Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 20 de 105
Filtrar
1.
Small ; : e2402255, 2024 Jun 05.
Artículo en Inglés | MEDLINE | ID: mdl-38837847

RESUMEN

The application of electrically conductive 1D coordination polymers (1D CPs) in nanoelectronic molecular recognition is theoretically promising yet rarely explored due to the challenges in their synthesis and optimization of electrical properties. In this regard, two tetrathiafulvalene-based 1D CPs, namely [Co(m-H2TTFTB)(DMF)2(H2O)]n (Co-m-TTFTB), and {[Ni(m-H2TTFTB)(CH3CH2OH)1.5(H2O)1.5]·(H2O)0.5}n (Ni-m-TTFTB) are successfully constructed. The shorter S···S contacts between the [M(solvent)3(m-H2TTFTB)]n chains contribute to a significant improvement in their electrical conductivities. The powder X-ray diffraction (PXRD) under different organic solvents reveals the flexible and dynamic structural characteristic of M-m-TTFTB, which, combined with the 1D morphology, lead to their excellent performance for sensitive detection of volatile organic compounds. Co-m-TTFTB achieves a limit of detection for ethanol vapor down to 0.5 ppm, which is superior to the state-of-the-art chemiresistive sensors based on metal-organic frameworks or organic polymers at room temperature. In situ diffuse reflectance infrared Fourier transform spectroscopy, PXRD measurements and density functional theory calculations reveal the molecular insertion sensing mechanism and the corresponding structure-function relationship. This work expands the applicable scenario of 1D CPs and opens a new realm of 1D CP-based nanoelectronic sensors for highly sensitive room temperature gas detection.

2.
Small ; 20(14): e2308013, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-37988642

RESUMEN

Redox-active tetrathiafulvalene (TTF)-based covalent organic frameworks (COFs) exhibit distinctive electrochemical and photoelectrical properties, but their prevalent two-dimensional (2D) structure with densely packed TTF moieties limits the accessibility of redox center and constrains their potential applications. To overcome this challenge, an 8-connected TTF linker (TTF-8CHO) is designed as a new building block for the construction of three-dimensional (3D) COFs. This approach led to the successful synthesis of a 3D COF with the bcu topology, designated as TTF-8CHO-COF. In comparison to its 2D counterpart employing a 4-connected TTF linker, the 3D COF design enhances access to redox sites, facilitating controlled oxidation by I2 or Au3+ to tune physical properties. When irradiated with a 0.7 W cm-2 808 nm laser, the oxidized 3D COF samples ( I X - ${\mathrm{I}}_{\mathrm{X}}^{-}$ @TTF-8CHO-COF and Au NPs@TTF-8CHO-COF) demonstrated rapid temperature increases of 239.3 and 146.1 °C, respectively, which surpassed those of pristine 3D COF (65.6 °C) and the 2D COF counterpart (6.4 °C increment after I2 treatment). Furthermore, the oxidation of the 3D COF heightened its photoelectrical responsiveness under 808 nm laser irradiation. This augmentation in photothermal and photoelectrical response can be attributed to the higher concentration of TTF·+ radicals generated through the oxidation of well-exposed TTF moieties.

3.
Chemistry ; 30(29): e202400564, 2024 May 23.
Artículo en Inglés | MEDLINE | ID: mdl-38525656

RESUMEN

Within this work we have investigated spiro-based tetrathiafulvalenes (TTFs) obtained as mixtures of stereoisomers from racemic spiro[5.5]undeca-1,8-dien-3-one. Compared to previously described spiro-TTFs, enantiomeric and diastereoisomeric forms have been here separated by chiral HPLC and fully characterized both experimentally and theoretically. The two types of spiro-based chiral derivatives contain either one (2) or three (1) chiral centres out of each one is spiro-type. Experimental CD, supported by TD-DFT calculations, shows differences in the optical activity between the 1 and 2 and their intermediates. The low optical activity of 2 and 3 (spiro alone chirality) was attributed to the presence of two conformers in the solution (ax and eq) of opposite Cotton effect whereas in the case of 1 and 5 (spiro and stereogenic centres) the spiro chirality seems to be responsible of the Cotton effect in the high energy region whereas the R and S chirality in the low energy region. Racemic and enantiopure forms have been successfully used for the synthesis of charge transfer complexes with tetracyanoquinodimethane (TCNQ) based acceptors.

4.
Angew Chem Int Ed Engl ; : e202407906, 2024 Jun 06.
Artículo en Inglés | MEDLINE | ID: mdl-38842475

RESUMEN

Redox flow batteries (RFBs) with high energy densities are essential for efficient and sustainable long-term energy storage on a grid scale. To advance the development of nonaqueous RFBs with high energy densities, a new organic RFB system employing a molecularly engineered tetrathiafulvalene derivative ((PEG3/PerF)-TTF) as a high energy density catholyte was developed. When paired with a lithium metal anode, the two-electron-active (PEG3/PerF)-TTF catholyte produced a cell voltage of 3.56 V for the first reduction and 3.92 V for the second reduction process. In cyclic voltammetry and flow cell tests, the redox chemistry exhibited excellent cycling stability. The Li|(PEG3/PerF)-TTF batteries, with concentrations of 0.1 M and 0.5 M, demonstrated capacity retention rates of ~94% (99.87% per cycle, 97.52% per day) and 90% (99.93% per cycle, 99.16% per day), and the average Coulombic efficiencies of 99.38% and 98.35%, respectively. The flow cell achieved a high power density of 129 mW/cm2. Furthermore, owing to the high redox potential and solubility of (PEG3/PerF)-TTF, the flow cell attained a high operational energy density of 72 Wh/L (100 Wh/L theoretical). A 0.75 M flow cell exhibited an even higher operational energy density of 96 Wh/L (150 Wh/L theoretical).

5.
Chemistry ; 29(35): e202300445, 2023 Jun 22.
Artículo en Inglés | MEDLINE | ID: mdl-37071327

RESUMEN

The extreme sensitivity of trivalent lanthanide ions to crystal field variations led to the emergence of single-molecule magnetic switching under various stimuli. The use of pressure as an external stimulus instead of classic light irradiation, oxidation or any chemical reactions allows a fine tuning of the magnetic modulation. Here the well-known pure isotopically enriched [162 Dy(tta)3 (L)]⋅C6 H14 (162 Dy) Single-Molecule Magnet (SMM) (tta- =2-2-thenoyltrifluoroacetonate and L=4,5-bis(propylthio)-tetrathiafulvalene-2-(2-pyridyl)benzimidazole-methyl-2-pyridine) was experimentally investigated by single-crystal diffraction and squid magnetometry under high applied pressures. Both reversible piezochromic properties and pressure modulation of the slow magnetic relaxation behavior were demonstrated and supported by ab initio calculations. The magnetic study of the diluted sample [162 Dy0.05 Y0.95 (tta)3 (L)]⋅C6 H14 (162 Dy@Y) indicated that variations in the electronic structure have mainly intermolecular origin with weak intramolecular contribution. Quantitative magnetic interpretation concludes to a deterioration of the Orbach process for the benefit of both Raman and QTM mechanisms under applied pressure.


Asunto(s)
Compuestos Heterocíclicos , Imanes , Disprosio , Fenómenos Magnéticos
6.
Chemistry ; 29(34): e202301048, 2023 Jun 19.
Artículo en Inglés | MEDLINE | ID: mdl-37022345

RESUMEN

Tetrathiafulvalene (TTF) and Ni-bis(dithiolene) are typical conductive units widely studied in electronics, optics, and photochemistry. However, their applications in near-infrared (NIR) photothermal conversion are often limited by insufficient NIR absorption and low chemical/thermal stability. Herein, we integrate TTF and Ni-bis(dithiolene) into a covalent organic framework (COF) with stable and efficient NIR and solar photothermal conversion performance. Two isostructural COFs, namely Ni-TTF and TTF-TTF, are successfully isolated which are composed of TTF and Ni-bis(dithiolene) units as donor-acceptor (D-A) pairs or TTF units only. Both COFs show high BET surface areas and good chemical/thermal stability. Notably, compared with TTF-TTF, the periodic D-A arrangement in Ni-TTF significantly lowers the bandgap, leading to unprecedented NIR and solar photothermal conversion performance.

7.
Chemistry ; 29(37): e202300572, 2023 Jul 03.
Artículo en Inglés | MEDLINE | ID: mdl-37021746

RESUMEN

Tetrathiafulvalene is among the best known building blocks in molecular electronics due to its outstanding electron-donating and redox properties. Among its derivatives, dithiophene-tetrathiafulvalene (DT-TTF) has attracted considerable interest in organic electronics, owing to its high field-effect mobility. Herein, we report the direct C-H arylation of DT-TTF to synthesise mono- and tetraarylated derivatives functionalised with electron-withdrawing and electron-donating groups in order to evaluate their influence on the electronic properties by cyclic voltammetry, UV-vis spectroscopy and theoretical calculations. Self-assembly of the DT-TTF-tetrabenzoic acid derivative was studied by using scanning tunnelling microscopy (STM) which revealed the formation of ordered, densely packed 2D hydrogen-bonded networks at the graphite/liquid interface. The tetrabenzoic acid derivative can attain a planar geometry on the graphite surface due to van der Waals interactions with the surface and H-bonding with neighbouring molecules. This study demonstrates a simple method for the synthesis of arylated DT-TTF derivatives towards the design and construction of novel π-extended electroactive frameworks.

8.
Molecules ; 28(3)2023 Jan 17.
Artículo en Inglés | MEDLINE | ID: mdl-36770584

RESUMEN

To construct novel ion receptors and D-A self-assembly systems for materials with better functions, the annulation of a tetrathiafulvalene donor with a magnesium norphthalocyanine core via a flexible tetrathiacrown ether bridge afforded a new triad 1. The structure of this product was characterized by 1H NMR and infrared spectroscopy, time-of-flight mass spectrometry, and elemental analysis. The optical and electrochemical properties were investigated using UV-vis spectroscopy and cyclic voltammetry. The complex of triad 1 and 2,3,5,6- tetrafluoro-7,7,8,8-tetracyanoquinodimethane produced electron transfer with a radical cationic character, as confirmed by UV-Vis and electron paramagnetic resonance analysis. Furthermore, the target compound presented evident intramolecular charge-transfer interactions in ground states, which were explained using density functional theory. Furthermore, norphthalocyanine 1 was able to coordinate Ag+ through the peripheral ligating oxathiaether crown.

9.
Angew Chem Int Ed Engl ; 62(10): e202211850, 2023 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-36636786

RESUMEN

Metal-organic frameworks (MOFs), with diverse metal nodes and designable organic linkers, offer unique opportunities for the rational engineering of semiconducting properties. In this work, we report a mixed-linker conductive MOF system with both tetrathiafulvalene and Ni-bis(dithiolene) moieties, which allows the fine-tuning of electronic structures and semiconductive characteristics. By continuously increasing the molar ratio between tetrathiafulvalene and Ni-bis(dithiolene), the switching of the semiconducting behaviors from n-type to p-type was observed along with an increase in electrical conductivity by 3 orders of magnitude (from 2.88×10-7  S m-1 to 9.26×10-5  S m-1 ). Furthermore, mixed-linker MOFs were applied for the chemiresistive detection of volatile organic compounds (VOCs), where the sensing performance was modulated by the corresponding linker ratios, showing synergistic and nonlinear modulation effects.

10.
Angew Chem Int Ed Engl ; 62(27): e202304183, 2023 Jul 03.
Artículo en Inglés | MEDLINE | ID: mdl-37154674

RESUMEN

Modulation of the ligands and coordination environment of metal-organic frameworks (MOFs) has been an effective and relatively unexplored avenue for improving the anode performance of lithium-ion batteries (LIBs). In this study, three MOFs are synthesized, namely, M4 (o-TTFOB)(bpm)2 (H2 O)2 (where M is Mn, Zn, and Cd; o-H8 TTFOB is ortho-tetrathiafulvalene octabenzoate; and bpm is 2,2'-bipyrimidine), based on a new ligand o-H8 TTFOB with two adjacent carboxylates on one phenyl, which allows us to establish the impact of metal coordination on the performance of these MOFs as anode materials in LIBs. Mn-o-TTFOB and Zn-o-TTFOB, with two more uncoordinated oxygen atoms from o-TTFOB8- , show higher reversible specific capacities of 1249 mAh g-1 and 1288 mAh g-1 under 200 mA g-1 after full activation. In contrast, Cd-o-TTFOB shows a reversible capacity of 448 mAh g-1 under the same condition due to the lack of uncoordinated oxygen atoms. Crystal structure analysis, cyclic voltammetry measurements of the half-cell configurations, and density functional theory calculations have been performed to explain the lithium storage mechanism, diffusion kinetics, and structure-function relationship. This study demonstrates the advantages of MOFs with high designability in the fabrication of LIBs.

11.
Molecules ; 27(13)2022 Jun 23.
Artículo en Inglés | MEDLINE | ID: mdl-35807293

RESUMEN

Metal-organic frameworks (MOFs) constructed by tetrathiafulvalene-tetrabenzoate (H4TTFTB) have been widely studied in porous materials, while the studies of other TTFTB derivatives are rare. Herein, the meta derivative of the frequently used p-H4TTFTB ligand, m-H4TTFTB, and lanthanide (Ln) metal ions (Tb3+, Er3+, and Gd3+) were assembled into three novel MOFs. Compared with the reported porous Ln-TTFTB, the resulted three-dimensional frameworks, Ln-m-TTFTB ([Ln2(m-TTFTB)(m-H2TTFTB)0.5(HCOO)(DMF)]·2DMF·3H2O), possess a more dense stacking which leads to scarce porosity. The solid-state cyclic voltammetry studies revealed that these MOFs show similar redox activity with two reversible one-electron processes at 0.21 and 0.48 V (vs. Fc/Fc+). The results of magnetic properties suggested Dy-m-TTFTB and Er-m-TTFTB exhibit slow relaxation of the magnetization. Porosity was not found in these materials, which is probably due to the meta-configuration of the m-TTFTB ligand that seems to hinder the formation of pores. However, the m-TTFTB ligand has shown to be promising to construct redox-active or electrically conductive MOFs in future work.


Asunto(s)
Elementos de la Serie de los Lantanoides , Estructuras Metalorgánicas , Compuestos Heterocíclicos , Ligandos , Oxidación-Reducción
12.
Molecules ; 27(21)2022 Nov 07.
Artículo en Inglés | MEDLINE | ID: mdl-36364465

RESUMEN

The synthesis of a tetrathiafulvalene (TTF) derivative, S-[4-({4-[(2,2'-bi-1,3-dithiol-4-ylmethoxy)methyl] phenyl}ethynyl)phenyl] ethanethioate, suitable for the modification of gold nanoparticles (AuNPs), is described in this article. The TTF ligand was self-assembled on the AuNP surface through ligand exchange, starting from dodecanethiol-stabilized AuNPs. The resulting modified AuNPs were characterized by TEM, UV-Vis spectroscopy, and electrochemistry. The most suitable electrochemical method was the phase-sensitive AC voltammetry at very low frequencies of the sine-wave perturbation. The results indicate a diminishing electronic communication between the two equivalent redox centers of TTF and also intermolecular donor-acceptor interactions manifested by an additional oxidation wave upon attachment of the ligand to AuNPs.


Asunto(s)
Oro , Nanopartículas del Metal , Oro/química , Electroquímica/métodos , Ligandos , Nanopartículas del Metal/química
13.
Molecules ; 27(20)2022 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-36296517

RESUMEN

Chiral bis(TTF) diamides have been obtained in good yields (54-74%) from 1,2-cyclohexane-diamine and the corresponding TTF acyl chlorides. The (R,R)-1 and (S,S)-1 enantiomers have been characterized by circular dichroism and the racemic form by single-crystal X-ray diffraction. The neutral racemic bis(TTF)-diamide shows the formation of a pincer-like framework in the solid state, thanks to the intramolecular S···S interactions. The chemical oxidation in a solution using FeCl3 provides stable oxidized species, while the electrocrystallization experiments provided radical cation salts. In particular, single-crystal resistivity measurements on the racemic donor with AsF6- as a counterion demonstrate semiconductor behavior in this material. The DFT and TD-DFT calculations support the structural and chiroptical features of these new chiral TTF donors.

14.
Chemistry ; 27(32): 8315-8324, 2021 Jun 04.
Artículo en Inglés | MEDLINE | ID: mdl-33856724

RESUMEN

Polycyclic aromatic hydrocarbons (PAHs) have found strong interest for their electronic properties and as model systems for graphene. While PAHs have been studied intensively as single units, here PAHs were constructed in ladder-type arrangements using cross-conjugated fulvalene and dithiafulvalene motifs as connecting units and moving forward a convenient synthetic approach for dimerizing (thio)ketones into olefins by the action of Lawesson's reagent. Some of the PAHs can also be regarded as "super-extended" tetrathiafulvalenes (TTFs) with some of the largest cores ever explored, being multi-redox systems that exhibit both reversible oxidations and reductions. Concomitant absorption redshifts were observed when expanding the ladder-type structures from one to two to three indenofluorene units, and optical and electrochemical HOMO-LUMO gaps were found to correlate linearly. Various conformations (and solid-state packing arrangements) were studied by X-ray crystallography and computations.

15.
Chemistry ; 27(13): 4466-4472, 2021 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-33347663

RESUMEN

Two sterically crowded benzo-tetrathiafulvalene (BTTF)-annulated expanded porphyrins (BTTF7-F and BTTF8) are synthesized. Detailed photophysical investigations reveal their intrinsic intramolecular charge transfer (CT) character, originated from partial electron transfer from electron-rich TTF units to the relatively electron-deficient macrocyclic core. This finding stands in contrast to what was observed in the previously reported Figure-of-eight conformer of BTTF-annulated [28]hexaphyrin (BTTF6), in which a typical π-π* electronic transition from HOMO to LUMO was observed. However, core expansion in BTTF7-F and BTTF8 makes the oligopyrrole macrocyclic cores relatively more electron-deficient, facilitating the effective intramolecular CT process. Comparative electrochemical investigations reveal that the current generated at the oxidative region is directly proportional to the number of TTF units attached to the macrocyclic core. This work demonstrates the control of the intramolecular CT process through incremental addition of TTF units to the macrocyclic core. Facile multielectron electrochemical oxidations of these expanded porphyrins suggest that they behave like potential multielectron reservoirs.

16.
Chem Rec ; 21(12): 3520-3531, 2021 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-34086402

RESUMEN

Tetrathiafulvalene (TTF) and its analogs are fascinating molecules in materials science based on their excellent electron-donating abilities. This personal account describes recent advances in the synthesis of TTF analogs for functional materials via the palladium-catalyzed modification of peripheries of TTF analogs. We first consider three types of molecules: fluorophore-TTF hybrid molecules, multi-redox systems, and an organic ligand for metal-organic frameworks. These molecules were successfully synthesized via Stille coupling or palladium-catalyzed direct C-H arylation and their structural, electrochemical, and optical properties were clarified. Subsequently, phosphorus-substituted TTF analogs were successfully synthesized for future applications of redox-active phosphine ligands for metal catalysts. The development of these molecules can significantly affect the advancement of chemical science.


Asunto(s)
Compuestos Heterocíclicos , Catálisis , Ligandos , Paladio
17.
Chemistry ; 26(47): 10707-10711, 2020 Aug 21.
Artículo en Inglés | MEDLINE | ID: mdl-32277543

RESUMEN

carbo-Benzene is an aromatic molecule devised by inserting C2 units within each C-C bond of the benzene molecule. By integrating the corresponding carbo-quinoid core as bridging unit in a π-extended tetrathiafulvalene (exTTF), it is shown that a carbo-benzene ring can be reversibly formed by electrochemical reduction or oxidation. The so-called carbo-exTTF molecule was thus experimentally prepared and studied by UV-visible absorption spectroscopy and cyclic voltammetry, as well as by X-ray crystallography and by scanning tunneling microscopy (STM) on a surface of highly oriented pyrolytic graphite (HOPG). The molecule and its oxidized and reduced forms were subjected to a computational study at the density functional theory (DFT) level, supporting carbo-aromaticity as a driving force for the formation of the dication, radical cation, and radical anion. By allowing co-planarity of the dithiolylidene rings and carbo-quinoidal core, carbo-exTTFs present a promising new class of redox-active systems.

18.
Chemistry ; 26(28): 6165-6175, 2020 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-32049376

RESUMEN

A tetra-stable donor-acceptor [2]rotaxane 1⋅4PF6 has been synthesized. The dumbbell component is comprised of an oxyphenylene (OP), a tetrathiafulvalene (TTF), a monopyrrolo-TTF (MPTTF), and a hydroquinone (HQ) unit, which can act as recognition sites (stations) for the tetra-cationic cyclophane cyclobis(paraquat-p-phenylene) (CBPQT4+ ). The TTF and the MPTTF stations are located in the middle of the dumbbell component and are connected by a triethylene glycol (TEG) chain in such a way that the pyrrole moiety of the MPTTF station points toward the TTF station, while the TTF and MPTTF stations are flanked by the OP and HQ stations on their left hand side and right hand side, respectively. The [2]rotaxane was characterized in solution by 1 H NMR spectroscopy and cyclic voltammetry. The spectroscopic data revealed that the majority (77 %) of the tetra-stable [2]rotaxane 14+ exist as the translational isomer 1⋅MPTTF4+ in which the CBPQT4+ ring encircles the MPTTF station. The electrochemical studies showed that CBPQT4+ in 1⋅MPTTF4+ undergoes ring translation as result of electrostatic repulsion from the oxidized MPTTF unit. Following tetra-oxidation of 1⋅MPTTF4+ , a high-energy state of 18+ was obtained (i.e., 1⋅TEG8+ ) in which the CBPQT4+ ring was located on the TEG linker connecting the di-oxidized TTF2+ and MPTTF2+ units. 1 H NMR spectroscopy carried out in CD3 CN at 298 K on a chemically oxidized sample of 1⋅MPTTF4+ revealed that the metastable state 1⋅TEG8+ is only short-lived with a lifetime of a few minutes and it was found that 70 % of the positively charged CBPQT4+ ring moved from 1⋅TEG8+ to the HQ station, while 30 % moved to the much weaker OP station. These results clearly demonstrate that the CBPQT4+ ring can cross both an MPTTF2+ and a TTF2+ electrostatic barrier and that the free energy of activation required to cross MPTTF2+ is ca. 0.5 kcal mol-1 smaller as compared to TTF2+ .

19.
Molecules ; 25(3)2020 Jan 23.
Artículo en Inglés | MEDLINE | ID: mdl-31979347

RESUMEN

The reaction between the 2,2'-benzene-1,4-diylbis(6-hydroxy-4,7-di-tert-butyl-1,3-benzodithiol-2-ylium-5-olate triad (H2SQ) and the metallo-precursor [Yb(hfac)3]2H2O led to the formation of a dinuclear coordination complex of formula [Yb2(hfac)6(H2SQ)]0.5CH2Cl2 (H2SQ-Yb). After chemical oxidation of H2SQ in 2,2'-cyclohexa-2,5-diene-1,4-diylidenebis(4,7-di-tert-butyl-1,3-benzodithiole-5,6-dione (Q), the latter triad reacted with the [Yb(hfac)3]2H2O precursor to give the dinuclear complex of formula [Yb2(hfac)6(Q)] (Q-Yb). Both dinuclear compounds have been characterized by X-ray diffraction, DFT optimized structure and electronic absorption spectra. They behaved as field-induced Single-Molecule Magnets (SMMs) nevertheless the chemical oxidation of the semiquinone to quinone moieties accelerated by a factor of five the relaxation time of the magnetization of Q-Yb compared to the one for H2SQ-Yb. The H2SQ triad efficiently sensitized the YbIII luminescence while the chemical oxidation of H2SQ into Q induced strong modification of the absorption properties and thus a quenching of the YbIII luminescence for Q-Yb. In other words, both magnetic modulation and luminescence quenching are reached by the oxidation of the protonated semiquinone into quinone.


Asunto(s)
Imanes , Iterbio/química , Benzoquinonas/química , Química Computacional , Cristalografía por Rayos X , Teoría Funcional de la Densidad , Luminiscencia , Estructura Molecular , Oxidación-Reducción , Quinonas/química , Espectrometría de Fluorescencia , Temperatura , Difracción de Rayos X
20.
Angew Chem Int Ed Engl ; 59(50): 22721-22730, 2020 Dec 07.
Artículo en Inglés | MEDLINE | ID: mdl-32844541

RESUMEN

Orientational control of functional molecules is essential to create complex functionalities as seen in nature; however, such artificial systems have remained challenge. Herein, we have succeeded in controlling rotational isomerism of µ-oxo silicon phthalocyanine (SiPc) oligomers to achieve an external-stimuli-responsive orientational ordering using intermolecular interactions of tetrathiafulvalene (TTF). In this system, three modes of orientations, free rotation, eclipsed conformation, and staggered conformation, were interconverted in response to the oxidation states of TTF, which varied interactions from association due to formation of mixed-valence TTF dimer to dissociation due to electrostatic repulsion between TTF dications. Furthermore, a stable performance of oligomers as a cathode material in a Li-ion battery proved that the one-dimensionally stacked, rotatable structure of SiPc oligomers is useful to control the orientation of functional molecules toward molecular electronics.

SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda