Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 20 de 88
Filtrar
1.
J Infect Dis ; 229(1): 161-172, 2024 01 12.
Artículo en Inglés | MEDLINE | ID: mdl-38169301

RESUMEN

Human babesiosis is a potentially fatal tick-borne disease caused by intraerythrocytic Babesia parasites. The emergence of resistance to recommended therapies highlights the need for new and more effective treatments. Here we demonstrate that the 8-aminoquinoline antimalarial drug tafenoquine inhibits the growth of different Babesia species in vitro, is highly effective against Babesia microti and Babesia duncani in mice and protects animals from lethal infection caused by atovaquone-sensitive and -resistant B. duncani strains. We further show that a combination of tafenoquine and atovaquone achieves cure with no recrudescence in both models of human babesiosis. Interestingly, elimination of B. duncani infection in animals following drug treatment also confers immunity to subsequent challenge. Altogether, the data demonstrate superior efficacy of tafenoquine plus atovaquone combination over current therapies for the treatment of human babesiosis and highlight its potential in providing protective immunity against Babesia following parasite clearance.


Asunto(s)
Aminoquinolinas , Babesia , Babesiosis , Humanos , Animales , Ratones , Atovacuona/farmacología , Atovacuona/uso terapéutico , Modelos Teóricos
2.
Clin Infect Dis ; 79(1): 130-137, 2024 Jul 19.
Artículo en Inglés | MEDLINE | ID: mdl-38814096

RESUMEN

BACKGROUND: Relapsing babesiosis often occurs in highly immunocompromised patients and has been attributed to the acquisition of resistance against drugs commonly used for treatment such as atovaquone, azithromycin, and clindamycin. Tafenoquine, which is approved for malaria prophylaxis and presumptive antirelapse treatment of Plasmodium vivax malaria, has shown activity against Babesia microti in several animal models of acute infection and in a single human case of relapsing babesiosis. Here, we report 5 cases of relapsing babesiosis treated with tafenoquine, including the previous case, and begin to define the conditions for optimal use of tafenoquine in relapsing babesiosis. METHODS: A definitive diagnosis of babesiosis was made by microscopic examination of Giemsa-stained thin blood smears or a real-time polymerase chain reaction (PCR) that targets the parasite 18S rRNA gene. Clearance of B. microti infection was ascertained by use of blood smear and real-time PCR. RESULTS: Tafenoquine was initiated with a loading dose of 600 mg. A weekly maintenance dose consisted of 200 mg or 300 mg; the lower dose was associated with a delayed clearance of B. microti. In 2 cases, all antimicrobial agents but tafenoquine were discontinued prior to clearance of infection. In 2 other cases, clearance was achieved while tafenoquine was administered along with other antimicrobial agents. In 3 of these 4 cases, tafenoquine was used in combination with atovaquone-proguanil. Other agents included atovaquone, azithromycin, and/or clindamycin. In 1 case, tafenoquine was administered alone and failed to prevent relapse. CONCLUSIONS: Tafenoquine can be a useful adjunct for the treatment of highly immunocompromised patients experiencing relapsing babesiosis caused by B. microti.


Asunto(s)
Aminoquinolinas , Babesia microti , Babesiosis , Babesiosis/tratamiento farmacológico , Babesiosis/parasitología , Babesiosis/diagnóstico , Humanos , Masculino , Persona de Mediana Edad , Femenino , Babesia microti/efectos de los fármacos , Babesia microti/genética , Aminoquinolinas/uso terapéutico , Adulto , Recurrencia , Anciano , Antiprotozoarios/uso terapéutico , ARN Ribosómico 18S/genética , Resultado del Tratamiento
3.
Antimicrob Agents Chemother ; : e0018124, 2024 May 14.
Artículo en Inglés | MEDLINE | ID: mdl-38742896

RESUMEN

Ivermectin (IVM) could be used for malaria control as treated individuals are lethal to blood-feeding Anopheles, resulting in reduced transmission. Tafenoquine (TQ) is used to clear the liver reservoir of Plasmodium vivax and as a prophylactic treatment in high-risk populations. It has been suggested to use ivermectin and tafenoquine in combination, but the safety of these drugs in combination has not been evaluated. Early derivatives of 8-aminoquinolones (8-AQ) were neurotoxic, and ivermectin is an inhibitor of the P-glycoprotein (P-gp) blood brain barrier (BBB) transporter. Thus, there is concern that co-administration of these drugs could be neurotoxic. This study aimed to evaluate the safety and pharmacokinetic interaction of tafenoquine, ivermectin, and chloroquine (CQ) in Rhesus macaques. No clinical, biochemistry, or hematological outcomes of concern were observed. The Cambridge Neuropsychological Test Automated Battery (CANTAB) was employed to assess potential neurological deficits following drug administration. Some impairment was observed with tafenoquine alone and in the same monkeys with subsequent co-administrations. Co-administration of chloroquine and tafenoquine resulted in increased plasma exposure to tafenoquine. Urine concentrations of the 5,6 orthoquinone TQ metabolite were increased with co-administration of tafenoquine and ivermectin. There was an increase in ivermectin plasma exposure when co-administered with chloroquine. No interaction of tafenoquine on ivermectin was observed in vitro. Chloroquine and trace levels of ivermectin, but not tafenoquine, were observed in the cerebrospinal fluid. The 3''-O-demethyl ivermectin metabolite was observed in macaque plasma but not in urine or cerebrospinal fluid. Overall, the combination of ivermectin, tafenoquine, and chloroquine did not have clinical, neurological, or pharmacological interactions of concern in macaques; therefore, this combination could be considered for evaluation in human trials.

4.
Antimicrob Agents Chemother ; 68(5): e0028024, 2024 May 02.
Artículo en Inglés | MEDLINE | ID: mdl-38587391

RESUMEN

Testing Plasmodium vivax antimicrobial sensitivity is limited to ex vivo schizont maturation assays, which preclude determining the IC50s of delayed action antimalarials such as doxycycline. Using Plasmodium cynomolgi as a model for P. vivax, we determined the physiologically significant delayed death effect induced by doxycycline [IC50(96 h), 1,401 ± 607 nM]. As expected, IC50(96 h) to chloroquine (20.4 nM), piperaquine (12.6 µM), and tafenoquine (1,424 nM) were not affected by extended exposure.


Asunto(s)
Aminoquinolinas , Antimaláricos , Doxiciclina , Piperazinas , Plasmodium cynomolgi , Plasmodium vivax , Doxiciclina/farmacología , Antimaláricos/farmacología , Aminoquinolinas/farmacología , Plasmodium vivax/efectos de los fármacos , Plasmodium cynomolgi/efectos de los fármacos , Cloroquina/farmacología , Animales , Malaria Vivax/tratamiento farmacológico , Malaria Vivax/parasitología , Quinolinas/farmacología , Concentración 50 Inhibidora , Humanos , Pruebas de Sensibilidad Parasitaria
5.
Malar J ; 23(1): 145, 2024 May 13.
Artículo en Inglés | MEDLINE | ID: mdl-38741094

RESUMEN

A single 300 mg dose of tafenoquine (an 8-aminoquinoline), in combination with a standard 3-day course of chloroquine, is approved in several countries for the radical cure (prevention of relapse) of Plasmodium vivax malaria in patients aged ≥ 16 years. Despite this, questions have arisen on the optimal dose of tafenoquine. Before the availability of tafenoquine, a 3-day course of chloroquine in combination with the 8-aminoquinoline primaquine was the only effective radical cure for vivax malaria. The World Health Organization (WHO)-recommended standard regimen is 14 days of primaquine 0.25 mg/kg/day or 7 days of primaquine 0.5 mg/kg/day in most regions, or 14 days of primaquine 0.5 mg/kg/day in East Asia and Oceania, however the long treatment courses of 7 or 14 days may result in poor adherence and, therefore, low treatment efficacy. A single dose of tafenoquine 300 mg in combination with a 3-day course of chloroquine is an important advancement for the radical cure of vivax malaria in patients without glucose-6-phosphate dehydrogenase (G6PD) deficiency, as the use of a single-dose treatment will improve adherence. Selection of a single 300 mg dose of tafenoquine for the radical cure of P. vivax malaria was based on collective efficacy and safety data from 33 studies involving more than 4000 trial participants who received tafenoquine, including over 800 subjects who received the 300 mg single dose. The safety profile of single-dose tafenoquine 300 mg is similar to that of standard-dosage primaquine 0.25 mg/kg/day for 14 days. Both primaquine and tafenoquine can cause acute haemolytic anaemia in individuals with G6PD deficiency; severe haemolysis can lead to anaemia, kidney damage, and, in some cases, death. Therefore, relapse prevention using an 8-aminoquinoline must be balanced with the need to avoid clinical haemolysis associated with G6PD deficiency. To minimize this risk, the WHO recommends G6PD testing for all individuals before the administration of curative doses of 8-aminoquinolines. In this article, the authors review key efficacy and safety data from the pivotal trials of tafenoquine and argue that the currently approved dose represents a favourable benefit-risk profile.


Asunto(s)
Aminoquinolinas , Antimaláricos , Malaria Vivax , Malaria Vivax/tratamiento farmacológico , Aminoquinolinas/administración & dosificación , Aminoquinolinas/efectos adversos , Aminoquinolinas/uso terapéutico , Humanos , Antimaláricos/uso terapéutico , Antimaláricos/administración & dosificación , Antimaláricos/efectos adversos , Primaquina/administración & dosificación , Primaquina/uso terapéutico , Primaquina/efectos adversos , Medición de Riesgo , Resultado del Tratamiento , Quimioterapia Combinada , Plasmodium vivax/efectos de los fármacos , Cloroquina/uso terapéutico , Cloroquina/efectos adversos , Cloroquina/administración & dosificación
6.
J Appl Microbiol ; 135(1)2024 Jan 02.
Artículo en Inglés | MEDLINE | ID: mdl-38178639

RESUMEN

AIM: The purpose of this study is to assess the in vitro antimicrobial and anti-biofilm effects of the anti-protozoal agent tafenoquine (TAF) on Enterococcus and elucidate its underlying mode of action. METHODS AND RESULTS: The present work investigated the susceptibility of TAF on 3 type strains and 11 clinical isolates of enterococci. The results indicated that TAF exhibited powerful antimicrobial activity against both of Enterococcus faecalis and Enterococcus faecium with minimum inhibitory and bactericidal concentrations ranging from 8 to 16 µg ml-1. Meanwhile, biofilm inhibition and eradication assays showed that TAF exhibited potent anti-biofilm activity against E. faecalis ATCC 29212 and E. faecium ATCC 19434. Ultra-microscopic observations revealed significant changes in bacterial morphology and structure caused by TAF, particularly for the disruption of plasma membrane. Mechanistic investigations also revealed that TAF altered both membrane permeability and potential while also impacting adenosine triphosphate production as well as reactive oxygen species generation. In addition, no detectable cytotoxicity of TAF on human cells was observed at concentrations near the minimal inhibitory concentration. CONCLUSIONS: In summary, this study confirmed that TAF could effectively inhibit Enterococcus as well as its biofilm formation.


Asunto(s)
Aminoquinolinas , Antiinfecciosos , Enterococcus faecium , Humanos , Enterococcus , Antibacterianos/farmacología , Enterococcus faecalis , Biopelículas , Antiinfecciosos/farmacología , Pruebas de Sensibilidad Microbiana
7.
J Biol Chem ; 298(3): 101658, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-35101449

RESUMEN

The pandemic caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has severely affected human lives around the world as well as the global economy. Therefore, effective treatments against COVID-19 are urgently needed. Here, we screened a library containing Food and Drug Administration (FDA)-approved compounds to identify drugs that could target the SARS-CoV-2 main protease (Mpro), which is indispensable for viral protein maturation and regard as an important therapeutic target. We identified antimalarial drug tafenoquine (TFQ), which is approved for radical cure of Plasmodium vivax and malaria prophylaxis, as a top candidate to inhibit Mpro protease activity. The crystal structure of SARS-CoV-2 Mpro in complex with TFQ revealed that TFQ noncovalently bound to and reshaped the substrate-binding pocket of Mpro by altering the loop region (residues 139-144) near the catalytic Cys145, which could block the catalysis of its peptide substrates. We also found that TFQ inhibited human transmembrane protease serine 2 (TMPRSS2). Furthermore, one TFQ derivative, compound 7, showed a better therapeutic index than TFQ on TMPRSS2 and may therefore inhibit the infectibility of SARS-CoV-2, including that of several mutant variants. These results suggest new potential strategies to block infection of SARS-CoV-2 and rising variants.


Asunto(s)
Aminoquinolinas , Antivirales , Tratamiento Farmacológico de COVID-19 , Proteasas 3C de Coronavirus , SARS-CoV-2 , Aminoquinolinas/química , Aminoquinolinas/farmacología , Antivirales/química , Antivirales/farmacología , Proteasas 3C de Coronavirus/antagonistas & inhibidores , Humanos , Simulación del Acoplamiento Molecular , Pandemias , Inhibidores de Proteasas/química , Inhibidores de Proteasas/farmacología , SARS-CoV-2/efectos de los fármacos , SARS-CoV-2/enzimología , Internalización del Virus/efectos de los fármacos
8.
Clin Infect Dis ; 76(4): 741-744, 2023 02 18.
Artículo en Inglés | MEDLINE | ID: mdl-35684960

RESUMEN

We describe a case of relapsing babesiosis in an immunocompromised patient. A point mutation in the Babesia microti 23S rRNA gene predicted resistance to azithromycin and clindamycin, whereas an amino acid change in the parasite cytochrome b predicted resistance to atovaquone. Following initiation of tafenoquine, symptoms and parasitemia resolved.


Asunto(s)
Aminoquinolinas , Babesiosis , Humanos , Atovacuona , Babesiosis/tratamiento farmacológico , Recurrencia , Aminoquinolinas/uso terapéutico , Resistencia a Medicamentos/genética , ARN Ribosómico 23S/genética
9.
Clin Infect Dis ; 76(11): 1919-1927, 2023 06 08.
Artículo en Inglés | MEDLINE | ID: mdl-36795050

RESUMEN

BACKGROUND: The long-acting 8-aminoquinoline tafenoquine may be a good candidate for mass drug administration if it exhibits sufficient blood-stage antimalarial activity at doses low enough to be tolerated by glucose 6-phosphate dehydrogenase (G6PD)-deficient individuals. METHODS: Healthy adults with normal levels of G6PD were inoculated with Plasmodium falciparum 3D7-infected erythrocytes on day 0. Different single oral doses of tafenoquine were administered on day 8. Parasitemia and concentrations of tafenoquine and the 5,6-orthoquinone metabolite in plasma/whole blood/urine were measured and standard safety assessments performed. Curative artemether-lumefantrine therapy was administered if parasite regrowth occurred, or on day 48 ± 2. Outcomes were parasite clearance kinetics, pharmacokinetic and pharmacokinetic/pharmacodynamic (PK/PD) parameters from modelling, and dose simulations in a theoretical endemic population. RESULTS: Twelve participants were inoculated and administered 200 mg (n = 3), 300 mg (n = 4), 400 mg (n = 2), or 600 mg (n = 3) tafenoquine. The parasite clearance half-life with 400 mg or 600 mg (5.4 hours and 4.2 hours, respectively) was faster than with 200 mg or 300 mg (11.8 hours and 9.6 hours, respectively). Parasite regrowth occurred after dosing with 200 mg (3/3 participants) and 300 mg (3/4 participants) but not after 400 mg or 600 mg. Simulations using the PK/PD model predicted that 460 mg and 540 mg would clear parasitaemia by a factor of 106 and 109, respectively, in a 60-kg adult. CONCLUSIONS: Although a single dose of tafenoquine exhibits potent P. falciparum blood-stage antimalarial activity, the estimated doses to effectively clear asexual parasitemia will require prior screening to exclude G6PD deficiency. Clinical Trials Registration. Australian and New Zealand Clinical Trials Registry (ACTRN12620000995976).


Asunto(s)
Antimaláricos , Malaria Falciparum , Adulto , Humanos , Antimaláricos/efectos adversos , Plasmodium falciparum , Voluntarios Sanos , Parasitemia/tratamiento farmacológico , Arteméter/farmacología , Arteméter/uso terapéutico , Combinación Arteméter y Lumefantrina/uso terapéutico , Australia , Malaria Falciparum/tratamiento farmacológico , Malaria Falciparum/parasitología
10.
Clin Infect Dis ; 76(3): 506-512, 2023 02 08.
Artículo en Inglés | MEDLINE | ID: mdl-35731843

RESUMEN

BACKGROUND: Blocking the transmission of parasites from humans to mosquitoes is a key component of malaria control. Tafenoquine exhibits activity against all stages of the malaria parasite and may have utility as a transmission blocking agent. We aimed to characterize the transmission blocking activity of low-dose tafenoquine. METHODS: Healthy adults were inoculated with Plasmodium falciparum 3D7-infected erythrocytes on day 0. Piperaquine was administered on days 9 and 11 to clear asexual parasitemia while allowing gametocyte development. A single 50-mg oral dose of tafenoquine was administered on day 25. Transmission was determined by enriched membrane feeding assays predose and at 1, 4, and 7 days postdose. Artemether-lumefantrine was administered following the final assay. Outcomes were the reduction in mosquito infection and gametocytemia after tafenoquine and safety parameters. RESULTS: Six participants were enrolled, and all were infective to mosquitoes before tafenoquine, with a median 86% (range, 22-98) of mosquitoes positive for oocysts and 57% (range, 4-92) positive for sporozoites. By day 4 after tafenoquine, the oocyst and sporozoite positivity rate had reduced by a median 35% (interquartile range [IQR]: 16-46) and 52% (IQR: 40-62), respectively, and by day 7, 81% (IQR 36-92) and 77% (IQR 52-98), respectively. The decline in gametocyte density after tafenoquine was not significant. No significant participant safety concerns were identified. CONCLUSIONS: Low-dose tafenoquine (50 mg) reduces P. falciparum transmission to mosquitoes, with a delay in effect.


Asunto(s)
Anopheles , Antimaláricos , Malaria Falciparum , Malaria , Adulto , Animales , Humanos , Plasmodium falciparum , Antimaláricos/efectos adversos , Voluntarios Sanos , Arteméter/farmacología , Combinación Arteméter y Lumefantrina , Malaria Falciparum/prevención & control , Esporozoítos , Anopheles/parasitología
11.
Antimicrob Agents Chemother ; 67(12): e0101423, 2023 12 14.
Artículo en Inglés | MEDLINE | ID: mdl-37971260

RESUMEN

Plasmodium vivax infections and relapses remain a major health problem for malaria-endemic countries, deployed military personnel, and travelers. Presumptive anti-relapse therapy and radical cure using the 8-aminoquinoline drugs primaquine and tafenoquine are necessary to prevent relapses. Although it has been demonstrated that the efficacy of primaquine is associated with Cytochrome P450 2D6 (CYP2D6) activity, there is insufficient data on the role of CYP2D6 in the anti-relapse efficacy of tafenoquine. We investigated the relationship between CYP2D6 activity status and tafenoquine efficacy in preventing P. vivax relapses retrospectively using plasma samples collected from Australian Defence Force personnel deployed to Papua New Guinea and Timor-Leste who participated in clinical trials of tafenoquine during 1999-2001. The CYP2D6 gene was amplified from plasma samples and fully sequenced from 92 participant samples, comprised of relapse (n = 31) and non-relapse (n = 61) samples, revealing 14 different alleles. CYP2D6 phenotypes deduced from combinations of CYP2D6 alleles predicted that among 92 participants 67, 15, and 10 were normal, intermediate, and poor metabolizers, respectively. The deduced CYP2D6 phenotype did not correlate with the corresponding participant's plasma tafenoquine concentrations that were determined in the early 2000s by high-performance liquid chromatography or liquid chromatography-mass spectrometry. Furthermore, the deduced CYP2D6 phenotype did not associate with P. vivax relapse outcomes. Our results indicate that CYP2D6 does not affect plasma tafenoquine concentrations and the efficacy of tafenoquine in preventing P. vivax relapses in the assessed Australian Defence Force personnel.


Asunto(s)
Antimaláricos , Malaria Vivax , Humanos , Primaquina/uso terapéutico , Plasmodium vivax/genética , Antimaláricos/uso terapéutico , Citocromo P-450 CYP2D6/genética , Estudios Retrospectivos , Australia , Aminoquinolinas/uso terapéutico , Malaria Vivax/tratamiento farmacológico , Malaria Vivax/prevención & control , Recurrencia
12.
J Cell Mol Med ; 26(13): 3675-3686, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35665597

RESUMEN

Primaquine (PQ) and Tafenoquine (TQ) are clinically important 8-aminoquinolines (8-AQ) used for radical cure treatment of P. vivax infection, known to target hepatic hypnozoites. 8-AQs can trigger haemolytic anaemia in individuals with glucose-6-phosphate dehydrogenase deficiency (G6PDd), yet the mechanisms of haemolytic toxicity remain unknown. To address this issue, we used a humanized mouse model known to predict haemolytic toxicity responses in G6PDd human red blood cells (huRBCs). To evaluate the markers of eryptosis, huRBCs were isolated from mice 24-48 h post-treatment and analysed for effects on phosphatidylserine (PS), intracellular reactive oxygen species (ROS) and autofluorescence. Urinalysis was performed to evaluate the occurrence of intravascular and extravascular haemolysis. Spleen and liver tissue harvested at 24 h and 5-7 days post-treatment were stained for the presence of CD169+ macrophages, F4/80+ macrophages, Ter119+ mouse RBCs, glycophorin A+ huRBCs and murine reticulocytes (muRetics). G6PDd-huRBCs from PQ/TQ treated mice showed increased markers for eryptosis as early as 24 h post-treatment. This coincided with an early rise in levels of muRetics. Urinalysis revealed concurrent intravascular and extravascular haemolysis in response to PQ/TQ. Splenic CD169+ macrophages, present in all groups at day 1 post-dosing were eliminated by days 5-7 in PQ/TQ treated mice only, while liver F4/80 macrophages and iron deposits increased. Collectively, our data suggest 8-AQ treated G6PDd-huRBCs have early physiological responses to treatment, including increased markers for eryptosis indicative of oxidative stress, resulting in extramedullary haematopoiesis and loss of splenic CD169+ macrophages, prompting the liver to act as the primary site of clearance.


Asunto(s)
Antimaláricos , Deficiencia de Glucosafosfato Deshidrogenasa , Malaria Vivax , Aminoquinolinas/toxicidad , Animales , Modelos Animales de Enfermedad , Deficiencia de Glucosafosfato Deshidrogenasa/complicaciones , Hemólisis , Malaria Vivax/tratamiento farmacológico , Malaria Vivax/epidemiología , Ratones , Primaquina/uso terapéutico
13.
Br J Clin Pharmacol ; 88(6): 2657-2664, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-34997616

RESUMEN

Methaemoglobin results from the oxidation of ferrous to ferric iron in the centre of the haem moiety of haemoglobin. The production of dose-dependent methaemoglobinaemia by 8-aminoquinoline antimalarial drugs appears to be associated with, but is not directly linked to, therapeutic efficacy against latent Plasmodium vivax and Plasmodium ovale malarias (radical cure). Iatrogenic methaemoglobinaemia may be a useful pharmacodynamic measure in 8-aminoquinoline drug and dose optimization.


Asunto(s)
Antimaláricos , Metahemoglobinemia , Aminoquinolinas/efectos adversos , Antimaláricos/uso terapéutico , Humanos , Metahemoglobinemia/inducido químicamente , Metahemoglobinemia/tratamiento farmacológico , Plasmodium vivax
14.
J Korean Med Sci ; 37(27): e212, 2022 Jul 11.
Artículo en Inglés | MEDLINE | ID: mdl-35818703

RESUMEN

BACKGROUND: Plasmodium vivax malaria has a persistent liver stage that causes relapse, and introducing tafenoquine to suppress relapse could aid in disease eradication. Therefore, we assessed the impact of tafenoquine introduction on P. vivax malaria incidence and performed a cost-benefit analysis from the payer's perspective. METHODS: We expanded the previously developed P. vivax malaria dynamic transmission model and calibrated it to weekly civilian malaria incidences in 2014-2018. Primaquine and tafenoquine scenarios were considered by assuming different relapse probabilities, and relapse and total P. vivax malaria cases were predicted over the next decade for each scenario. We then estimated the number of cases prevented by replacing primaquine with tafenoquine. The cost and benefit of introducing tafenoquine were obtained using medical expenditure from a nationwide database, and a cost-benefit analysis was conducted. A probabilistic sensitivity analysis was performed to assess the economic feasibility robustness of tafenoquine introduction under uncertainties of model parameters, costs, and benefits. RESULTS: Under 0.04 primaquine relapse probability, the introduction of tafenoquine with relapse probability of 0.01 prevented 129 (12.27%) and 35 (77.78%) total and relapse cases, respectively, over the next decade. However, under the same relapse probability as primaquine, introducing tafenoquine had no additional preventative effect. The 14-day primaquine treatment cost was $3.71. The tafenoquine and the glucose-6-phosphate dehydrogenase rapid diagnostic testing cost $57.37 and $7.76, totaling $65.13. The average medical expenditure per malaria patient was estimated at $1444.79. The cost-benefit analysis results provided an incremental benefit-cost ratio (IBCR) from 0 to 3.21 as the tafenoquine relapse probability decreased from 0.04 to 0.01. The probabilistic sensitivity analysis showed an IBCR > 1, indicating that tafenoquine is beneficial, with a probability of 69.1%. CONCLUSION: Tafenoquine could reduce P. vivax malaria incidence and medical costs and bring greater benefits than primaquine.


Asunto(s)
Antimaláricos , Malaria Vivax , Aminoquinolinas , Antimaláricos/uso terapéutico , Análisis Costo-Beneficio , Humanos , Malaria Vivax/tratamiento farmacológico , Malaria Vivax/epidemiología , Malaria Vivax/prevención & control , Primaquina/uso terapéutico , Recurrencia
15.
Molecules ; 27(23)2022 Nov 24.
Artículo en Inglés | MEDLINE | ID: mdl-36500278

RESUMEN

Analytical methods for the quantification of the new 8-aminoquinoline antimalarial tafenoquine (TQ) in human blood, plasma and urine, and the 5,6-orthoquinone tafenoquine metabolite (5,6-OQTQ) in human plasma and urine have been validated. The procedure involved acetonitrile extraction of samples followed by ultra-high-performance liquid chromatography tandem mass spectrometry (UHPLC-MS/MS). Chromatography was performed using a Waters Atlantis T3 column with a gradient of 0.1% formic acid and acetonitrile at a flow rate of 0.5 mL per minute for blood and plasma. Urine analysis was the same but with methanol containing 0.1% formic acid replacing acetonitrile mobile phase. The calibration range for TQ and 5,6-OQTQ in plasma was 1 to 1200 ng/mL, and in urine was 10 to 1000 ng/mL. Blood calibration range for TQ was 1 to 1200 ng/mL. Blood could not be validated for 5,6-OQTQ due to significant signal suppression. The inter-assay precision (coefficient of variation %) was 9.9% for TQ at 1 ng/mL in blood (n = 14) and 8.2% for TQ and 7.1% for 5,6-OQTQ at 1 ng/mL in plasma (n = 14). For urine, the inter-assay precision was 8.2% for TQ and 6.4% for 5,6-OQTQ at 10 ng/mL (n = 14). TQ and 5,6-OQTQ are stable in blood, plasma and urine for at least three months at both -80 °C and -20 °C. Once validated, the analytical methods were applied to samples collected from healthy volunteers who were experimentally infected with Plasmodium falciparum to evaluate the blood stage antimalarial activity of TQ and to determine the therapeutic dose estimates for TQ, the full details of which will be published elsewhere. In this study, the measurement of TQ and 5,6-OQTQ concentrations in samples from one of the four cohorts of participants is reported. Interestingly, TQ urine concentrations were proportional to parasite recrudescence times post dosing To our knowledge, this is the first description of a fully validated method for the measurement of TQ and 5,6-OQTQ quantification in urine.


Asunto(s)
Antimaláricos , Espectrometría de Masas en Tándem , Humanos , Cromatografía Líquida de Alta Presión/métodos , Espectrometría de Masas en Tándem/métodos , Formiatos/análisis , Plasma/química , Antimaláricos/análisis , Reproducibilidad de los Resultados
16.
Antimicrob Agents Chemother ; 65(7): e0020421, 2021 06 17.
Artículo en Inglés | MEDLINE | ID: mdl-33941516

RESUMEN

Due to drug resistance, commonly used anti-Babesia drugs have limited efficacy against babesiosis and inflict severe side effects. Tafenoquine (TAF) was approved by the U.S. Food and Drug Administration in 2018 for the radical cure of Plasmodium vivax infection and for malaria prophylaxis. Here, we evaluated the efficacy of TAF for the treatment of Babesia infection and elucidated the suspected mechanisms of TAF activity against Babesia parasites. Parasitemia and survival rates of Babesia rodhaini-infected BALB/c and SCID mice were used to explore the role of the immune response in Babesia infection after TAF treatment. Parasitemia, survival rates, body weight, vital signs, complete blood count, and blood biochemistry of B. gibsoni-infected splenectomized dogs were determined to evaluate the anti-Babesia activity and side effects of TAF. Then, to understand the mechanism of TAF activity, hydrogen peroxide was used as an oxidizer for short-term B. rodhaini incubation in vitro, and the expression levels of antioxidant enzymes were confirmed using B. microti-infected mice by reverse transcription-quantitative PCR (qRT-PCR). Acute B. rodhaini and B. gibsoni infections were rapidly eliminated with TAF administration. Repeated administration of TAF or a combination therapy with other antibabesial agents is still needed to avoid a potentially fatal recurrence for immunocompromised hosts. Caution about hyperkalemia should be taken during TAF treatment for Babesia infection. TAF possesses a babesicidal effect that may be related to drug-induced oxidative stress. Considering the lower frequency of glucose-6-phosphate dehydrogenase deficiency in animals compared to that in humans, TAF use on Babesia-infected farm animals and pets is eagerly anticipated.


Asunto(s)
Babesiosis , Preparaciones Farmacéuticas , Aminoquinolinas , Animales , Babesiosis/tratamiento farmacológico , Perros , Ratones , Ratones Endogámicos BALB C , Ratones SCID
17.
Indian J Med Res ; 154(6): 797-805, 2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-35662084

RESUMEN

Plasmodium vivax (P. vivax) malaria is a major problem in various countries such as America, Southeast Asia, Africa and the Eastern Mediterranean. The major barrier in controlling P. vivax malaria is its ability to remain in the liver as a hypnozoite form which is responsible for relapse of P. vivax malaria; hence it is necessary to target both the blood (schizont) as well as the liver (hypnozoite) stages of P. vivax to prevent its relapse. A number of factors limit the use of primaquine (PQ), the currently available therapy for P. vivax (hypnozoite stage), such as haemolysis in glucose-6-phosphate dehydrogenase-deficient patients and being contraindicated in pregnant women. Another problem associated with PQ is the poor adherence rate to the 14-day treatment regimen. Single-dose tafenoquine (TQ), an 8-aminoquinoline, has recently been approved by the U.S. FDA for the treatment of P. vivax malaria along with a blood schizonticidal. TQ is active against all stages of P. vivax lifecycle. In published studies, TQ is considered a better alternative to PQ in terms of adherence, but there are some concerns regarding its safety, efficacy and study designs of trials conducted on TQ. In this context, this review, discusses the potential safety concerns, efficacy data, summary and an appraisal of findings of the important published trials of TQ.


Asunto(s)
Antimaláricos , Malaria Vivax , Aminoquinolinas , Antimaláricos/efectos adversos , Femenino , Humanos , Malaria Vivax/tratamiento farmacológico , Plasmodium vivax , Embarazo , Primaquina/efectos adversos , Recurrencia
18.
Clin Microbiol Rev ; 32(4)2019 09 18.
Artículo en Inglés | MEDLINE | ID: mdl-31366609

RESUMEN

The technical genesis and practice of 8-aminoquinoline therapy of latent malaria offer singular scientific, clinical, and public health insights. The 8-aminoquinolines brought revolutionary scientific discoveries, dogmatic practices, benign neglect, and, finally, enduring promise against endemic malaria. The clinical use of plasmochin-the first rationally synthesized blood schizontocide and the first gametocytocide, tissue schizontocide, and hypnozoitocide of any kind-commenced in 1926. Plasmochin became known to sometimes provoke fatal hemolytic crises. World War II delivered a newer 8-aminoquinoline, primaquine, and the discovery of glucose-6-phosphate dehydrogenase (G6PD) deficiency as the basis of its hemolytic toxicity came in 1956. Primaquine nonetheless became the sole therapeutic option against latent malaria. After 40 years of fitful development, in 2018 the U.S. Food and Drug Administration registered the 8-aminoquinoline called tafenoquine for the prevention of all malarias and the treatment of those that relapse. Tafenoquine also cannot be used in G6PD-unknown or -deficient patients. The hemolytic toxicity of the 8-aminoquinolines impedes their great potential, but this problem has not been a research priority. This review explores the complex technical dimensions of the history of 8-aminoquinolines. The therapeutic principles thus examined may be leveraged in improved practice and in understanding the bright prospect of discovery of newer drugs that cannot harm G6PD-deficient patients.


Asunto(s)
Aminoquinolinas/uso terapéutico , Malaria/tratamiento farmacológico , Antimaláricos/uso terapéutico , Humanos
19.
Malar J ; 19(1): 111, 2020 Mar 14.
Artículo en Inglés | MEDLINE | ID: mdl-32169086

RESUMEN

BACKGROUND: Tafenoquine is an 8-aminoquinoline anti-malarial drug recently approved as a single-dose (300 mg) therapy for Plasmodium vivax relapse prevention, when co-administered with 3-days of chloroquine or other blood schizonticide. Tafenoquine 200 mg weekly after a loading dose is also approved as travellers' prophylaxis. The development of tafenoquine has been conducted over many years, using various dosing regimens in diverse populations. METHODS: This review brings together all the preclinical and clinical data concerning tafenoquine central nervous system safety. Data were assembled from published sources. The risk of neuropsychiatric adverse events (NPAEs) with single-dose tafenoquine (300 mg) in combination with chloroquine to achieve P. vivax relapse prevention is particularly examined. RESULTS: There was no evidence of neurotoxicity with tafenoquine in preclinical animal models. In clinical studies in P. vivax relapse prevention, nervous system adverse events, mainly headache and dizziness, occurred in 11.4% (36/317) of patients with tafenoquine (300 mg)/chloroquine versus 10.2% (19/187) with placebo/chloroquine; and in 15.5% (75/483) of patients with tafenoquine/chloroquine versus 13.3% (35/264) with primaquine (15 mg/day for 14 days)/chloroquine. Psychiatric adverse events, mainly insomnia, occurred in 3.8% (12/317) of patients with tafenoquine/chloroquine versus 2.7% (5/187) with placebo/chloroquine; and in 2.9% (14/483) of patients with tafenoquine/chloroquine versus 3.4% (9/264) for primaquine/chloroquine. There were no serious or severe NPAEs observed with tafenoquine (300 mg)/chloroquine in these studies. CONCLUSIONS: The risk:benefit of single-dose tafenoquine/chloroquine in P. vivax relapse prevention is favourable in the presence of malaria, with a low risk of NPAEs, similar to that seen with chloroquine alone or primaquine/chloroquine.


Asunto(s)
Aminoquinolinas/uso terapéutico , Malaria Vivax/tratamiento farmacológico , Enfermedades del Sistema Nervioso/inducido químicamente , Prevención Secundaria/métodos , Aminoquinolinas/efectos adversos , Antimaláricos , Humanos , Plasmodium vivax/efectos de los fármacos
20.
J Infect Dis ; 220(3): 442-447, 2019 07 02.
Artículo en Inglés | MEDLINE | ID: mdl-31099380

RESUMEN

BACKGROUND: Tafenoquine (TQ) was recently approved by the US Food and Drug Administration for prophylaxis of malaria and, in addition, for eradication of the hepatic phase of the relevant Plasmodium species. In this study, we evaluated the efficacy of TQ for treatment of Babesia microti infection in mice with severe combined immunodeficiency (SCID). METHODS: SCID mice were infected with 1.1-1.5 × 108 B. microti-infected red blood cells by intraperitoneal injection. On day 3 or 4 postinfection, when parasitemia levels typically exceeded 10%, mice were treated with TQ vs vehicle alone, both administered by oral gavage. RESULTS: A single dose of TQ completely eliminated detectable parasites, with a >90% reduction in the level of parasitemia within just 4 days. Before elimination, a conspicuous phenotypic change in the parasite was observed. Although parasitologic cure was not achieved, there was no evidence for the development of drug resistance. CONCLUSIONS: This study suggests that TQ may be a highly useful drug to treat B. microti infection in patients. If further animal studies establish that a marked reduction in B. microti parasitemia can be reliably achieved with peak blood levels of TQ known to be well tolerated in humans, a clinical trial in patients should be considered.


Asunto(s)
Aminoquinolinas/farmacología , Babesia microti/efectos de los fármacos , Babesiosis/tratamiento farmacológico , Animales , Babesiosis/parasitología , Femenino , Malaria/tratamiento farmacológico , Ratones , Ratones SCID , Parasitemia/tratamiento farmacológico , Parasitemia/parasitología , Plasmodium/efectos de los fármacos
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda