Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo del documento
Publication year range
1.
Molecules ; 28(14)2023 Jul 09.
Artículo en Inglés | MEDLINE | ID: mdl-37513172

RESUMEN

Organic selenium has been widely studied as a nutritional supplement for animal feed. However, there are few studies on the effect of organic selenium on flesh quality. In this study, the effects of organic selenium (yeast selenium (YS), Se 0.002 mg/L) on the metabolism and protein expression in Micropterus salmoides muscle under temporary fasting condition (6 weeks) were investigated. The muscle structure was observed through a microscope, and regulatory pathways were analyzed using proteomics and metabolomics methods. Electron microscopy showed that YS made the muscle fibers of M. salmoides more closely aligned. Differential analysis identified 523 lipid molecules and 268 proteins. The numbers of upregulated and downregulated proteins were 178 and 90, respectively, including metabolism (46.15%), cytoskeleton (11.24%) and immune oxidative stress (9.47%), etc. Integrated analyses revealed that YS enhanced muscle glycolysis, the tricarboxylic acid cycle and oxidative phosphorylation metabolism. In the YS group, the content of eicosapentaenoic acid was increased, and that of docosahexaenoic acid was decreased. YS slowed down protein degradation by downregulating ubiquitin and ubiquitin ligase expression. These results suggest that organic selenium can improve M. salmoides muscle quality through the aforementioned pathways, which provides potential insights into the improvement of the quality of aquatic products, especially fish.


Asunto(s)
Lubina , Selenio , Animales , Selenio/farmacología , Proteómica , Músculos , Metabolómica , Ubiquitinas
2.
Food Chem ; 397: 133747, 2022 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-35940092

RESUMEN

In this study, the influences of organic selenium (Se, 0.002 mg/L) on the muscle flavor and texture properties of Micropterus salmonides under fasting temporary rearing (8 weeks) was investigated. Electronic nose and headspace solid-phase microextraction-gas chromatography-mass spectrometry analysis suggested that organic Se regulated the types and contents of volatile compounds, especially aldehydes and ketones, which were increased in the early temporary rearing but decreased in the late stage. Organic Se significantly increased the content of 5'-inosine monophosphate by approximately 15 % (p < 0.05), and decreased the content of hypoxanthine and hypoxanthine ribonucleoside by more than 20 % (p < 0.05). After the 8th temporary rearing week, muscle hardness and springiness increased by at least 10 % (p < 0.01), resilience and gumminess improved by at least 18 % (p < 0.05) and 5.9 % (p < 0.05), respectively. In conclusion, organic Se ameliorates the flesh quality of M. salmonides during long-term temporary rearing.


Asunto(s)
Lubina , Selenio , Compuestos Orgánicos Volátiles , Animales , Hipoxantinas/análisis , Músculos/química , Odorantes/análisis , Microextracción en Fase Sólida/métodos , Compuestos Orgánicos Volátiles/análisis
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda