Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros

Banco de datos
Tipo del documento
Publication year range
1.
Proc Natl Acad Sci U S A ; 118(37)2021 09 14.
Artículo en Inglés | MEDLINE | ID: mdl-34493652

RESUMEN

Water filtration membranes with advanced ion selectivity are urgently needed for resource recovery and the production of clean drinking water. This work investigates the separation capabilities of cross-linked zwitterionic copolymer membranes, a self-assembled membrane system featuring subnanometer zwitterionic nanochannels. We demonstrate that selective zwitterion-anion interactions simultaneously control salt partitioning and diffusivity, with the permeabilities of NaClO4, NaI, NaBr, NaCl, NaF, and Na2SO4 spanning roughly three orders of magnitude over a wide range of feed concentrations. We model salt flux using a one-dimensional transport model based on the Maxwell-Stefan equations and show that diffusion is the dominant mode of transport for 1:1 sodium salts. Differences in zwitterion-Cl- and zwitterion-F- interactions granted these membranes with the ultrahigh Cl-/F- permselectivity (PCl-/PF- = 24), enabling high fluoride retention and high chloride passage even from saline mixtures of NaCl and NaF.

2.
Nano Lett ; 21(22): 9789-9796, 2021 11 24.
Artículo en Inglés | MEDLINE | ID: mdl-34767378

RESUMEN

DNA nanotechnology has emerged as a promising method for designing spontaneously inserting and fully controllable synthetic ion channels. However, both insertion efficiency and stability of existing DNA-based membrane channels leave much room for improvement. Here, we demonstrate an approach to overcoming the unfavorable DNA-lipid interactions that hinder the formation of a stable transmembrane pore. Our all-atom MD simulations and experiments show that the insertion-driving cholesterol modifications can cause fraying of terminal base pairs of nicked DNA constructs, distorting them when embedded in a lipid bilayer. Importantly, we show that DNA nanostructures with no backbone discontinuities form more stable conductive pores and insert into membranes with a higher efficiency than the equivalent nicked constructs. Moreover, lack of nicks allows design and maintenance of membrane-spanning helices in a tilted orientation within the lipid bilayer. Thus, reducing the conformational degrees of freedom of the DNA nanostructures enables better control over their function as synthetic ion channels.


Asunto(s)
Canales Iónicos , Nanoestructuras , ADN/química , Canales Iónicos/química , Membrana Dobles de Lípidos/química , Nanoestructuras/química , Nanotecnología
3.
Nano Lett ; 20(6): 4306-4311, 2020 06 10.
Artículo en Inglés | MEDLINE | ID: mdl-32374167

RESUMEN

Lipid membranes, enveloping all living systems, are of crucial importance, and control over their structure and composition is a highly desirable functionality of artificial structures. However, the rational design of protein-inspired systems is still challenging. Here we have developed a highly functional nucleic acid construct that self-assembles and inserts into membranes, enabling lipid transfer between inner and outer leaflets. By designing the structure to account for interactions between the DNA, its hydrophobic modifications, and the lipids, we successfully exerted control over the rate of interleaflet lipid transfer induced by our DNA-based enzyme. Furthermore, we can regulate the level of lipid transfer by altering the concentration of divalent ions, similar to stimuli-responsive lipid-flipping proteins.


Asunto(s)
ADN , Membrana Dobles de Lípidos , ADN/genética , Interacciones Hidrofóbicas e Hidrofílicas , Membranas
4.
Angew Chem Int Ed Engl ; 58(24): 8034-8038, 2019 06 11.
Artículo en Inglés | MEDLINE | ID: mdl-30983075

RESUMEN

Ions are transported across membrane mostly via carrier or channel mechanisms. Herein, a unique class of molecular-machine-inspired membrane transporters, termed molecular swings is reported that utilize a previously unexplored swing mechanism for promoting ion transport in a highly efficient manner. In particular, the molecular swing, which carries a 15-crown-5 unit as the ion-binding and transporting unit, exhibits extremely high ion-transport activities with EC50 values of 46 nm (a channel:lipid molar ratio of 1:4800 or 0.021 mol % relative to lipid) and 110 nm for K+ and Na+ ions, respectively. Remarkably, such ion transport activities remain high in a cholesterol-rich environment, with EC50 values of 130 (0.045 mol % relative to lipid/cholesterol) and 326 nm for K+ and Na+ ions, respectively.

5.
Nano Lett ; 16(7): 4665-9, 2016 07 13.
Artículo en Inglés | MEDLINE | ID: mdl-27324157

RESUMEN

Because of their hollow interior, transmembrane channels are capable of opening up pathways for ions across lipid membranes of living cells. Here, we demonstrate ion conduction induced by a single DNA duplex that lacks a hollow central channel. Decorated with six porpyrin-tags, our duplex is designed to span lipid membranes. Combining electrophysiology measurements with all-atom molecular dynamics simulations, we elucidate the microscopic conductance pathway. Ions flow at the DNA-lipid interface as the lipid head groups tilt toward the amphiphilic duplex forming a toroidal pore filled with water and ions. Ionic current traces produced by the DNA-lipid channel show well-defined insertion steps, closures, and gating similar to those observed for traditional protein channels or synthetic pores. Ionic conductances obtained through simulations and experiments are in excellent quantitative agreement. The conductance mechanism realized here with the smallest possible DNA-based ion channel offers a route to design a new class of synthetic ion channels with maximum simplicity.


Asunto(s)
ADN/química , Canales Iónicos/química , Membrana Dobles de Lípidos/química , Simulación de Dinámica Molecular , Activación del Canal Iónico , Transporte Iónico
6.
ACS Nano ; 18(34): 22709-22733, 2024 Aug 27.
Artículo en Inglés | MEDLINE | ID: mdl-39136685

RESUMEN

Natural ion channels are proteins embedded in the cell membrane that control many aspects of cell and human physiology by acting as gatekeepers, regulating the flow of ions in and out of cells. Advances in nanotechnology have influenced the methods for studying ion channels in vitro, as well as ways to unlock the delivery of therapeutics by modulating them in vivo. This review provides an overview of nanotechnology-enabled approaches for ion channel research with a focus on the synthesis and applications of synthetic ion channels. Further, the uses of nanotechnology for therapeutic applications are critically analyzed. Finally, we provide an outlook on the opportunities and challenges at the intersection of nanotechnology and ion channels. This work highlights the key role of nanoscale interactions in the operation and modulation of ion channels, which may prompt insights into nanotechnology-enabled mechanisms to study and exploit these systems in the near future.


Asunto(s)
Canales Iónicos , Nanotecnología , Canales Iónicos/metabolismo , Humanos , Animales , Membrana Celular/metabolismo , Membrana Celular/química , Activación del Canal Iónico/efectos de los fármacos
7.
ACS Appl Bio Mater ; 6(2): 828-835, 2023 02 20.
Artículo en Inglés | MEDLINE | ID: mdl-36708326

RESUMEN

The development of stimuli-responsive synthetic channels that open and close in response to physical and chemical changes in the surrounding environment has attracted attention because of their potential bioapplications such as sensing, drug release, antibiotics, and molecular manipulation tools to control membrane transport in cells. Metal coordination is ideal as a stimulus for stimuli-responsive channels because it allows for reversible gating behavior through the addition and removal of metal ions and fine-tuning of channel structure through coordination geometry defined by the type of the metal ion and ligand. We have previously reported on transition metal-ion dependent ion permeability control of Amphotericin B (AmB) modified with a metal coordination site, 2,2'-bipyridine ligand (bpy-AmB). AmB is one of the polyene macrolide antibiotics, and it is known that the interaction between AmB and ergosterol molecules is required for AmB channel formation. In contrast, the Cu2+ coordination to the bpy moiety of bpy-AmB induces formation of Ca2+ ion-permeable channels in the ergosterol-free POPC membrane. However, the details of bpy-AmB properties such as channel stability, ion selectivity, pore size, and the effect of ergosterol on channel formation remain unclear. Here, we investigate bpy-AmB channels triggered by transition metal coordination in POPC or ergosterol-containing POPC liposomes using an HPTS assay, electrophysiological measurements, and time-resolved UV-vis spectral measurements. These analyses reveal that bpy-AmB channels triggered by Cu2+ ions are more stable and have larger pore sizes than the original AmB channels and enable efficient permeation of various cations. We believe that our channel design will lead to the construction of metal coordination-triggered synthetic ion channels.


Asunto(s)
2,2'-Dipiridil , Anfotericina B , Anfotericina B/farmacología , Anfotericina B/química , 2,2'-Dipiridil/farmacología , Ligandos , Canales Iónicos/química , Antibacterianos
8.
Micromachines (Basel) ; 11(9)2020 Aug 20.
Artículo en Inglés | MEDLINE | ID: mdl-32825332

RESUMEN

A molecular robot is a microorganism-imitating micro robot that is designed from the molecular level and constructed by bottom-up approaches. As with conventional robots, molecular robots consist of three essential robotics elements: control of intelligent systems, sensors, and actuators, all integrated into a single micro compartment. Due to recent developments in microfluidic technologies, DNA nanotechnologies, synthetic biology, and molecular engineering, these individual parts have been developed, with the final picture beginning to come together. In this review, we describe recent developments of these sensors, actuators, and intelligence systems that can be applied to liposome-based molecular robots. First, we explain liposome generation for the compartments of molecular robots. Next, we discuss the emergence of robotics functions by using and functionalizing liposomal membranes. Then, we discuss actuators and intelligence via the encapsulation of chemicals into liposomes. Finally, the future vision and the challenges of molecular robots are described.

SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda