Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 20 de 446
Filtrar
1.
Proc Natl Acad Sci U S A ; 119(3)2022 01 18.
Artículo en Inglés | MEDLINE | ID: mdl-35042774

RESUMEN

Termites are model social organisms characterized by a polyphenic caste system. Subterranean termites (Rhinotermitidae) are ecologically and economically important species, including acting as destructive pests. Rhinotermitidae occupies an important evolutionary position within the clade representing a transitional taxon between the higher (Termitidae) and lower (other families) termites. Here, we report the genome, transcriptome, and methylome of the Japanese subterranean termite Reticulitermes speratus Our analyses highlight the significance of gene duplication in social evolution in this termite. Gene duplication associated with caste-biased gene expression was prevalent in the R. speratus genome. The duplicated genes comprised diverse categories related to social functions, including lipocalins (chemical communication), cellulases (wood digestion and social interaction), lysozymes (social immunity), geranylgeranyl diphosphate synthase (social defense), and a novel class of termite lineage-specific genes with unknown functions. Paralogous genes were often observed in tandem in the genome, but their expression patterns were highly variable, exhibiting caste biases. Some of the assayed duplicated genes were expressed in caste-specific organs, such as the accessory glands of the queen ovary and the frontal glands of soldier heads. We propose that gene duplication facilitates social evolution through regulatory diversification, leading to caste-biased expression and subfunctionalization and/or neofunctionalization conferring caste-specialized functions.


Asunto(s)
Genómica , Proteínas de Insectos/metabolismo , Isópteros/fisiología , Evolución Social , Transcriptoma , Animales , Evolución Biológica , Celulasas/metabolismo , Femenino , Duplicación de Gen , Expresión Génica , Perfilación de la Expresión Génica , Proteínas de Insectos/genética , Isópteros/genética
2.
Ecol Lett ; 27(10): e70002, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39462853

RESUMEN

Complementary resource use by functionally different species may accelerate ecosystem processes. However, how co-variation in plant traits and animal traits promotes complementarity through temporal plant-animal interactions is poorly understood, even less so in detrital systems, thereby hampering our fundamental understanding of decomposition and carbon turnover. We hypothesised that, in seasonal subtropical forests where termites are major deadwood decomposers, trait complementarity of both termite species and tree species should promote overall deadwood decomposition through different seasons and years. Findings from a four-year coarse wood decomposition experiment involving 27 tree and 5 termite species support this hypothesis. Phenological and mandibular traits of the two most abundant termite species controlled wood decomposition of tree species differing in wood traits, through the seasons over 4 years, thereby promoting overall deadwood decomposition rates. Our findings indicate that complementarity in functional trait co-variation in plants and animals plays an important role in carbon cycling.


Asunto(s)
Isópteros , Estaciones del Año , Árboles , Madera , Animales , Isópteros/fisiología , Bosques
3.
Proc Biol Sci ; 291(2023): 20232711, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38772420

RESUMEN

In social insect colonies, selfish behaviour due to intracolonial conflict among members can result in colony-level costs despite close relatedness. In certain termite species, queens use asexual reproduction for within-colony queen succession but rely on sexual reproduction for worker and alate production, resulting in multiple half-clones of a single primary queen competing for personal reproduction. Our study demonstrates that competition over asexual queen succession among different clone types leads to the overproduction of parthenogenetic offspring, resulting in the production of dysfunctional parthenogenetic alates. By genotyping the queens of 23 field colonies of Reticulitermes speratus, we found that clone variation in the queen population reduces as colonies develop. Field sampling of alates and primary reproductives of incipient colonies showed that overproduced parthenogenetic offspring develop into alates that have significantly smaller body sizes and much lower survivorship than sexually produced alates. Our results indicate that while the production of earlier and more parthenogenetic eggs is advantageous for winning the competition for personal reproduction, it comes at a great cost to the colony. Thus, this study highlights the evolutionary interplay between individual-level and colony-level selection on parthenogenesis by queens.


Asunto(s)
Isópteros , Partenogénesis , Animales , Isópteros/fisiología , Isópteros/genética , Femenino , Reproducción , Conducta Social
4.
Glob Chang Biol ; 30(6): e17390, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38899583

RESUMEN

Methane is a powerful greenhouse gas, more potent than carbon dioxide, and emitted from a variety of natural sources including wetlands, permafrost, mammalian guts and termites. As increases in global temperatures continue to break records, quantifying the magnitudes of key methane sources has never been more pertinent. Over the last 40 years, the contribution of termites to the global methane budget has been subject to much debate. The most recent estimates of termite emissions range between 9 and 15 Tg CH4 year-1, approximately 4% of emissions from natural sources (excluding wetlands). However, we argue that the current approach for estimating termite contributions to the global methane budget is flawed. Key parameters, namely termite methane emissions from soil, deadwood, living tree stems, epigeal mounds and arboreal nests, are largely ignored in global estimates. This omission occurs because data are lacking and research objectives, crucially, neglect variation in termite ecology. Furthermore, inconsistencies in data collection methods prohibit the pooling of data required to compute global estimates. Here, we summarise the advances made over the last 40 years and illustrate how different aspects of termite ecology can influence the termite contribution to global methane emissions. Additionally, we highlight technological advances that may help researchers investigate termite methane emissions on a larger scale. Finally, we consider dynamic feedback mechanisms of climate warming and land-use change on termite methane emissions. We conclude that ultimately the global contribution of termites to atmospheric methane remains unknown and thus present an alternative framework for estimating their emissions. To significantly improve estimates, we outline outstanding questions to guide future research efforts.


Asunto(s)
Isópteros , Metano , Isópteros/fisiología , Isópteros/metabolismo , Metano/análisis , Metano/metabolismo , Animales , Cambio Climático , Gases de Efecto Invernadero/análisis
5.
J Evol Biol ; 37(7): 758-769, 2024 Jul 10.
Artículo en Inglés | MEDLINE | ID: mdl-38630634

RESUMEN

Domains as functional protein units and their rearrangements along the phylogeny can shed light on the functional changes of proteomes associated with the evolution of complex traits like eusociality. This complex trait is associated with sterile soldiers and workers, and long-lived, highly fecund reproductives. Unlike in Hymenoptera (ants, bees, and wasps), the evolution of eusociality within Blattodea, where termites evolved from within cockroaches, was accompanied by a reduction in proteome size, raising the question of whether functional novelty was achieved with existing rather than novel proteins. To address this, we investigated the role of domain rearrangements during the evolution of termite eusociality. Analysing domain rearrangements in the proteomes of three solitary cockroaches and five eusocial termites, we inferred more than 5,000 rearrangements over the phylogeny of Blattodea. The 90 novel domain arrangements that emerged at the origin of termites were enriched for several functions related to longevity, such as protein homeostasis, DNA repair, mitochondrial activity, and nutrient sensing. Many domain rearrangements were related to changes in developmental pathways, important for the emergence of novel castes. Along with the elaboration of social complexity, including permanently sterile workers and larger, foraging colonies, we found 110 further domain arrangements with functions related to protein glycosylation and ion transport. We found an enrichment of caste-biased expression and splicing within rearranged genes, highlighting their importance for the evolution of castes. Furthermore, we found increased levels of DNA methylation among rearranged compared to non-rearranged genes suggesting fundamental differences in their regulation. Our findings indicate the importance of domain rearrangements in the generation of functional novelty necessary for termite eusociality to evolve.


Asunto(s)
Evolución Biológica , Isópteros , Animales , Isópteros/genética , Isópteros/fisiología , Conducta Social , Filogenia , Proteoma/genética , Proteínas de Insectos/genética , Proteínas de Insectos/metabolismo , Dominios Proteicos , Blattellidae/genética
6.
Biopolymers ; : e23616, 2024 Jul 19.
Artículo en Inglés | MEDLINE | ID: mdl-39031485

RESUMEN

Polymer composites are known for its light weight and specific mechanical characteristics. This study examines sodium hydroxide (NaOH)-treated coir fiber, an agro-leftover, stuffed in a polyester matrix with termite frass powder, a bio-leftover for possible use in light-weight structural applications. Composite samples were made using compression molding and NaOH-treated coir fiber reinforced hybrid polymer composite (TCRHPC) with 40 wt% treated coir fiber and 1, 2, 3, and 4 wt% termite frass powder. TCRHPC samples mechanical, water captivation, tribological, and thermal properties were affected by termite frass powder wt%. The TCRHPC sample with 3 wt% termite frass powder has excellent mechanical properties, which improved by tensile (41.6%), flexural (28.57%), impact (43.7%), and hardness (18.84%) properties. With perfect water captivation and low weight increases in normal water (0.017 g), seawater (0.015 g), and NaOH solution (0.010 g), the identical composite sample with thermal stability up to 238°C also reduced wear mass by 5.27%. Conversely, filler agglomeration and heterogeneous dispersion in composite sample impair thermo-mechanical characteristics of TCRHPC containing 4 wt% termite frass powder. The bonding among polyester, treated coir fiber, and termite frass powder in composites were appraised with the aid of fractographic images of TCRHPC samples. The results show that TCRHPC material suits well for support structures requiring lesser weight.

7.
Proc Natl Acad Sci U S A ; 118(30)2021 07 27.
Artículo en Inglés | MEDLINE | ID: mdl-34285074

RESUMEN

Organoheterotrophs are the dominant bacteria in most soils worldwide. While many of these bacteria can subsist on atmospheric hydrogen (H2), levels of this gas are generally insufficient to sustain hydrogenotrophic growth. In contrast, bacteria residing within soil-derived termite mounds are exposed to high fluxes of H2 due to fermentative production within termite guts. Here, we show through community, metagenomic, and biogeochemical profiling that termite emissions select for a community dominated by diverse hydrogenotrophic Actinobacteriota and Dormibacterota. Based on metagenomic short reads and derived genomes, uptake hydrogenase and chemosynthetic RuBisCO genes were significantly enriched in mounds compared to surrounding soils. In situ and ex situ measurements confirmed that high- and low-affinity H2-oxidizing bacteria were highly active in the mounds, such that they efficiently consumed all termite-derived H2 emissions and served as net sinks of atmospheric H2 Concordant findings were observed across the mounds of three different Australian termite species, with termite activity strongly predicting H2 oxidation rates (R2 = 0.82). Cell-specific power calculations confirmed the potential for hydrogenotrophic growth in the mounds with most termite activity. In contrast, while methane is produced at similar rates to H2 by termites, mounds contained few methanotrophs and were net sources of methane. Altogether, these findings provide further evidence of a highly responsive terrestrial sink for H2 but not methane and suggest H2 availability shapes composition and activity of microbial communities. They also reveal a unique arthropod-bacteria interaction dependent on H2 transfer between host-associated and free-living microbial communities.


Asunto(s)
Bacterias/metabolismo , Gases/metabolismo , Isópteros/microbiología , Microbiota , Animales , Australia , Hidrógeno/metabolismo , Consumo de Oxígeno , Microbiología del Suelo
8.
Proc Natl Acad Sci U S A ; 118(5)2021 02 02.
Artículo en Inglés | MEDLINE | ID: mdl-33468628

RESUMEN

The termite nest is one of the architectural wonders of the living world, built by the collective action of workers in a colony. Each nest has several characteristic structural motifs that allow for efficient ventilation, cooling, and traversal. We use tomography to quantify the nest architecture of the African termite Apicotermes lamani, consisting of regularly spaced floors connected by scattered linear and helicoidal ramps. To understand how these elaborate structures are built and arranged, we formulate a minimal model for the spatiotemporal evolution of three hydrodynamic fields-mud, termites, and pheromones-linking environmental physics to collective building behavior using simple local rules based on experimental observations. We find that floors and ramps emerge as solutions of the governing equations, with statistics consistent with observations of A. lamani nests. Our study demonstrates how a local self-reinforcing biotectonic scheme is capable of generating an architecture that is simultaneously adaptable and functional, and likely to be relevant for a range of other animal-built structures.


Asunto(s)
Isópteros/fisiología , Comportamiento de Nidificación , Animales , Modelos Teóricos , Tomografía Computarizada por Rayos X
9.
J Insect Sci ; 24(1)2024 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-38195070

RESUMEN

Termite nest repairs are considered a defensive conduct as they reduce the colony's exposure to the external environment. Repair activities are carried out by worker castes that can be polymorphic, representing a relationship between polymorphism and divisions of functions that can enhance task completion. Repairs are influenced by the extent of damage, nest volume, and the population dynamics of the building species, which regulate the recruitment of individuals for this activity. Our objective was to verify the performances (recruitment for repair) of dimorphic workers of Constrictotermes cyphergaster (Silvestri, 1901) during the damage repair activities performed on the external walls of termite nests of different sizes. We found a significant difference in the presence of dimorphic workers that performed repairs, with greater recruitment of the small morphotype, and observed an alternation of morphotypes between initial and final repair activities, with no influence of morphotype on the replacement pattern. Our results also showed that the total number of recruited workers decreased with increasing nest volume. These results help to better understand the social organization of a Nasutitermitinae termite species and the strategies adopted to protect its colonies.


Asunto(s)
Cucarachas , Isópteros , Humanos , Animales , Polimorfismo Genético , Dinámica Poblacional
10.
J Insect Sci ; 24(4)2024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-38989844

RESUMEN

The Canary Islands is a Macaronesian volcanic archipelago with a depauperate community of three species of Kalotermitidae, including Kalotermes dispar. A total of 54 Kalotermes colonies were collected from Gran Canaria, Tenerife, La Gomera, La Palma, and El Hierro islands. Soldiers and imagos were morphologically examined and sequenced for four mitochondrial markers. Although morphological differences could not be detected, phylogenetic analysis of both cox1/tRNA/cox2 and rrnL markers revealed two distinct clades of K. dispar, suggesting cryptic diversity. The diversification within the Canary Kalotermes lineage most likely occurred around 7.5 Mya, while the divergence within the two clades was reconstructed at about 3.6 Mya and 1.9 Mya. Kalotermes approximatus from the southeastern Nearctic constitutes a sister to the Canary Kalotermes, while the Palearctic K. flavicollis, K. italicus, and K. phoenicae form a separate clade. It is hypothesized that a faunal exchange of Kalotermes from the Nearctic to the Canary Islands occurred via transoceanic rafting during the mid-Miocene.


Asunto(s)
Cucarachas , Filogenia , Animales , España , Cucarachas/clasificación
11.
J Insect Sci ; 24(4)2024 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-39023177

RESUMEN

This study explores the food transport efficiency (E) in a termite tunnel consisting of a main tunnel and a 2-segment loop tunnel through a model simulation. Simulated termites navigate between the main and loop tunnels through branching nodes (a, b, c, d) with associated probabilities (P1, P2, P3, P4). The loop tunnel locations (δ) are considered: near the nest (δ = 1), at the center of the main tunnel (δ = 2), and close to the food site (δ = 3). The results reveal that for δ = 1, paths such as a → d → b → c and c → d → b → a exhibited high E values. Conversely, for δ = 2, P3 and P4 demonstrate elevated E values ranging from 0.4 to 0.6. For δ = 3, paths like c → d or c → b display high E values, emphasizing the significance of in-loop separation tunnels (characterized by P3 and P4) in alleviating traffic congestion. Partial rank correlation validates that P1 and P2 minimally influence E, while P3 and P4 significantly negatively impact E, regardless of δ. However, for δ = 2, the influence of P3 and P4 is notably reduced due to the positional symmetry of the loop tunnel. In the discussion, we address model limitations and propose strategies to overcome them. Additionally, we outline potential experimental validations to ensure a comprehensive understanding of the dynamics governing termite food transport within tunnels.


Asunto(s)
Conducta Alimentaria , Isópteros , Animales , Isópteros/fisiología , Simulación por Computador , Modelos Biológicos
12.
Int J Mol Sci ; 25(13)2024 Jul 06.
Artículo en Inglés | MEDLINE | ID: mdl-39000541

RESUMEN

Type 2 diabetes (T2D) is a chronic metabolic disorder characterized by hyperglycemia and dyslipidemia. The termite fungus comb is an integral component of nests of termites, which are a global pest. Termite fungus comb polysaccharides (TFCPs) have been identified to possess antioxidant, anti-aging, and immune-enhancing properties. However, their physicochemical characteristics and their role in fighting diabetes have not been previously reported. In the current study, TFCPs were isolated and structurally characterized. The yield of TFCPs was determined to be 2.76%, and it was found to be composed of a diverse array of polysaccharides with varying molecular weights. The hypoglycemic and hypolipidemic effects of TFCPs, as well as their potential mechanisms of action, were investigated in a T2D mouse model. The results demonstrated that oral administration of TFCPs could alleviate fasting blood glucose levels, insulin resistance, hyperlipidemia, and the dysfunction of pancreatic islets in T2D mice. In terms of mechanisms, the TFCPs enhanced hepatic glycogenesis and glycolysis while inhibiting gluconeogenesis. Additionally, the TFCPs suppressed hepatic de novo lipogenesis and promoted fatty acid oxidation. Furthermore, the TFCPs altered the composition of the gut microbiota in the T2D mice, increasing the abundance of beneficial bacteria such as Allobaculum and Faecalibaculum, while reducing the levels of pathogens like Mailhella and Acetatifactor. Overall, these findings suggest that TFCPs may exert anti-diabetic effects by regulating hepatic glucose and lipid metabolism and the composition of the gut microbiota. These findings suggest that TFCPs can be used as a promising functional ingredient for the prevention and treatment of T2D.


Asunto(s)
Diabetes Mellitus Tipo 2 , Microbioma Gastrointestinal , Hiperglucemia , Hiperlipidemias , Metabolismo de los Lípidos , Hígado , Animales , Microbioma Gastrointestinal/efectos de los fármacos , Diabetes Mellitus Tipo 2/metabolismo , Diabetes Mellitus Tipo 2/tratamiento farmacológico , Ratones , Hiperlipidemias/tratamiento farmacológico , Hiperlipidemias/metabolismo , Metabolismo de los Lípidos/efectos de los fármacos , Hiperglucemia/tratamiento farmacológico , Hiperglucemia/metabolismo , Hígado/metabolismo , Hígado/efectos de los fármacos , Polisacáridos Fúngicos/farmacología , Masculino , Diabetes Mellitus Experimental/tratamiento farmacológico , Diabetes Mellitus Experimental/metabolismo , Glucosa/metabolismo , Hipoglucemiantes/farmacología , Hipoglucemiantes/uso terapéutico , Termitomyces/metabolismo , Glucemia/metabolismo , Polisacáridos/farmacología , Ratones Endogámicos C57BL
13.
Dev Biol ; 485: 70-79, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-35248548

RESUMEN

Caste development in social insects requires the coordination of molting and metamorphosis during postembryonic development. In termites, i.e., hemimetabolous eusocial insects, caste fate is determined during postembryonic development. However, it is not fully understood how the mechanisms of molting/metamorphosis are regulated in the course of differentiation between reproductive and sterile castes. In termites, only reproductives derived from alates are imagos and other sterile castes (including developmentally-terminal soldier caste) are basically juveniles or nymphs. Furthermore, supplementary reproductives that appear when the original queens and kings die or become senescent, exhibit larval features such as winglessness, and are called neotenics. Therefore, the question of whether neotenics are larvae or imagos is still under debate. In this study, by inducing female neotenic differentiation in a damp-wood termite Hodotermopsis sjostedti, morphological investigations together with juvenile hormone (JH) quantification and expression/functional analyses of genes responsible for molting and/or metamorphosis were carried out. JH titer and expression of one of the downstream genes (Kr-h1) were shown to be temporarily lowered, but increased just prior to the molt into neotenics, while consistently lowered in imaginal molt (i.e., alate differentiation). In contrast, ecdysone-related genes (EcR and E93) were upregulated at both neotenic and alate differentiation, suggesting that the heterochronic actions of ecdysone and JH lead the neotenic differentiation. Moreover, expression analyses, supported by reverse genetic experiments, showed that EcR and E93 were specifically upregulated in genital sternites (EcR and E93) and ovaries (E93) and required for the development of imaginal characters. These results suggest that the resultant mosaic phenotype of female neotenics is due to modular responses of different body parts to hormonal actions.


Asunto(s)
Isópteros , Animales , Ecdisona/metabolismo , Femenino , Isópteros/genética , Isópteros/metabolismo , Hormonas Juveniles/metabolismo , Muda/genética , Diferenciación Sexual
14.
BMC Genomics ; 24(1): 115, 2023 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-36922761

RESUMEN

BACKGROUND: Termites are among the most successful insects on Earth and can feed on a broad range of organic matter at various stages of decomposition. The termite gut system is often referred to as a micro-reactor and is a complex structure consisting of several components. It includes the host, its gut microbiome and fungal gardens, in the case of fungi-growing higher termites. The digestive tract of soil-feeding higher termites is characterised by radial and axial gradients of physicochemical parameters (e.g. pH, O2 and H2 partial pressure), and also differs in the density and structure of residing microbial communities. Although soil-feeding termites account for 60% of the known termite species, their biomass degradation strategies are far less known compared to their wood-feeding counterparts. RESULTS: In this work, we applied an integrative multi-omics approach for the first time at the holobiont level to study the highly compartmentalised gut system of the soil-feeding higher termite Labiotermes labralis. We relied on 16S rRNA gene community profiling, metagenomics and (meta)transcriptomics to uncover the distribution of functional roles, in particular those related to carbohydrate hydrolysis, across different gut compartments and among the members of the bacterial community and the host itself. We showed that the Labiotermes gut was dominated by members of the Firmicutes phylum, whose abundance gradually decreased towards the posterior segments of the hindgut, in favour of Bacteroidetes, Proteobacteria and Verrucomicrobia. Contrary to expectations, we observed that L. labralis gut microbes expressed a high diversity of carbohydrate active enzymes involved in cellulose and hemicelluloses degradation, making the soil-feeding termite gut a unique reservoir of lignocellulolytic enzymes with considerable biotechnological potential. We also evidenced that the host cellulases have different phylogenetic origins and structures, which is possibly translated into their different specificities towards cellulose. From an ecological perspective, we could speculate that the capacity to feed on distinct polymorphs of cellulose retained in soil might have enabled this termite species to widely colonise the different habitats of the Amazon basin. CONCLUSIONS: Our study provides interesting insights into the distribution of the hydrolytic potential of the highly compartmentalised higher termite gut. The large number of expressed enzymes targeting the different lignocellulose components make the Labiotermes worker gut a relevant lignocellulose-valorising model to mimic by biomass conversion industries.


Asunto(s)
Isópteros , Animales , Isópteros/genética , Suelo , Filogenia , ARN Ribosómico 16S/genética , Celulosa/metabolismo
15.
Insect Mol Biol ; 32(6): 615-633, 2023 12.
Artículo en Inglés | MEDLINE | ID: mdl-37382487

RESUMEN

Adipokinetic hormone (AKH) is a neuropeptide produced in the insect corpora cardiaca that plays an essential role in mobilising carbohydrates and lipids from the fat body to the haemolymph. AKH acts by binding to a rhodopsin-like G protein-coupled receptor (GPCR), the adipokinetic hormone receptor (AKHR). In this study, we tackle AKH ligand and receptor gene evolution as well as the evolutionary origins of AKH gene paralogues from the order Blattodea (termites and cockroaches). Phylogenetic analyses of AKH precursor sequences point to an ancient AKH gene duplication event in the common ancestor of Blaberoidea, yielding a new group of putative decapeptides. In total, 16 different AKH peptides from 90 species were obtained. Two octapeptides and seven putatively novel decapeptides are predicted for the first time. AKH receptor sequences from 18 species, spanning solitary cockroaches and subsocial wood roaches as well as lower and higher termites, were subsequently acquired using classical molecular methods and in silico approaches employing transcriptomic data. Aligned AKHR open reading frames revealed 7 highly conserved transmembrane regions, a typical arrangement for GPCRs. Phylogenetic analyses based on AKHR sequences support accepted relationships among termite, subsocial (Cryptocercus spp.) and solitary cockroach lineages to a large extent, while putative post-translational modification sites do not greatly differ between solitary and subsocial roaches and social termites. Our study provides important information not only for AKH and AKHR functional research but also for further analyses interested in their development as potential candidates for biorational pest control agents against invasive termites and cockroaches.


Asunto(s)
Cucarachas , Hormonas de Insectos , Animales , Cucarachas/metabolismo , Filogenia , Oligopéptidos/metabolismo , Hormonas de Insectos/metabolismo , Ácido Pirrolidona Carboxílico/metabolismo
16.
J Eukaryot Microbiol ; 70(3): e12967, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36760170

RESUMEN

Spirotrichonymphea, one of the six classes of phylum Parabasalia, are characterized by bearing many flagella in spiral rows, and they occur exclusively in the guts of termites. Phylogenetic relationships among the 13 described genera are not well understood due to complex morphological evolution and a paucity of molecular data. One such understudied genus is Spironympha. It has been variously considered a valid genus, a subgenus of Spirotrichonympha, or an "immature" life cycle stage of Spirotrichonympha. To clarify this, we sequenced the small subunit rRNA gene sequences of Spironympha and Spirotrichonympha cells isolated from the hindguts of Reticulitermes species and Hodotermopsis sjostedti and confirmed the molecular identity of H. sjostedti symbionts using fluorescence in situ hybridization. Spironympha as currently circumscribed is polyphyletic, with both H. sjostedti symbiont species branching separately from the "true" Spironympha from Reticulitermes. Similarly, the Spirotrichonympha symbiont of H. sjostedti branches separately from the "true" Spirotrichonympha found in Reticulitermes. Our data support Spironympha from Reticulitermes as a valid genus most closely related to Spirotrichonympha, though its monophyly and interspecific relationships are not resolved in our molecular phylogenetic analysis. We propose three new genera to accommodate the H. sjostedti symbionts and two new species of Spirotrichonympha from Reticulitermes.


Asunto(s)
Isópteros , Parabasalidea , Animales , Parabasalidea/genética , Filogenia , Hibridación Fluorescente in Situ , Simbiosis , Sistema Digestivo
17.
Environ Res ; 220: 115136, 2023 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-36584851

RESUMEN

The present focused on comparative study on synthesis of ZnO nanoparticles (ZnO NPs) using chemical method via alkaline precipitation method (ZnO(A) NPs) using NaOH and biogenic method using termite mound extract (ZnO(B) NPs). GC-MS analysis revealed that D-limonene present in termite mound extract might be responsible for the synthesis of ZnO(B) NPs. XRD patterns confirmed hexagonal crystalline structure of ZnO(A) and (B) NPs. Results of antibacterial activity illustrated that ZnO(B) NPs showed its potential against Pseudomonas aeruginosa, ESBL-1, ESBL-2 and EBSL-3. Antibiofilm studies revealed that ZnO(B) NPs exhibited optimum decline in MRSA biofilm formation than ZnO(A) NPs. In addition, ZnO(B) NPs showed potent cytotoxic effect against lung cancer cell lines A549 with IC50 of 35.16 ± 0.10 µg/mL in comparison with ZnO(A) NPs (IC50- 55.09 ± 0.30 µg/mL). Overall, the results revealed that biogenic synthesis of ZnO NPs ensures its biosafety level and enhanced biological activity when compared to chemical synthesis method.


Asunto(s)
Nanopartículas del Metal , Óxido de Zinc , Óxido de Zinc/farmacología , Óxido de Zinc/química , Nanopartículas del Metal/química , Pruebas de Sensibilidad Microbiana , Antibacterianos/farmacología , Antibacterianos/química , Extractos Vegetales/química , Biopelículas
18.
Biosci Biotechnol Biochem ; 87(9): 1077-1091, 2023 Aug 23.
Artículo en Inglés | MEDLINE | ID: mdl-37328422

RESUMEN

Chitinolytic bacteria were isolated from guts and shells of the termite Microcerotermes sp. Among the nineteen morphologically different chitinolytic isolates, three isolates with highest extracellular chitinase production ratio (≥2.26) were selected. Based on molecular identification of 16S rRNA gene sequences and biochemical characterizations using API test kits and MALDI-TOF MS, these isolates were closely related to Bacillus thuringiensis (Mc_E02) and Paenibacillus species (Mc_E07 and Mc_G06). Isolate Mc_E02 exhibited the highest chitinase-specific activity (2.45 U/mg protein) at 96 h of cultivation, and the enzyme activity was optimized at pH 7.0 and 45 °C. The isolate showed highest and broad-spectrum inhibitory effect against three phytopathogenic fungi (Curvularia lunata, Colletotrichum capsici, and Fusarium oxysporum). Its 36-kDa chitinase exhibited the biomass reduction and mycelium inhibition against all fungi, with highest effects to Curvularia lunata. This research provides novel information about termite chitinolytic bacteria and their effective chitinase, with potential use as biocontrol tool.


Asunto(s)
Bacillus thuringiensis , Quitinasas , Isópteros , Animales , Antifúngicos/farmacología , Isópteros/genética , Isópteros/metabolismo , ARN Ribosómico 16S/genética , Hongos/metabolismo , Bacillus thuringiensis/metabolismo , Quitinasas/metabolismo , Enfermedades de las Plantas/microbiología
19.
Pestic Biochem Physiol ; 189: 105306, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-36549813

RESUMEN

The immunity of insects plays a vital role in their survival. Our experiments found that lipopolysaccharide (LPS) and glucono-δ-lactone (GDL) could influence the virulence of Serratia marcescens Bizio (SM1) to Odontotermes formosanus (Shiraki) by affecting the immunity. Gram-negative binding proteins (GNBPs) are an important pattern recognition proteins that play a crucial role in the innate immune system. Therefore, two OfGNBPs were cloned in O. formosanus. The expression of OfGNBPs was significantly changed by LPS,SM1 and GDL, not prick. In addition, the immune-related gene expression, the phenoloxidase activity and antibacterial activity of donor termites and recipient termites were significantly induced by SM1. Furthermore, the knockdown of OfGNBP by RNA interference reduced not only individual immunity but also social immunity in O. formosanus, which increased the virulence of SM1 to O. formosanus. Importantly, dsOfGNBP alone also had good control effect on O. formosanus. In summary, we concluded that dsOfGNBPs are important termite immunosuppressants.


Asunto(s)
Isópteros , Animales , Isópteros/genética , Isópteros/microbiología , Serratia marcescens/genética , Lipopolisacáridos/farmacología
20.
J Insect Sci ; 23(1)2023 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-36757064

RESUMEN

In eusocial termites, successful pairing is an essential element of dispersal and distribution after the departure of alates from natal colonies. Two situations could arise during the pairing process: mixed-sex pairs and same-sex pairs. However, most previous studies focused on mixed-sex pairs, overlooking groups formed by same-sex pairings, especially potential fecundity (the total number of oocytes or ovarioles), oogenesis and the development stage of oocytes of females in female-female pairs, and spermatogenesis and testis development of males in male-male pairs. In this study, through experimentation, we investigated the reproductive ability of virgin dealates based on various pairing types as mentioned above. We found that the life spans of virgin dealates can cover 1 yr or even more when they establish a nest with a partner, which is more than 10-fold longer than the life span of individuals establishing a colony alone. After 1 yr of pairing, the potential fecundity of virgin same sex dealates did not degenerate significantly compared with newly emerged dealates, including the number of ovarioles, size of testis, oogenesis, and the development stage of the oocytes. Moreover, when individuals of same-sex pairings experimentally changed into mixed-sex pairs after 1 yr, the eggs produced in the colony hatched into larvae. These findings suggest that dealates which through same-sex pairs retain fecundity after 1 yr have more reproductive potential than dealates that failed to pair with heterosexuals, shedding light on the ecological significance of homosexual behaviors in terms of the successful extension and fecundity of eusocial termites.


Asunto(s)
Isópteros , Femenino , Masculino , Animales , Óvulo , Reproducción , Fertilidad , Larva
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda