liquid and thus raises the melting temperature.


Asunto(s)
Galio/química , Simulación de Dinámica Molecular , Nanocompuestos/química , Cristalización , Entropía , Congelación , Transición de Fase , Temperatura
10.
J Colloid Interface Sci ; 662: 604-613, 2024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38367578

RESUMEN

Rechargeable aqueous-zinc ion batteries (AZIB) have notable benefits in terms of high safety and low cost. Nevertheless, the challenges, such as dendrite growth, zinc anode corrosion, and hydrogen evolution reaction, impede its practical implementation. Hence, this study proposes the introduction of an economical ErCl3 electrolyte additive to stabilize the Zn anode surface and address the aforementioned issues. The introduced Er3+ will cover the raised zinc dendrite surface and weaken the "tip effect" on the surface of the zinc anode via the "electrostatic shielding" effect. Simultaneously, the introduced Cl- can reduce the polarization of the zinc anode. Due to the synergistic effect of Er3+ and Cl-, the zinc anode corrosion, dendrite growth and hydrogen evolution have been efficiently inhibited. As a result, the Zn||Zn-symmetric battery using ErCl3 additive can stably cycle for 1100 h at 1 mA cm-2, 1 mAh cm-2, and exhibit a high average coulomb efficiency (99.2 %). Meanwhile, Zn||MnO2 full battery based on ErCl3-added electrolyte also demonstrates a high reversible capacity of 157.1 mAh/g after 500 cycles. Obviously, the capacity decay rate of the full battery is also improved, only 0.113 % per cycle. This study offers a straightforward and economically efficient method for stabilizing the zinc anode and realizing high-performance AZIBs.

11.
Adv Sci (Weinh) ; 11(5): e2305630, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38059832

RESUMEN

Data mining from computational materials database has become a popular strategy to identify unexplored catalysts. Herein, the opportunities and challenges of this strategy are analyzed by investigating a discrepancy between data mining and experiments in identifying low-cost metal oxide (MO) electrocatalysts. Based on a search engine capable of identifying stable MOs at the pH and potentials of interest, a series of MO electrocatalysts is identified as potential candidates for various reactions. Sb2 WO6 attracted the attention among the identified stable MOs in acid. Based on the aqueous stability diagram, Sb2 WO6 is stable under oxygen reduction reaction (ORR) in acidic media but rather unstable under high-pH ORR conditions. However, this contradicts to the subsequent experimental observation in alkaline ORR conditions. Based on the post-catalysis characterizations, surface state analysis, and an advanced pH-field coupled microkinetic modeling, it is found that the Sb2 WO6 surface will undergo electrochemical passivation under ORR potentials and form a stable and 4e-ORR active surface. The results presented here suggest that though data mining is promising for exploring electrocatalysts, a refined strategy needs to be further developed by considering the electrochemistry-induced surface stability and activity.

12.
J Hazard Mater ; 465: 133296, 2024 Mar 05.
Artículo en Inglés | MEDLINE | ID: mdl-38141302

RESUMEN

Herein, a novel humic acid-Fex+ complex-coated ZVI (HA-Fex+@ZVI) was synthesized and used to activate peroxydisulfate (PDS) for phenol degradation. The HA-Fex+ shell selectively reacted with PDS rather than O2, leading to the formation of modified ZVI with excellent surface stability in storage and ultraefficient PDS activation in advanced oxidation processes (AOPs). As a result, the phenol degradation and PDS activation efficiencies of HA-Fex+@ZVI/PDS were ∼14.4 and ∼1.8 times higher than those of ZVI/PDS, respectively. Mechanistic explorations revealed that the replacement of the HA-Fex+ shell relative to the original passivation layer of ZVI greatly changed the SO4•- generation pathway from a heterogeneous process to a homogeneous process, resulting from the slow exposure of Fe0 (generating dissolved Fe2+) and the depolymerized HA (enhancing the Fe3+/Fe2+ cycle). Based on experimental analysis and density functional theory (DFT) calculations, the Fe3+ in HA-Fex+ could be reduced to Fe2+ by PDS, resulting in the disintegration of the HA-Fex+ shell and exposure of Fe0 core active sites. Furthermore, compared to similar catalysts synthesized with commercial HA and traditional chemicals, HA-Fex+@ZVI synthesized with multiple waste biomasses exhibited better performance. This research provides valuable insights for designing ZVI-based catalysts with excellent storage stability and ultraefficient PDS catalytic activity for AOPs.

13.
J Funct Morphol Kinesiol ; 8(3)2023 Aug 10.
Artículo en Inglés | MEDLINE | ID: mdl-37606410

RESUMEN

Little is known about the differences in vertical jump biomechanics executed on rigid (RJS) and sand (SJS) surfaces in female indoor and beach volleyball players. Eleven young female beach volleyball players with a combined indoor and beach volleyball sport background performed squat jumps, countermovement jumps with and without an arm swing, and drop jumps from 40 cm on a RJS (force plate) and SJS (sand pit attached to the force plate). The results of the 2 (surface) × 4 (vertical jump test) repeated-measure ANOVA revealed a significant (p < 0.05) main effect of the surface and the vertical jump test on the jump height and time to achieve peak vertical body center of mass velocity. A significant (p < 0.05) main effect of the test, but not of the surface (p > 0.05), was observed for the other examined biomechanical parameters. The only significant (p < 0.05) jump height gain difference between RJS and SJS was observed for the utilization of the stretch-shortening cycle, which was higher in SJS (15.4%) compared to RJS (7.5%). In conclusion, as the testing was conducted during the beach volleyball competitive season, the examined female players showed adaptations relating the effective utilization of the pre-stretch and enhanced stability during the execution of the vertical jump tests on a SJS compared to RJS.

14.
Curr Eye Res ; 48(6): 557-563, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-36800492

RESUMEN

PURPOSE: To compare effect of topical cyclosporine-A 0.05% (CsA) and chloroquine phosphate 0.03% (CHQ) as an adjunct to standard therapy in maintaining post-laser assisted in situ keratomileusis (LASIK) ocular surface stability. METHODS: Randomized controlled trial on 100 eyes undergoing femtosecond-LASIK randomized into three groups: 33 eyes in Group I (Standard Treatment group), 34 eyes in Group II (CsA group) and 33 eyes in Group III (CHQ group). Standard treatment included topical moxifloxacin, topical prednisolone and carboxymethyl cellulose. Group II received topical CsA 0.05% twice daily for three months and group III received topical CHQ 0.03% twice daily for three months in addition to standard treatment. Primary outcome measure was change in ocular surface disease index (OSDI) at 6 months. Secondary outcome measures were tear break up time (TBUT), Schirmer-I score, tear film osmolarity, tear film MMP-9 and visual acuity. Follow-up was performed at postoperative 1, 3 and 6 months. RESULTS: At 6 months, OSDI score, MMP-9, tear osmolarity, TBUT and Schirmer score were significantly better in both CsA and CHQ groups as compared with controls (p < 0.001). OSDI, Tear osmolarity, TBUT, MMP-9 levels were comparable in CsA and CHQ group (p > 0.05). In CsA group, tear film MMP-9 levels at 6 months were comparable to preoperative baseline (p = 0.09). There was no significant change in the Schirmer score from baseline in the CsA group; in addition, the Schirmer score was significantly better than the CHQ group at 6 months (p = 0.02). Visual acuity was comparable in all three groups. Adverse effects including burning sensation, stinging, pain and redness were reported by ten patients (CsA group- 3, CHQ group-7; p = 0.28). CONCLUSION: Both CsA and CHQ are useful adjuncts to standard therapy in maintaining ocular surface stability after refractive surgery. Cyclosporine A has more potent and sustained anti-inflammatory effect with less ocular irritative effects.


Asunto(s)
Astigmatismo , Cloroquina , Ciclosporina , Síndromes de Ojo Seco , Queratomileusis por Láser In Situ , Miopía , Humanos , Ciclosporina/administración & dosificación , Cloroquina/administración & dosificación , Administración Tópica , Queratomileusis por Láser In Situ/efectos adversos , Síndromes de Ojo Seco/tratamiento farmacológico , Síndromes de Ojo Seco/etiología , Complicaciones Posoperatorias , Antiinflamatorios/administración & dosificación , Estudios Prospectivos , Astigmatismo/cirugía , Miopía/cirugía , Resultado del Tratamiento , Masculino , Femenino , Adulto
15.
ACS Appl Mater Interfaces ; 14(37): 42374-42387, 2022 Sep 21.
Artículo en Inglés | MEDLINE | ID: mdl-35918826

RESUMEN

The aim of this work is to develop a reusable polypropylene glycol (PPG):ß-cyclodextrin (ßCD) biosensor for cortisol detection. To achieve the most stable support for ßCD, we developed two PPG surfaces. The first surface is based on a gold surface modified with SAM of 3-mercaptopropionic acid (3MPA), and the second surface is based on a glassy carbon surface grafted with 4-carboxyphenyl diazonium salt. We characterized both surfaces by EIS, XPS, and ATR-FTIR and evaluated the stability and reusability of each surface. We found the GC-carboxyphenyl-PPG:ßCD is stable for at least 1 month. We have also demonstrated the reusability of the surface up to 10 times. In detecting cortisol, we used a nonfaradaic electrochemical impedance capacitive model to interpret the surface confirmation changes. We achieved sensitive detection of cortisol in PBS buffer, urine, and saliva with limit of detection of 2.13, 1.29, and 1.33 nM, respectively.


Asunto(s)
Técnicas Biosensibles , Ciclodextrinas , beta-Ciclodextrinas , Ácido 3-Mercaptopropiónico , Carbono/química , Técnicas Electroquímicas , Electrodos , Oro/química , Hidrocortisona
16.
J Funct Morphol Kinesiol ; 7(1)2022 Feb 04.
Artículo en Inglés | MEDLINE | ID: mdl-35225903

RESUMEN

Plyometric training on sand is suggested to result in advanced performance in vertical jumping. However, limited information exists concerning the biomechanics of drop jumps (DJ) on sand. The purpose of the study was to compare the biomechanical parameters of DJs executed on rigid (RIGID) and sand (SAND) surface. Sixteen high level male beach-volleyball players executed DJ from 40 cm on RIGID and SAND. Force- and video-recordings were analyzed to extract the kinetic and kinematic parameters of the DJ. Results of paired-samples t-tests revealed that DJ on SAND had significantly (p < 0.05) lower jumping height, peak vertical ground reaction force, power, peak leg stiffness and peak ankle flexion angular velocity than RIGID. In addition, DJ on SAND was characterized by significantly (p < 0.05) larger rate of force development and knee joint flexion in the downward phase. No differences (p > 0.05) were observed for the temporal parameters. The compliance of SAND decreases the efficiency of the mechanisms involved in the optimization of DJ performance. Nevertheless, SAND comprises an exercise surface with less loading during the eccentric phase of the DJ, thus it can be considered as a surface that can offer injury prevention under demands for large energy expenditure.

17.
J Phys Condens Matter ; 33(44)2021 Aug 23.
Artículo en Inglés | MEDLINE | ID: mdl-34348242

RESUMEN

Atomic precision advanced manufacturing (APAM) leverages the highly reactive nature of Si dangling bonds relative to H- or Cl-passivated Si to selectively adsorb precursor molecules into lithographically defined areas with sub-nanometer resolution. Due to the high reactivity of dangling bonds, this process is confined to ultra-high vacuum (UHV) environments, which currently limits its commercialization and broad-based appeal. In this work, we explore the use of halogen adatoms to preserve APAM-derived lithographic patterns outside of UHV to enable facile transfer into real-world commercial processes. Specifically, we examine the stability of H-, Cl-, Br-, and I-passivated Si(100) in inert N2and ambient environments. Characterization with scanning tunneling microscopy and x-ray photoelectron spectroscopy (XPS) confirmed that each of the fully passivated surfaces were resistant to oxidation in 1 atm of N2for up to 44 h. Varying levels of surface degradation and contamination were observed upon exposure to the laboratory ambient environment. Characterization byex situXPS after ambient exposures ranging from 15 min to 8 h indicated the Br- and I-passivated Si surfaces were highly resistant to degradation, while Cl-passivated Si showed signs of oxidation within minutes of ambient exposure. As a proof-of-principle demonstration of pattern preservation, a H-passivated Si sample patterned and passivated with independent Cl, Br, I, and bare Si regions was shown to maintain its integrity in all but the bare Si region post-exposure to an N2environment. The successful demonstration of the preservation of APAM patterns outside of UHV environments opens new possibilities for transporting atomically-precise devices outside of UHV for integrating with non-UHV processes, such as other chemistries and commercial semiconductor device processes.

18.
ACS Appl Mater Interfaces ; 13(9): 10952-10963, 2021 Mar 10.
Artículo en Inglés | MEDLINE | ID: mdl-33620199

RESUMEN

Single-crystal LiNi1-x-yCoxMnyO2 cathode materials can effectively suppress intergranular cracks that usually is seen in commercial polycrystal LiNi1-x-yCoxMnyO2 cathode materials. However, the surface structure degradation for single-crystal LiNi1-x-yCoxMnyO2 cathode materials is still aggravated at a higher cutoff voltage (over 4.5 V). In this work, we prepare single-crystal LiNi0.6Co0.2Mn0.2O2 cathode materials via a solid-state method and then coat an ultrathin Li-Si-O layer on their surface by a wet coating method. The results show that the single-crystal LiNi0.6Co0.2Mn0.2O2 cathode materials with a Li-Si-O coating layer deliver excellent cycling performance even at a higher cutoff voltage of 4.5 V. The optimized Li-Si-O-modified sample displays a capacity retention of 90.6% after 100 cycles, whereas only 68.0% for unmodified single-crystal LiNi0.6Co0.2Mn0.2O2. Further analysis of the cycled electrodes reveals that the surface structure degradation is the main reason for the decrease of electrochemical performance of single-crystal LiNi0.6Co0.2Mn0.2O2 at a high voltage (4.5 V). In contrast, with Li-Si-O coating, this phenomenon can be suppressed effectively to maintain interfacial stability and prolong the cycling life.

19.
ACS Appl Mater Interfaces ; 12(42): 47513-47525, 2020 Oct 21.
Artículo en Inglés | MEDLINE | ID: mdl-32975928

RESUMEN

Nickel-rich layered oxides, as the most promising commercial cathode material for high-energy density lithium-ion batteries, experience significant surface structural instabilities that lead to severe capacity deterioration and poor thermal stability. To address these issues, radially aligned grains and surface LixNiyWzO-like heterostructures are designed and obtained with a simple tungsten modification strategy in the LiNi0.91Co0.045Mn0.045O2 cathode. The formation of radially aligned grains, manipulated by the WO3 modifier during synthesis, provides a fast Li+ diffusion channel during the charge/discharge process. Moreover, the tungsten tends to enter into the lattice of the primary particle surface, and the armor-type tungsten-rich heterostructure protects the bulk material from microcracks, structural transformations, and surface side reactions. First-principles calculations indicate that oxygen is more stable in the surface tungsten-rich heterostructure than elsewhere, thus triggering an improved surface structural stability. Consequently, the 2 wt % WO3-modified LiNi0.91Co0.045Mn0.045O2 (NCM@2W) material shows outstanding prolonged cycling performance (capacity retention of 80.85% after 500 cycles) and excellent rate performance (5 C, 188.4 mA h g-1). In addition, its layered-to-rock salt phase transition temperature is increased by 80 °C compared with that of the pristine cathode. This work provides a novel surface modification approach and an in-depth understanding of the overall performance enhancement of nickel-rich layered cathodes.

20.
J Infect Dev Ctries ; 14(7): 748-749, 2020 Jul 31.
Artículo en Inglés | MEDLINE | ID: mdl-32794465

RESUMEN

The present communication emphasizes on a very pertinent issue of aerosol transmission, persistence and surface viability of novel SARS-CoV-2. Studies in this regard have been conducted on previously known human coronaviruses, and similarities have been drawn for novel SARS-CoV-2. The communication highlights that caution should be excercised while drawing inferences regarding the persistence and viability of the novel SARS-CoV-2 based on the knowledge of already known human coronaviruses.


Asunto(s)
Aerosoles , Betacoronavirus , Infecciones por Coronavirus/transmisión , Coronavirus/patogenicidad , Neumonía Viral/transmisión , Microbiología del Aire , Betacoronavirus/patogenicidad , Betacoronavirus/fisiología , COVID-19 , Coronavirus/fisiología , Humanos , Pandemias , SARS-CoV-2 , Factores de Tiempo
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda