RESUMEN
BACKGROUND: During long-term antiplatelet agents (APAs) administration, patients with thrombotic diseases take a fairly high risk of life-threatening bleeding, especially when in need of urgent surgery. Rapid functional reversal of APAs remains an issue yet to be efficiently resolved by far due to the lack of any specific reversal agent in the clinic, which greatly restricts the use of APAs. METHODS: Flow cytometry analysis was first applied to assess the dose-dependent reversal activity of platelet-mimicking perfluorocarbon-based nanosponges (PLT-PFCs) toward ticagrelor. The tail bleeding time of mice treated with APAs followed by PLT-PFCs was recorded at different time points, along with corresponding pharmacokinetic analysis of ticagrelor and tirofiban. A hemorrhagic transformation model was established in experimental stroke mice with thrombolytic/antiplatelet therapy. Magnetic resonance imaging was subsequently applied to observe hemorrhage and thrombosis in vivo. Further evaluation of the spontaneous clot formation activity of PLT-PFCs was achieved by clot retraction assay in vitro. RESULTS: PLT-PFCs potently reversed the antiplatelet effect of APAs by competitively binding with APAs. PLT-PFCs showed high binding affinity comparable to fresh platelets in vitro with first-line APAs, ticagrelor and tirofiban, and efficiently reversed their function in both tail bleeding and postischemic-reperfusion models. Moreover, the deficiency of platelet intrinsic thrombotic activity diminished the risk of thrombogenesis. CONCLUSIONS: This study demonstrated the safety and effectiveness of platelet-mimicking nanosponges in ameliorating the bleeding risk of different APAs, which offers a promising strategy for the management of bleeding complications induced by antiplatelet therapy.
Asunto(s)
Inhibidores de Agregación Plaquetaria , Trombosis , Animales , Ratones , Inhibidores de Agregación Plaquetaria/efectos adversos , Plaquetas , Ticagrelor/efectos adversos , Tirofibán/efectos adversos , Hemorragia/inducido químicamente , Trombosis/tratamiento farmacológico , Trombosis/prevención & control , Trombosis/inducido químicamenteRESUMEN
Breast cancer is the most common cancer in women. Although chemotherapy is still broadly used in its treatment, adverse effects remain a challenge. In this scenario, aptamers emerge as a promising alternative for theranostic applications. Studies using breast cancer cell lines provide useful information in laboratory and preclinical investigations, most of which use cell lines established from metastatic sites. However, these cell lines correspond to cell populations of the late stage of tumor progression. On the other hand, studies using breast cancer cells established from primary sites make it possible to search for new theranostic approaches in the early stages of the disease. Therefore, this work aimed to select RNA aptamers internalized by MGSO-3 cells, a human breast cancer cell line, derived from a primary site previously established in our laboratory. Using the Cell-Internalization SELEX method, we have selected two candidate aptamers (ApBC1 and ApBC2). We evaluated their internalization efficiencies, specificities, cellular localization by Reverse Transcription-qPCR (RT-qPCR) and confocal microscopy assays. The results suggest that both aptamers were efficiently internalized by human breast cancer cells, MACL-1, MDA-MB-231, and especially by MGSO-3 cells. Furthermore, both aptamers could effectively distinguish human breast cancer cells derived from normal human mammary cell (MCF 10A) and prostate cancer cell (PC3) lines. Therefore, ApBC1 and ApBC2 could be promising candidate molecules for theranostic applications, even in the early stages of tumor progression.
Asunto(s)
Aptámeros de Nucleótidos , Neoplasias de la Mama , Humanos , Femenino , Aptámeros de Nucleótidos/genética , Neoplasias de la Mama/genética , Neoplasias de la Mama/tratamiento farmacológico , Células MCF-7 , Línea Celular Tumoral , Técnica SELEX de Producción de AptámerosRESUMEN
Pyroptosis is a recently discovered process of programmed cell death that is linked with tumor progression and potential treatment strategies. Unlike other forms of programmed cell death, such as apoptosis or necrosis, pyroptosis is associated with pore-forming proteins gasdermin D (GSDMD), which are cleaved by caspase enzymes to form oligomers. These oligomers are then inserted into the cell surface membrane, causing pores to consequently result in rapid cell death. Pyroptosis, in conjunction with immunotherapy, represents a promising avenue for prognostication and antitumor therapy, providing a more precise direction for disease treatment. To gain deeper insight into the mechanisms underlying pyroptosis in real-time, non-invasive and live cell imaging techniques are urgently needed. Non-invasive imaging techniques can enhance future diagnostic and therapeutic approaches for inflammatory diseases, including different types of tumors. This review article discusses various non-invasive molecular probes for detecting pyroptosis, including genetic reporters and nanomaterials. These strategies can enhance scientists' understanding of pyroptosis and help discover personalized and effective ways to treat inflammatory diseases, particularly tumors.
Asunto(s)
Sondas Moleculares , Neoplasias , Piroptosis , Humanos , Sondas Moleculares/química , Sondas Moleculares/metabolismo , Animales , Neoplasias/terapia , Neoplasias/metabolismo , Neoplasias/diagnóstico por imagen , Neoplasias/diagnóstico , Neoplasias/genética , Neoplasias/patología , Imagen Molecular/métodos , Nanomedicina Teranóstica/métodos , Proteínas de Unión a Fosfato/metabolismo , Proteínas de Unión a Fosfato/genética , GasderminasRESUMEN
Designing suitable nanomaterials is an ideal strategy to enable early diagnosis and effective treatment of diseases. Carbon dots (CDs) are luminescent carbonaceous nanoparticles that have attracted considerable attention. Through facile synthesis, they process properties including tunable light emission, low toxicity, and light energy transformation, leading to diverse applications as optically functional materials in biomedical fields. Recently, their potentials have been further explored, such as enzyme-like activity and ability to promote osteogenic differentiation. Through refined synthesizing strategies carbon dots, a rich treasure trove for new discoveries, stand a chance to guide significant development in biomedical applications. In this review, the authors start with a brief introduction to CDs. By presenting mechanisms and examples, the authors focus on how they can be used in diagnosing and treating diseases, including bioimaging failure of tissues and cells, biosensing various pathogenic factors and biomarkers, tissue defect repair, anti-inflammation, antibacterial and antiviral, and novel oncology treatment. The introduction of the application of integrated diagnosis and treatment follows closely behind. Furthermore, the challenges and future directions of CDs are discussed. The authors hope this review will provide critical perspectives to inspire new discoveries on CDs and prompt their advances in biomedical applications.
Asunto(s)
Nanopartículas , Puntos Cuánticos , Carbono , Medicina de Precisión , OsteogénesisRESUMEN
Atherosclerosis is the primary cause of cardiovascular events such as heart attacks and strokes. However, current medical practice lacks non-invasive, reliable approaches for both imaging atherosclerotic plaques and delivering therapeutic agents directly therein. Here, a biocompatible and biodegradable pH-responsive nanoscale coordination polymers (NCPs) based theranostic system is reported for managing atherosclerosis. NCPs are synthesized with a pH-responsive benzoic-imine (BI) linker and Gd3+. Simvastatin (ST), a statin not used for lowering blood cholesterol but known for its anti-inflammatory and antioxidant effects in mice, is chosen as the model drug. By incorporating ST into the hydrophobic domain of a lipid bilayer shell on NCPs surfaces, ST/NCP-PEG nanoparticles are created that are designed for dual purposes: they diagnose and treat atherosclerosis. When administered intravenously, they target atherosclerotic plaques, breaking down in the mild acidic microenvironment of the plaque to release ST, which reduces inflammation and oxidative stress, and Gd-complexes for MR imaging of the plaques. ST/NCP-PEG nanoparticles show efficacy in slowing the progression of atherosclerosis in live models and allow for simultaneous in vivo monitoring without observed toxicity in major organs. This positions ST/NCP-PEG nanoparticles as a promising strategy for the spontaneous diagnosis and treatment of atherosclerosis.
RESUMEN
Two innovative early/late Ti-Pt-heterobimetallic complexes were synthesized, characterized, and screened in cell-based assays using several human (SW480 and MDA-MB-231) and murine cancer cell lines (CT26 and EMT6) as well as a non-cancerous cell line (HMEC). The combination of the two metals - titanium(IV) and platinum (IV) - in a single molecule led to a synergistic biological activity (higher anti-proliferative properties than a mixture of each of the corresponding monometallic complexes). This study also investigated the benefits of associating a metal-free terpyridine moiety (with intrinsic biological activity) with a water-soluble titanocene fragment. The present work reveals that these combinations results in water-soluble titanocene compounds displaying an anti-proliferative activity down to the submicromolar level. One of these complexes induced an antitumor effect inâ vivo in CT26 tumor bearing BALB/C mice. The terpyridine moiety was also used to track the complex inâ vitro by multiphoton microscopy imaging.
Asunto(s)
Antineoplásicos , Proliferación Celular , Ratones Endogámicos BALB C , Platino (Metal) , Solubilidad , Titanio , Agua , Animales , Humanos , Titanio/química , Titanio/farmacología , Antineoplásicos/farmacología , Antineoplásicos/química , Antineoplásicos/síntesis química , Proliferación Celular/efectos de los fármacos , Ratones , Platino (Metal)/química , Platino (Metal)/farmacología , Agua/química , Complejos de Coordinación/química , Complejos de Coordinación/farmacología , Complejos de Coordinación/síntesis química , Línea Celular Tumoral , Ensayos de Selección de Medicamentos Antitumorales , Compuestos Organometálicos/química , Compuestos Organometálicos/farmacología , Compuestos Organometálicos/síntesis química , Diseño de Fármacos , Cationes/química , Cationes/farmacología , Estructura MolecularRESUMEN
Neurodegenerative diseases (NDDs) refer to a complex heterogeneous group of diseases which are associated with the accumulation of amyloid fibrils or plaques in the brain leading to progressive loss of neuronal functions. Alzheimer's disease is one of the major NDD responsible for 60-80 % of all dementia cases. Currently, there are no curative or disease-reversing/modifying molecules for many of the NDDs except a few such as donepezil, rivastigmine, galantamine, carbidopa and levodopa which treat the disease-associated symptoms. Similarly, there are very few FDA-approved tracers such as flortaucipir (Tauvid) for tau fibril imaging and florbetaben (Neuraceq), flutemetamol (Vizamyl), and florbetapir (Amyvid) for amyloid imaging available for diagnosis. Recent advances in the cryogenic electron microscopy reported distinctly different microstructures for tau fibrils associated with different tauopathies highlighting the possibility to develop tauopathy-specific imaging agents and therapeutics. In addition, it is important to identify the proteins that are associated with disease development and progression to know about their 3D structure to develop various diagnostics, therapeutics and theranostic agents. The current article discusses in detail the disease-associated amyloid and non-amyloid proteins along with their structural insights. We comprehensively discussed various novel proteins associated with NDDs and their implications in disease pathology. In addition, we document various emerging chemical compounds developed for diagnosis and therapy of different NDDs with special emphasis on theranostic agents for better management of NDDs.
Asunto(s)
Enfermedades Neurodegenerativas , Humanos , Enfermedades Neurodegenerativas/tratamiento farmacológico , Enfermedades Neurodegenerativas/metabolismo , Proteínas tau/metabolismo , Proteínas tau/antagonistas & inhibidores , Amiloide/metabolismo , Amiloide/antagonistas & inhibidores , Amiloide/química , Proteínas Amiloidogénicas/metabolismo , Proteínas Amiloidogénicas/química , Proteínas Amiloidogénicas/antagonistas & inhibidores , Nanomedicina Teranóstica , AnimalesRESUMEN
BACKGROUND: CI-8993 is a fully human IgG1κ monoclonal antibody (mAb) that binds specifically to immune checkpoint molecule VISTA (V-domain Ig suppressor of T-cell activation). Phase I safety has been established in patients with advanced cancer (NCT02671955). To determine the pharmacokinetics and biodistribution of CI-8993 in patients, we aimed to develop 89Zr-labelled CI-8993 and validate PET imaging and quantitation in preclinical models prior to a planned human bioimaging trial. METHODS: CI-8993 and human isotype IgG1 control were conjugated to the metal ion chelator p-isothiocyanatobenzyl-desferrioxamine (Df). Quality of conjugates were assessed by SE-HPLC, SDS-PAGE, and FACS. After radiolabelling with zirconium-89 (89Zr), radioconjugates were assessed for radiochemical purity, immunoreactivity, antigen binding affinity, and serum stability in vitro. [89Zr]Zr-Df-CI-8993 alone (1 mg/kg, 4.6 MBq) or in combination with 30 mg/kg unlabelled CI-8993, as well as isotype control [89Zr]Zr-Df-IgG1 (1 mg/kg, 4.6 MBq) were assessed in human VISTA knock-in female (C57BL/6 N-Vsirtm1.1(VSIR)Geno, huVISTA KI) or control C57BL/6 mice bearing syngeneic MB49 bladder cancer tumours; and in BALB/c nu/nu mice bearing pancreatic Capan-2 tumours. RESULTS: Stable constructs with an average chelator-to-antibody ratio of 1.81 were achieved. SDS-PAGE and SE-HPLC showed integrity of CI-8993 was maintained after conjugation; and ELISA indicated no impact of conjugation and radiolabelling on binding to human VISTA. PET imaging and biodistribution in MB49 tumour-bearing huVISTA KI female mice showed specific localisation of [89Zr]Zr-Df-CI-8993 to VISTA in spleen and tumour tissues expressing human VISTA. Specific tumour uptake was also demonstrated in Capan-2 xenografted BALB/c nu/nu mice. CONCLUSIONS: We radiolabelled and validated [89Zr]Zr-Df-CI-8993 for specific binding to huVISTA in vivo. Our results demonstrate that 89Zr-labelled CI-8993 is now suitable for targeting and imaging VISTA expression in human trials.
Asunto(s)
Tomografía de Emisión de Positrones , Radioisótopos , Circonio , Animales , Femenino , Humanos , Ratones , Anticuerpos Monoclonales/química , Anticuerpos Monoclonales/farmacocinética , Antígenos B7 , Línea Celular Tumoral , Deferoxamina/química , Deferoxamina/análogos & derivados , Marcaje Isotópico , Radioisótopos/química , Distribución Tisular , Circonio/química , Ratones Endogámicos BALB C , Ratones Endogámicos C57BLRESUMEN
BACKGROUND: Near-infrared II theranostic agents have gained great momentum in the research field of AD owing to the appealing advantages. Recently, an array of activatable NIR-II fluorescence probes has been developed to specifically monitor pathological targets of AD. Furthermore, various NIR-II-mediated nanomaterials with desirable photothermal and photodynamic properties have demonstrated favorable outcomes in the management of AD. METHODS: We summerized amounts of references and focused on small-molecule probes, nanomaterials, photothermal therapy, and photodynamic therapy based on NIR-II fluorescent imaging for the diagnosis and treatment in AD. In addition, design strategies for NIR-II-triggered theranostics targeting AD are presented, and some prospects are also addressed. RESULTS: NIR-II theranostic agents including small molecular probes and nanoparticles have received the increasing attention for biomedical applications. Meanwhile, most of the theranostic agents exhibited the promising results in animal studies. To our surprise, the multifunctional nanoplatforms also show a great potential in the diagnosis and treatment of AD. CONCLUSIONS: Although NIR-II theranostic agents showed the great potential in diagnosis and treatment of AD, there are still many challenges: 1) Faborable NIR-II fluorohpores are still lacking; 2) Biocompatibility, bioseurity and dosage of NIR-II theranostic agents should be further revealed; 3) New equipment and software associated with NIR-II imaging system should be explored.
Asunto(s)
Enfermedad de Alzheimer , Rayos Infrarrojos , Nanomedicina Teranóstica , Humanos , Nanomedicina Teranóstica/métodos , Enfermedad de Alzheimer/diagnóstico por imagen , Enfermedad de Alzheimer/terapia , AnimalesRESUMEN
PURPOSE: Fibroblast Activation Protein (FAP) is an emerging theranostic target that is highly expressed on cancer-associated fibroblasts and on certain tumor cells including sarcoma. We investigated the anti-tumor efficacy of [225Ac]Ac-FAPI-46 as monotherapy or in combination with immune checkpoint blockade (ICB) in immunocompetent murine models of sarcoma sensitive or resistant to ICB. METHODS: [68Ga]Ga- and [225Ac]Ac-FAPI-46 were tested in subcutaneous FAP+ FSA fibrosarcoma bearing C3H/Sed/Kam mice. The efficacy of up to three cycles of 60 kBq [225Ac]Ac-FAPI-46 was evaluated as monotherapy and in combination with an anti-PD-1 antibody. Efficacy of [225Ac]Ac-FAPI-46 and/or ICB was further compared in FAP-overexpressing FSA (FSA-F) tumors that were sensitive to ICB or rendered ICB-resistant by tumor-induction in the presence of Abatacept. RESULTS: [225Ac]Ac-FAPI-46 was well tolerated up to 3 × 60 kBq but had minimal effect on FSA tumor growth. The combination of three cycles [225Ac]Ac-FAPI-46 and ICB resulted in growth delay in 55% of mice (6/11) and partial tumor regression in 18% (2/11) of mice. In FSA-F tumors with FAP overexpression, both [225Ac]Ac-FAPI-46 and ICB were effective without additional benefits from the combination. In locally immunosuppressed and ICB resistant FAP-F tumors, however, [225Ac]Ac-FAPI-46 restored responsiveness to ICB, resulting in significant tumor regression and tumor-free survival of 56% of mice in the combination group up to 60 days post treatment. CONCLUSION: [225Ac]Ac-FAPI-46 efficacy is correlated with tumoral FAP expression levels and can restore responsiveness to PD-1 ICB. These data illustrate that careful patient selection based on target expression and rationally designed combination therapies are critically important to maximize the therapeutic impact of FAP-targeting radioligands.
Asunto(s)
Endopeptidasas , Sarcoma , Animales , Ratones , Sarcoma/diagnóstico por imagen , Sarcoma/tratamiento farmacológico , Actinio/uso terapéutico , Gelatinasas/metabolismo , Proteínas de la Membrana/metabolismo , Línea Celular Tumoral , Serina Endopeptidasas/metabolismo , Femenino , Inhibidores de Puntos de Control Inmunológico/farmacología , Inhibidores de Puntos de Control Inmunológico/uso terapéuticoRESUMEN
PURPOSE: We aimed to investigate the potential of [68Ga]Ga-FAPI-04 PET/CT as an alternative diagnostic and theranostic tool in well-differentiated NETs refractory to [177Lu]Lu-DOTATATE therapy. METHODS: Patients who received at least two cycles of [177Lu]Lu-DOTATATE therapy for metastatic NETs and progressed under treatment were included. All patients had performed [68Ga]Ga-DOTATATE and [68Ga]Ga-FAPI-04 PET/CT within 3 weeks. The number of PET-positive lesions related to NETs and tumor sites was documented. Mann-Whitney U and chi-square tests were used to compare SUVmax levels of tracers and the number of detected metastases. RESULTS: Twelve patients (7 male, 5 female) who met the eligibility criteria were included in the study. Ten patients had grade 1-2 NET of various origins, and two had paraganglioma and pheochromocytoma. One hundred ninety-eight of 230 lesions (86%) were SSTR positive with a median SUVmax of 16.6 (2.2-76.5), and 88 of 230 lesions (38.2%) were [68Ga]Ga-FAPI-04 positive with a median SUVmax of 5.1 (2.3-21). Median SUVmax level and detected number of tumors were significantly higher in [68Ga]Ga-DOTATATE PET/CT (p=<0.001). [68Ga]Ga-FAPI-04 PET/CT was completely (n:2) or almost completely (n:3) negative in 5 (42%) patients. Two (17%) patients had flip-flop SSTR/FAPI uptake in tumors. In four patients (33%), tumor uptake or the number of PET-positive lesions was inferior in [68Ga]Ga-FAPI-04 PET/CT. In only one patient (8%), tumor uptakes were higher in [68Ga]Ga-FAPI-04 PET/CT. Low-dose [177Lu]Lu-FAPI-46 dosimetry was performed on the FAPI-dominant patient; absorbed radiation doses per GBq were 1.26 Gy, 0.36 Gy, 0.32 Gy, and 0.2 Gy for kidneys, liver, spleen, and total body, respectively. The mean absorbed dose per GBq was 0.33 Gy for liver mass and 0.41 Gy for metastatic lymph nodes. CONCLUSION: Our preliminary results demonstrated that [68Ga]Ga-FAPI-04 PET/CT mainly failed in well-differentiated NETs refractory to [177Lu]Lu-DOTATATE therapy and had a limited role as an alternative diagnostic or theranostic agent. Further investigations with a larger patient population are required to determine the impact of [68Ga]Ga-FAPI-04 PET/CT on NETs.
Asunto(s)
Tumores Neuroendocrinos , Tomografía Computarizada por Tomografía de Emisión de Positrones , Tomografía de Emisión de Positrones , Quinolinas , Cintigrafía , Humanos , Masculino , Femenino , Tomografía Computarizada por Tomografía de Emisión de Positrones/métodos , Tumores Neuroendocrinos/diagnóstico por imagen , Tumores Neuroendocrinos/terapia , Tumores Neuroendocrinos/patología , Radioisótopos de Galio , Medicina de Precisión , BiomarcadoresRESUMEN
In the realm of biological macromolecules, entities such as nucleic acids and proteins are distinguished by their homochirality, consistently defined chain lengths, and integral sequence-dependent functionalities. Historically, these refined attributes have eluded traditional synthetic polymers, which often exhibit wide variabilities in chain lengths, limited batch-to-batch reproducibility, and stochastic monomer arrangements. Bridging this divide represents a pivotal challenge within the domain of polymer science - a challenge that the burgeoning discipline of precision polymer chemistry is poised to address. Recent advancements have yielded precision polymers that boast prescribed monomer sequences and narrow molecular weight distributions, heralding a new era for developing model systems to decipher structure-property correlations within functional polymers, analogous to those within biological matrices. This review discusses the innovative liquid-phase and solid-phase synthesis techniques for creating precision polymers and the advanced characterization tools essential for dissecting their structure and properties. We highlight potential applications in self-assembly, catalysis, data storage, imaging, and therapy, and provide insights into the future challenges and directions of precision polymers.
RESUMEN
Theranostic nanomedicine combined bioimaging and therapy probably rises more helpful and interesting opportunities for personalized medicine. In this work, 177 Lu radiolabeling and surface PEGylation of biocompatible covalent polymer nanoparticles (CPNs) have generated a new theranostic nanoformulation (177 Lu-DOTA-PEG-CPNs) for targeted diagnosis and treatment of breast cancer. The inâ vitro anticancer investigations demonstrate that 177 Lu-DOTA-PEG-CPNs possess excellent bonding capacity with breast cancer cells (4T1), inhibiting the cell viability, leading to cell apoptosis, arresting the cell cycle, and upregulating the reactive oxygen species (ROS), which can be attributed to the good targeting ability of the nanocarrier and the strong relative biological effect of the radionuclide labelled compound. Single photon emission computed tomography/ computed tomography (SPECT/CT) imaging and inâ vivo biodistribution based on 177 Lu-DOTA-PEG-CPNs reveal that notable radioactivity accumulation at tumor site in murine 4T1 models with both intravenous and intratumoral administration of the prepared radiotracer. Significant tumor inhibition has been observed in mice treated with 177 Lu-DOTA-PEG-CPNs, of which the median survival was highly extended. More strikingly, 50 % of mice intratumorally injected with 177 Lu-DOTA-PEG-CPNs was cured and showed no tumor recurrence within 90â days. The outcome of this work can provide new hints for traditional nanomedicines and promote clinical translation of 177 Lu radiolabeled compounds efficiently.
Asunto(s)
Nanopartículas , Neoplasias , Animales , Ratones , Medicina de Precisión , Polímeros , Distribución Tisular , Línea Celular Tumoral , Radioisótopos/uso terapéutico , Lutecio/uso terapéutico , Radiofármacos/uso terapéutico , Neoplasias/tratamiento farmacológicoRESUMEN
Zolbetuximab (IMAB362), a monoclonal antibody targeting Claudin18.2 (CLDN 18.2), demonstrates a significant clinical benefit in patients with advanced gastroesophageal cancers. The noninvasive assessment of CLDN18.2 expression through molecular imaging offers a potential avenue for expedited monitoring and the stratification of patients into risk groups. This study elucidates that CLDN18.2 is expressed at a noteworthy frequency in primary gastric cancers and their metastases. The iodogen method was employed to label IMAB362 with 123I/131I. The results demonstrated the efficient and reproducible synthesis of 123I-IMAB362, with a specific binding affinity to CLDN18.2. Immuno-single-photon emission computed tomography (SPECT) imaging revealed the rapid accumulation of 123I-IMAB362 in gastric cancer xenografts at 12 h, remaining stable for 3 days in patient-derived tumor xenograft models. Additionally, tracer uptake of 123I-IMAB362 in MKN45 cells surpassed that in MKN28 cells at each time point, with tumor uptake correlating significantly with CLDN18.2 expression levels. Positron emission tomography/computed tomography imaging indicated that tumor uptake of 18F-FDG and the functional/viable tumor volume in the 131I-IMAB362 group were significantly lower than those in the 123I-IMAB362 group on day 7. In conclusion, 123I-IMAB362 immuno-SPECT imaging offers an effective method for direct, noninvasive, and whole-body quantitative assessment of tumor CLDN18.2 expression in vivo. This approach holds promise for accelerating the monitoring and stratification of patients with gastric cancer.
Asunto(s)
Claudinas , Neoplasias Gástricas , Neoplasias Gástricas/diagnóstico por imagen , Neoplasias Gástricas/metabolismo , Neoplasias Gástricas/patología , Humanos , Animales , Ratones , Claudinas/metabolismo , Línea Celular Tumoral , Tomografía Computarizada por Tomografía Computarizada de Emisión de Fotón Único/métodos , Ensayos Antitumor por Modelo de Xenoinjerto , Radioisótopos de Yodo , Femenino , Ratones Desnudos , Anticuerpos Monoclonales , Masculino , Tomografía Computarizada de Emisión de Fotón Único/métodos , Anticuerpos Monoclonales Humanizados/farmacocinéticaRESUMEN
Chemokines and chemokine receptors are indispensable to play a key role in the development of malignant tumors. As one of the most widely expressed chemokine receptors, chemokine (C-X-C motif) receptor 4 (CXCR4) has been a popular research focus. In most tumors, CXCR4 expression is significantly upregulated. Moreover, integrated nuclide diagnosis and therapy targeting CXCR4 show great potential. [68Ga]Ga-pentixafor, a radioligand targeting CXCR4, exhibits a strong affinity for CXCR4 both in vivo and in vitro. However, [177Lu]Lu-pentixather, the therapeutic companion of [68Ga]Ga-pentixafor, requires significant refinement to mitigate its pronounced hepatic biodistribution. The objective of this study was to synthesize theranostic molecular tracers with superior CXCR4 targeting functions. The Daudi cell line, which highly expressed CXCR4, and the MM.1S cell line, which weakly expressed CXCR4, were used in this study. Based on the pharmacophore cyclo (-d-Tyr-n-me-d-Orn-l-Arg-L-2-NAL-Gly-) (CPCR4) of pentixafor, six tracers were synthesized: [124I]I-1 ([124I]I-CPCR4), [99mTc]Tc-2 ([99mTc]Tc-HYNIC-CPCR4), [124I]I-3 ([124I]I-pentixafor), [18F]AlF-4 ([18F]AlF-NETA-CPCR4), [99mTc]Tc-5 ([99mTc]Tc-MAG3-CPCR4) and [124I]I-6 ([124I]I-pentixafor-Ga) and their radiochemical purities were all higher than 95%. After positron emission tomography (PET)/single-photon emission computed tomography (SPECT) imaging, the [124I]I-6 group exhibited the best target-nontarget ratio. At the same time, comparing the [68Ga]Ga-pentixafor group with the [124I]I-6 group, we found that the [124I]I-6 group had a better target-nontarget ratio and lower uptake in nontarget organs. Therefore, compound 6 was selected for therapeutic radionuclide (131I) labeling, and the tumor-bearing animal models were treated with [131I]I-6. The volume of the tumor site was significantly reduced in the treatment group compared with the control group, and no significant side effects were found. [124I]I-6 and [131I]I-6 showed excellent affinity for targeting CXCR4, and they showed great potential for the integrated diagnosis and treatment of tumors with high CXCR4 expression.
Asunto(s)
Complejos de Coordinación , Receptores CXCR4 , Receptores CXCR4/metabolismo , Receptores CXCR4/genética , Animales , Humanos , Ratones , Línea Celular Tumoral , Distribución Tisular , Radiofármacos/farmacocinética , Radiofármacos/farmacología , Radiofármacos/química , Péptidos Cíclicos/química , Péptidos Cíclicos/farmacología , Sondas Moleculares/química , Sondas Moleculares/farmacocinética , Radioisótopos de Galio , Ratones Desnudos , Nanomedicina Teranóstica/métodos , FemeninoRESUMEN
OPINION STATEMENT: PSMA-PET has been a practice-changing imaging biomarker for the management of men with PCa. Research suggests improved accuracy over conventional imaging and other PET radiotracers in many contexts. With multiple approved PSMA-targeting radiotracers, PSMA PET will become even more available in clinical practice. Its increased use requires an understanding of the prospective data available and caution when extrapolating from prior trial data that utilized other imaging modalities. Future trials leveraging PSMA PET for treatment optimization and management decision-making will ultimately drive its clinical utility.
Asunto(s)
Antígenos de Superficie , Neoplasias de la Próstata , Humanos , Masculino , Estadificación de Neoplasias , Tomografía Computarizada por Tomografía de Emisión de Positrones/métodos , Estudios Prospectivos , Neoplasias de la Próstata/terapia , Neoplasias de la Próstata/tratamiento farmacológico , Radiofármacos/uso terapéutico , Antígeno Prostático EspecíficoRESUMEN
Global mortality data indicates cancer as the second-leading cause of death worldwide. Therefore, there's a pressing need to innovate effective treatments to address this significant medical and societal challenge. In recent years, X-ray-induced photodynamic therapy (X-PDT) has emerged as a promising advancement, revolutionizing traditional photodynamic therapy (PDT) for deeply entrenched malignancies by harnessing penetrating X-rays as external stimuli. Recent developments in X-ray photodynamic therapy have shown a trend toward minimizing radiation doses to remarkably low levels after the proof-of-concept demonstration. Early detection and real-time monitoring are crucial aspects of effective cancer treatment. Sophisticated X-ray imaging techniques have been enhanced by the introduction of X-ray luminescence nano-agents, alongside contrast nanomaterials based on X-ray attenuation. X-ray luminescence-based in vivo imaging offers excellent detection sensitivity and superior image quality in deep tissues at a reasonable cost, due to unhindered penetration and unimpeded auto-fluorescence of X-rays. This review emphasizes the significance of X-ray responsive theranostics, exploring their mechanism of action, feasibility, biocompatibility, and promising prospects in imaging-guided therapy for deep-seated tumors. Additionally, it discusses promising applications of X-PDT in treating breast cancer, liver cancer, lung cancer, skin cancer, and colorectal cancer.
Asunto(s)
Neoplasias , Fotoquimioterapia , Nanomedicina Teranóstica , Humanos , Fotoquimioterapia/métodos , Neoplasias/diagnóstico por imagen , Neoplasias/tratamiento farmacológico , Nanomedicina Teranóstica/métodos , Animales , Rayos X , Fármacos Fotosensibilizantes/uso terapéutico , Fármacos Fotosensibilizantes/química , Fármacos Fotosensibilizantes/farmacologíaRESUMEN
Tumors desmoplastic microenvironments are characterized by abundant stromal cells and extracellular matrix (ECM) deposition. Cancer-associated fibroblasts (CAFs), as the most abundant of all stromal cells, play significant role in mediating microenvironments, which not only remodel ECM to establish unique pathological barriers to hinder drug delivery in desmoplastic tumors, but also talk with immune cells and cancer cells to promote immunosuppression and cancer stem cells-mediated drug resistance. Thus, CAFs mediated desmoplastic microenvironments will be emerging as promising strategy to treat desmoplastic tumors. However, due to the complexity of microenvironments and the heterogeneity of CAFs in such tumors, an effective deliver system should be fully considered when designing the strategy of targeting CAFs mediated microenvironments. Engineered exosomes own powerful intercellular communication, cargoes delivery, penetration and targeted property of desired sites, which endow them with powerful theranostic potential in desmoplastic tumors. Here, we illustrate the significance of CAFs in tumors desmoplastic microenvironments and the theranostic potential of engineered exosomes targeting CAFs mediated desmoplastic microenvironments in next generation personalized nano-drugs development.
Asunto(s)
Fibroblastos Asociados al Cáncer , Exosomas , Microambiente Tumoral , Fibroblastos Asociados al Cáncer/metabolismo , Exosomas/metabolismo , Microambiente Tumoral/efectos de los fármacos , Humanos , Animales , Neoplasias/tratamiento farmacológico , Neoplasias/metabolismo , Neoplasias/patología , Sistemas de Liberación de Medicamentos/métodos , Matriz Extracelular/metabolismo , Antineoplásicos/farmacologíaRESUMEN
NK cells orchestrate the tumor destruction and control metastasis in a coordinated way with other immune cells of the tumor microenvironment. However, NK cell infiltration in the tumor microenvironment is limited, and tumor cells have developed numerous mechanisms to escape NK cell attack. As a result, NK cells that have been able to infiltrate the tumors are exhausted, and metabolically and functionally impaired. Depending this impairment the prognostic and theranostic values of NK cells differ depending on the studies, the type of cancer, the stage of tumor and the nature of the tumor microenvironment. Extensive studies have been done to investigate different strategies to improve the NK cell function, and nowadays, a battery of therapeutic tools are being tested, with promising results.
Asunto(s)
Células Asesinas Naturales/inmunología , Neoplasias/inmunología , Animales , Humanos , Vigilancia Inmunológica , Neoplasias/diagnóstico , Neoplasias/terapia , Pronóstico , Escape del Tumor , Microambiente TumoralRESUMEN
Tumor recurrence, which happens as a result of persisting tumor cells and minor lesions after treatments like surgery and chemotherapy, is a major problem in oncology. Herein, a strategy to combat this issue by utilize a theranostic nanovaccine composed of photonic HCuS. This nanovaccine aims to eradicate cancer cells and their traces while also preventing tumor recurrence via optimizing the photothermal immune impact. Successful membrane targeting allows for the introduction of new therapeutic agents into the tumor cells. Together with co-encapsulated Toll-Like Receptors (TLR7/8) agonist R848 for activating T cells and maturing DCs, the combined effects of HCuS and ICG function as photothermal agents that generate heat in the presence of NIR light. Photothermal-mediated immunotherapy with therapeutic modalities proved successful in killing tumor cells. By activating the immune system, this new photonic nanovaccine greatly increases immunogenic cell death (ICD), kills tumor cells, and prevents their recurrence.