Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 20 de 614
Filtrar
1.
Genomics ; 116(5): 110904, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39084476

RESUMEN

Recently, elevated seawater temperatures have resulted numerous adverse effects, including significant mortality among bivalves. The dwarf surf clam, Mulinia lateralis, is considered a valuable model species for bivalve research due to its rapid growth and short generation time. The successful cultivation in laboratory setting throughout its entire life cycle makes it an ideal candidate for exploring the potential mechanisms underlying bivalve responses to thermal stress. In this study, a total of 600 clams were subjected to a 17-day thermal stress experiment at a temperature of 30 °C which is the semi-lethal temperature for this species. Ninety individuals who perished initially were classified as heat-sensitive populations (HSP), while 89 individuals who survived the experiment were classified as heat-tolerant populations (HTP). Subsequently, 179 individuals were then sequenced, and 21,292 single nucleotide polymorphisms (SNPs) were genotyped for downstream analysis. The heritability estimate for survival status was found to be 0.375 ± 0.127 suggesting a genetic basis for thermal tolerance trait. Furthermore, a genome-wide association study (GWAS) identified three SNPs and 10 candidate genes associated with thermal tolerance trait in M. lateralis. These candidate genes were involved in the ETHR/EHF signaling pathway and played pivotal role in signal sensory, cell adhesion, oxidative stress, DNA damage repair, etc. Additionally, qPCR results indicated that, excluding MGAT4A, ZAN, and RFC1 genes, all others exhibited significantly higher expression in the HTP (p < 0.05), underscoring the critical involvement of the ETHR/EHF signaling pathway in M. lateralis' thermal tolerance. These results unveil the presence of standing genetic variations associated with thermal tolerance in M. lateralis, highlighting the regulatory role of the ETHR/EHF signaling pathway in the bivalve's response to thermal stress, which contribute to comprehension of the genetic basis of thermal tolerance in bivalves.


Asunto(s)
Bivalvos , Estudio de Asociación del Genoma Completo , Polimorfismo de Nucleótido Simple , Termotolerancia , Animales , Bivalvos/genética , Bivalvos/fisiología , Termotolerancia/genética , Respuesta al Choque Térmico/genética
2.
Ecol Lett ; 27(4): e14405, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38623056

RESUMEN

Local adaptation is commonly cited to explain species distribution, but how fitness varies along continuous geographical gradients is not well understood. Here, we combine thermal biology and life-history theory to demonstrate that Drosophila populations along a 2500 km latitudinal cline are adapted to local conditions. We measured how heat tolerance and viability rate across eight populations varied with temperature in the laboratory and then simulated their expected cumulative Darwinian fitness employing high-resolution temperature data from their eight collection sites. Simulations indicate a trade-off between annual survival and cumulative viability, as both mortality and the recruitment of new flies are predicted to increase in warmer regions. Importantly, populations are locally adapted and exhibit the optimal combination of both traits to maximize fitness where they live. In conclusion, our method is able to reconstruct fitness surfaces employing empirical life-history estimates and reconstructs peaks representing locally adapted populations, allowing us to study geographic adaptation in silico.


Asunto(s)
Adaptación Fisiológica , Drosophila , Animales , Aclimatación , Temperatura , Aptitud Genética
3.
Ecol Lett ; 27(3): e14416, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38549256

RESUMEN

Most plant thermal tolerance studies focus on single critical thresholds, which limit the capacity to generalise across studies and predict heat stress under natural conditions. In animals and microbes, thermal tolerance landscapes describe the more realistic, cumulative effects of temperature. We tested this in plants by measuring the decline in leaf photosynthetic efficiency (FV/FM) following a combination of temperatures and exposure times and then modelled these physiological indices alongside recorded environmental temperatures. We demonstrate that a general relationship between stressful temperatures and exposure durations can be effectively employed to quantify and compare heat tolerance within and across plant species and over time. Importantly, we show how FV/FM curves translate to plants under natural conditions, suggesting that environmental temperatures often impair photosynthetic function. Our findings provide more robust descriptors of heat tolerance in plants and suggest that heat tolerance in disparate groups of organisms can be studied with a single predictive framework.


Asunto(s)
Termotolerancia , Animales , Temperatura , Fotosíntesis , Hojas de la Planta/fisiología , Calor
4.
Ecol Lett ; 27(2): e14381, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38332503

RESUMEN

Rate-temperature scaling relationships have fascinated biologists for nearly two centuries and are increasingly important in our era of global climate change. These relationships are hypothesized to originate from the temperature-dependent kinetics of rate-limiting biochemical reactions of metabolism. Several prominent theories have formalized this hypothesis using the Arrhenius model, which characterizes a monotonic temperature dependence using an activation energy E. However, the ubiquitous unimodal nature of biological temperature responses presents important theoretical, methodological, and conceptual challenges that restrict the promise for insight, prediction, and progress. Here we review the development of key hypotheses and methods for the temperature-scaling of biological rates. Using simulations, we examine the constraints of monotonic models, illustrating their sensitivity to data nuances such as temperature range and noise, and their tendency to yield variable and underestimated E, with critical consequences for climate change predictions. We also evaluate the behaviour of two prominent unimodal models when applied to incomplete and noisy datasets. We conclude with recommendations for resolving these challenges in future research, and advocate for a shift to unimodal models that better characterize the full range of biological temperature responses.


Asunto(s)
Calor , Modelos Biológicos , Temperatura
5.
Proc Biol Sci ; 291(2015): 20232457, 2024 Jan 31.
Artículo en Inglés | MEDLINE | ID: mdl-38264779

RESUMEN

How mosquitoes may respond to rapid climate warming remains unknown for most species, but will have major consequences for their future distributions, with cascading impacts on human well-being, biodiversity and ecosystem function. We investigated the adaptive potential of a wide-ranging mosquito species, Aedes sierrensis, across a large climatic gradient by conducting a common garden experiment measuring the thermal limits of mosquito life-history traits. Although field-collected populations originated from vastly different thermal environments that spanned over 1200 km, we found limited variation in upper thermal tolerance between populations. In particular, the upper thermal limits of all life-history traits varied by less than 3°C across the species range and, for most traits, did not differ significantly between populations. For one life-history trait-pupal development rate-we did detect significant variation in upper thermal limits between populations, and this variation was strongly correlated with source temperatures, providing evidence of local thermal adaptation for pupal development. However, we found that maximum environmental temperatures across most of the species' range already regularly exceed the highest upper thermal limits estimated under constant temperatures. This result suggests that strategies for coping with and/or avoiding thermal extremes are likely key components of current and future mosquito thermal tolerance.


Asunto(s)
Aedes , Ecosistema , Humanos , Animales , Aclimatación , Biodiversidad , Habilidades de Afrontamiento
6.
Proc Biol Sci ; 291(2025): 20240256, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38889786

RESUMEN

Classical theories predict that relatively constant environments should generally favour specialists, while fluctuating environments should be selected for generalists. However, theoretical and empirical results have pointed out that generalist organisms might, on the contrary, perform poorly under fluctuations. In particular, if generalism is underlaid by phenotypic plasticity, performance of generalists should be modulated by the temporal characteristics of environmental fluctuations. Here, we used experiments in microcosms of Tetrahymena thermophila ciliates and a mathematical model to test whether the period or autocorrelation of thermal fluctuations mediate links between the level of generalism and the performance of organisms under fluctuations. In the experiment, thermal fluctuations consistently impeded performance compared with constant conditions. However, the intensity of this effect depended on the level of generalism: while the more specialist strains performed better under fast or negatively autocorrelated fluctuations, plastic generalists performed better under slow or positively autocorrelated fluctuations. Our model suggests that these effects of fluctuations on organisms' performance may result from a time delay in the expression of plasticity, restricting its benefits to slow enough fluctuations. This study points out the need to further investigate the temporal dynamics of phenotypic plasticity to better predict its fitness consequences under environmental fluctuations.


Asunto(s)
Fenotipo , Tetrahymena thermophila , Tetrahymena thermophila/fisiología , Temperatura , Adaptación Fisiológica
7.
New Phytol ; 241(4): 1447-1463, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37984063

RESUMEN

The threat of rising global temperatures may be especially pronounced for low-latitude, lowland plant species that have evolved under stable climatic conditions. However, little is known about how these species may acclimate to elevated temperatures. Here, we leveraged a strong, steep thermal gradient along a natural geothermal river to assess the ability of woody plants in the Amazon to acclimate to elevated air temperatures. We measured leaf traits in six common tropical woody species along the thermal gradient to investigate whether individuals of these species: acclimate their thermoregulatory traits to maintain stable leaf temperatures despite higher ambient temperatures; acclimate their photosynthetic thermal tolerances to withstand hotter leaf temperatures; and whether acclimation is sufficient to maintain stable leaf thermal safety margins (TSMs) across different growth temperatures. Individuals of three species acclimated their thermoregulatory traits, and three species increased their thermal tolerances with growth temperature. However, acclimation was generally insufficient to maintain constant TSMs. Notwithstanding, leaf health was generally consistent across growth temperatures. Acclimation in woody Amazonian plants is generally too weak to maintain TSMs at high growth temperatures, supporting previous findings that Amazonian plants will be increasingly vulnerable to thermal stress as temperatures rise.


Asunto(s)
Aclimatación , Calor , Humanos , Temperatura , Plantas , Hojas de la Planta
8.
New Phytol ; 241(2): 715-731, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37932881

RESUMEN

Heat stress interrupts physiological thermostability and triggers biochemical responses that are essential for plant survival. However, there is limited knowledge on the speed plants adjust to heat in hours and days, and which adjustments are crucial. Tropical-subtropical rainforest tree species (Polyscias elegans) were heated at 40°C for 5 d, before returning to 25°C for 13 d of recovery. Leaf heat tolerance was quantified using the temperature at which minimal chl a fluorescence sharply rose (Tcrit ). Tcrit , metabolites, heat shock protein (HSP) abundance and membrane lipid fatty acid (FA) composition were quantified. Tcrit increased by 4°C (48-52°C) within 2 h of 40°C exposure, along with rapid accumulation of metabolites and HSPs. By contrast, it took > 2 d for FA composition to change. At least 2 d were required for Tcrit , HSP90, HSP70 and FAs to return to prestress levels. The results highlight the multi-faceted response of P. elegans to heat stress, and how this response varies over the scale of hours to days, culminating in an increased level of photosynthetic heat tolerance. These responses are important for survival of plants when confronted with heat waves amidst ongoing global climate change.


Asunto(s)
Termotolerancia , Proteínas de Choque Térmico/metabolismo , Plantas/metabolismo , Bosque Lluvioso , Temperatura , Árboles/metabolismo , Clima Tropical
9.
New Phytol ; 243(6): 2130-2145, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39049585

RESUMEN

Coral thermal bleaching resilience can be improved by enhancing photosymbiont thermal tolerance via experimental evolution. While successful for some strains, selection under stable temperatures was ineffective at increasing the thermal threshold of an already thermo-tolerant photosymbiont (Durusdinium trenchii). Corals from environments with fluctuating temperatures tend to have comparatively high heat tolerance. Therefore, we investigated whether exposure to temperature oscillations can raise the upper thermal limit of D. trenchii. We exposed a D. trenchii strain to stable and fluctuating temperature profiles, which varied in oscillation frequency. After 2.1 yr (54-73 generations), we characterised the adaptive responses under the various experimental evolution treatments by constructing thermal performance curves of growth from 21 to 31°C for the heat-evolved and wild-type lineages. Additionally, the accumulation of extracellular reactive oxygen species, photophysiology, photosynthesis and respiration rates were assessed under increasing temperatures. Of the fluctuating temperature profiles investigated, selection under the most frequent oscillations (diurnal) induced the greatest widening of D. trenchii's thermal niche. Continuous selection under elevated temperatures induced the only increase in thermal optimum and a degree of generalism. Our findings demonstrate how differing levels of thermal homogeneity during selection drive unique adaptive responses to heat in a coral photosymbiont.


Asunto(s)
Antozoos , Fotosíntesis , Selección Genética , Simbiosis , Temperatura , Animales , Antozoos/fisiología , Antozoos/efectos de la radiación , Simbiosis/fisiología , Especies Reactivas de Oxígeno/metabolismo , Termotolerancia/fisiología
10.
Mol Ecol ; 33(9): e17333, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38597343

RESUMEN

Interspecific hybridization can lead to myriad outcomes, including transgressive phenotypes in which the hybrids are more fit than either parent species. Such hybrids may display important traits in the context of climate change, able to respond to novel environmental conditions not previously experienced by the parent populations. While this has been evaluated in an agricultural context, the role of transgressive hybrids under changing conditions in the wild remains largely unexplored; this is especially true regarding transgressive gene expression. Using the blue mussel species complex (genus Mytilus) as a model system, we investigated the effects of hybridization on temperature induced gene expression plasticity by comparing expression profiles in parental species and their hybrids following a 2-week thermal challenge. Hybrid expression plasticity was most often like one parent or the other (50%). However, a large fraction of genes (26%) showed transgressive expression plasticity (i.e. the change in gene expression was either greater or lesser than that of both parent species), while only 2% were intermediately plastic in hybrids. Despite their close phylogenetic relationship, there was limited overlap in the differentially expressed genes responding to temperature, indicating interspecific differences in the responses to high temperature in which responses from hybrids are distinct from both parent species. We also identified differentially expressed long non-coding RNAs (lncRNAs), which we suggest may contribute to species-specific differences in thermal tolerance. Our findings provide important insight into the impact of hybridization on gene expression under warming. We propose transgressive hybrids may play an important role in population persistence under future warming conditions.


Asunto(s)
Hibridación Genética , Animales , Temperatura , Cambio Climático , Estrés Fisiológico/genética , Expresión Génica/genética , Fenotipo , Mytilus/genética , Transcriptoma
11.
Plant Cell Environ ; 2024 Sep 24.
Artículo en Inglés | MEDLINE | ID: mdl-39318061

RESUMEN

To avoid reaching lethal temperatures during periods of heat stress, plants may acclimate either their biochemical thermal tolerance or leaf morphological and physiological characteristics to reduce leaf temperature (Tleaf). While plants from warmer environments may have a greater capacity to regulate Tleaf, the extent of intraspecific variation and contribution of provenance is relatively unexplored. We tested whether upland and lowland provenances of four tropical tree species grown in a common garden differed in their thermal safety margins by measuring leaf thermal traits, midday leaf-to-air temperature differences (∆Tleaf) and critical leaf temperatures defined by chlorophyll fluorescence (Tcrit). Provenance variation was species- and trait-specific. Higher ∆Tleaf and Tcrit were observed in the lowland provenance for Terminalia microcarpa, and in the upland provenance for Castanospermum australe, with no provenance effects in the other two species. Within-species covariation of Tcrit and ∆Tleaf led to a convergence of thermal safety margins across provenances. While future studies should expand the number of provenances and species investigated, our findings suggest that lowland and upland provenances may not differ substantially in their vulnerability to heat stress, as determined by thermal safety margins, despite differences in operating temperatures and Tcrit.

12.
J Exp Bot ; 75(11): 3467-3482, 2024 Jun 07.
Artículo en Inglés | MEDLINE | ID: mdl-38447052

RESUMEN

The thermal death time (TDT) model suggests that the duration for which an organism can tolerate thermal stress decreases exponentially as the intensity of the temperature becomes more extreme. This model has been used to predict damage accumulation in ectothermic animals and plants under fluctuating thermal conditions. However, the critical assumption of the TDT model, which is additive damage accumulation, remains unverified for plants. We assessed thermal damage in Thymus vulgaris under different heat and cold treatments, and used TDT models to predict time to thermal failure of PSII. Additionally, thermal tolerance estimates from previous studies were used to create TDT models to assess the applicability of this framework in plants. We show that thermal damage is additive between 44 °C and 47 °C and between -6.5 °C and -8 °C, and that the TDT model can predict damage accumulation at both temperature extremes. Data from previous studies indicate a broad applicability of this approach across plant species and traits. The TDT framework reveals a thermal tolerance landscape describing the relationship between exposure duration, stress intensity, and percentage damage accumulation. The extreme thermal sensitivity of plants emphasizes that even a 1 °C increase in future extreme temperatures could impact their mortality and distribution.


Asunto(s)
Calor , Calor/efectos adversos , Thymus (Planta)/fisiología , Modelos Biológicos , Frío , Termotolerancia/fisiología
13.
J Exp Bot ; 75(13): 4005-4023, 2024 Jul 10.
Artículo en Inglés | MEDLINE | ID: mdl-38636949

RESUMEN

The thermal tolerance of symbiodiniacean photo-endosymbionts largely underpins the thermal bleaching resilience of their cnidarian hosts such as corals and the coral model Exaiptasia diaphana. While variation in thermal tolerance between species is well documented, variation between conspecific strains is understudied. We compared the thermal tolerance of three closely related strains of Breviolum minutum represented by two internal transcribed spacer region 2 profiles (one strain B1-B1o-B1g-B1p and the other two strains B1-B1a-B1b-B1g) and differences in photochemical and non-photochemical quenching, de-epoxidation state of photopigments, and accumulation of reactive oxygen species under rapid short-term cumulative temperature stress (26-40 °C). We found that B. minutum strains employ distinct photoprotective strategies, resulting in different upper thermal tolerances. We provide evidence for previously unknown interdependencies between thermal tolerance traits and photoprotective mechanisms that include a delicate balancing of excitation energy and its dissipation through fast relaxing and state transition components of non-photochemical quenching. The more thermally tolerant B. minutum strain (B1-B1o-B1g-B1p) exhibited an enhanced de-epoxidation that is strongly linked to the thylakoid membrane melting point and possibly membrane rigidification minimizing oxidative damage. This study provides an in-depth understanding of photoprotective mechanisms underpinning thermal tolerance in closely related strains of B. minutum.


Asunto(s)
Fotosíntesis , Dinoflagelados/fisiología , Respuesta al Choque Térmico , Calor
14.
J Exp Bot ; 75(18): 5971-5988, 2024 Sep 27.
Artículo en Inglés | MEDLINE | ID: mdl-38946283

RESUMEN

Phenotypic plasticity and rapid evolution are fundamental processes by which organisms can maintain their function and fitness in the face of environmental changes. Here we quantified the plasticity and evolutionary potential of an alpine herb Wahlenbergia ceracea. Utilizing its mixed-mating system, we generated outcrossed and self-pollinated families that were grown in either cool or warm environments, and that had parents that had also been grown in either cool or warm environments. We then analysed the contribution of environmental and genetic factors to variation in a range of phenotypic traits including phenology, leaf mass per area, photosynthetic function, thermal tolerance, and reproductive fitness. The strongest effect was that of current growth temperature, indicating strong phenotypic plasticity. All traits except thermal tolerance were plastic, whereby warm-grown plants flowered earlier, grew larger, and produced more reproductive stems compared with cool-grown plants. Flowering onset and biomass were heritable and under selection, with early flowering and larger plants having higher relative fitness. There was little evidence for transgenerational plasticity, maternal effects, or genotype×environment interactions. Inbreeding delayed flowering and reduced reproductive fitness and biomass. Overall, we found that W. ceracea has the capacity to respond rapidly to climate warming via plasticity, and the potential for evolutionary change.


Asunto(s)
Evolución Biológica , Fenotipo , Temperatura , Flores/crecimiento & desarrollo , Flores/genética , Flores/fisiología
15.
Glob Chang Biol ; 30(8): e17447, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-39098999

RESUMEN

The current climate warming is a challenge to biodiversity that could surpass the adaptation capacity of some species. Hence, understanding the means by which populations undergo an increase in their thermal tolerance is critical to assess how they could adapt to climate warming. Specifically, sea turtle populations could respond to increasing temperatures by (1) colonizing new nesting areas, (2) nesting during cooler times of the year, and/or (3) by increasing their thermal tolerance. Differences in thermal tolerance of clutches laid by different females would indicate that populations have the potential to adapt by natural selection. Here, we used exhaustive information on nest temperatures and hatching success of leatherback turtle (Dermochelys coriacea) clutches over 14 years to assess the occurrence of individual variability in thermal tolerance among females. We found an effect of temperature, year, and the interaction between female identity and nest temperature on hatching success, indicating that clutches laid by different females exhibited different levels of vulnerability to high temperatures. If thermal tolerance is a heritable trait, individuals with higher thermal tolerances could have greater chances of passing their genes to following generations, increasing their frequency in the population. However, the high rate of failure of clutches at temperatures above 32°C suggests that leatherback turtles are already experiencing extreme heat stress. A proper understanding of mechanisms of adaptation in populations to counteract changes in climate could greatly contribute to future conservation of endangered populations in a rapidly changing world.


Asunto(s)
Cambio Climático , Comportamiento de Nidificación , Tortugas , Animales , Tortugas/fisiología , Femenino , Adaptación Fisiológica , Temperatura , Termotolerancia
16.
Glob Chang Biol ; 30(4): e17249, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38572713

RESUMEN

Warming as well as species introductions have increased over the past centuries, however a link between cause and effect of these two phenomena is still unclear. Here we use distribution records (1813-2023) to reconstruct the invasion histories of marine non-native macrophytes, macroalgae and seagrasses, in the Mediterranean Sea. We defined expansion as the maximum linear rate of spread (km year-1) and the accumulation of occupied grid cells (50 km2) over time and analyzed the relation between expansion rates and the species' thermal conditions at its native distribution range. Our database revealed a marked increase in the introductions and spread rates of non-native macrophytes in the Mediterranean Sea since the 1960s, notably intensifying after the 1990s. During the beginning of this century species velocity of invasion has increased to 26 ± 9 km2 year-1, with an acceleration in the velocity of invasion of tropical/subtropical species, exceeding those of temperate and cosmopolitan macrophytes. The highest spread rates since then were observed in macrophytes coming from native regions with minimum SSTs two to three degrees warmer than in the Mediterranean Sea. In addition, most non-native macrophytes in the Mediterranean (>80%) do not exceed the maximum temperature of their range of origin, whereas approximately half of the species are exposed to lower minimum SST in the Mediterranean than in their native range. This indicates that tropical/subtropical macrophytes might be able to expand as they are not limited by the colder Mediterranean SST due to the plasticity of their lower thermal limit. These results suggest that future warming will increase the thermal habitat available for thermophilic species in the Mediterranean Sea and continue to favor their expansion.


Asunto(s)
Especies Introducidas , Algas Marinas , Mar Mediterráneo , Ecosistema , Temperatura
17.
Glob Chang Biol ; 30(3): e17214, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38494864

RESUMEN

Changes in climate and biodiversity are widely recognized as primary global change drivers of ecosystem structure and functioning, also affecting ecosystem services provided to human populations. Increasing plant diversity not only enhances ecosystem functioning and stability but also mitigates climate change effects and buffers extreme weather conditions, yet the underlying mechanisms remain largely unclear. Recent studies have shown that plant diversity can mitigate climate change (e.g. reduce temperature fluctuations or drought through microclimatic effects) in different compartments of the focal ecosystem, which as such may contribute to the effect of plant diversity on ecosystem properties and functioning. However, these potential plant diversity-induced microclimate effects are not sufficiently understood. Here, we explored the consequences of climate modulation through microclimate modification by plant diversity for ecosystem functioning as a potential mechanism contributing to the widely documented biodiversity-ecosystem functioning (BEF) relationships, using a combination of theoretical and simulation approaches. We focused on a diverse set of response variables at various levels of integration ranging from ecosystem-level carbon exchange to soil enzyme activity, including population dynamics and the activity of specific organisms. Here, we demonstrated that a vegetation layer composed of many plant species has the potential to influence ecosystem functioning and stability through the modification of microclimatic conditions, thus mitigating the negative impacts of climate extremes on ecosystem functioning. Integrating microclimatic processes (e.g. temperature, humidity and light modulation) as a mechanism contributing to the BEF relationships is a promising avenue to improve our understanding of the effects of climate change on ecosystem functioning and to better predict future ecosystem structure, functioning and services. In addition, microclimate management and monitoring should be seen as a potential tool by practitioners to adapt ecosystems to climate change.


Asunto(s)
Ecosistema , Microclima , Humanos , Biodiversidad , Plantas , Suelo , Cambio Climático
18.
Glob Chang Biol ; 30(5): e17318, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38771091

RESUMEN

Amphibians and fishes play a central role in shaping the structure and function of freshwater environments. These organisms have a limited capacity to disperse across different habitats and the thermal buffer offered by freshwater systems is small. Understanding determinants and patterns of their physiological sensitivity across life history is, therefore, imperative to predicting the impacts of climate change in freshwater systems. Based on a systematic literature review including 345 experiments with 998 estimates on 96 amphibian (Anura/Caudata) and 93 freshwater fish species (Teleostei), we conducted a quantitative synthesis to explore phylogenetic, ontogenetic, and biogeographic (thermal adaptation) patterns in upper thermal tolerance (CTmax) and thermal acclimation capacity (acclimation response ratio, ARR) as well as the influence of the methodology used to assess these thermal traits using a conditional inference tree analysis. We found globally consistent patterns in CTmax and ARR, with phylogeny (taxa/order), experimental methodology, climatic origin, and life stage as significant determinants of thermal traits. The analysis demonstrated that CTmax does not primarily depend on the climatic origin but on experimental acclimation temperature and duration, and life stage. Higher acclimation temperatures and longer acclimation times led to higher CTmax values, whereby Anuran larvae revealed a higher CTmax than older life stages. The ARR of freshwater fishes was more than twice that of amphibians. Differences in ARR between life stages were not significant. In addition to phylogenetic differences, we found that ARR also depended on acclimation duration, ramping rate, and adaptation to local temperature variability. However, the amount of data on early life stages is too small, methodologically inconsistent, and phylogenetically unbalanced to identify potential life cycle bottlenecks in thermal traits. We, therefore, propose methods to improve the robustness and comparability of CTmax/ARR data across species and life stages, which is crucial for the conservation of freshwater biodiversity under climate change.


Asunto(s)
Aclimatación , Anfibios , Peces , Agua Dulce , Calentamiento Global , Animales , Aclimatación/fisiología , Peces/fisiología , Anfibios/fisiología , Anfibios/crecimiento & desarrollo , Filogenia , Cambio Climático , Temperatura
19.
J Exp Biol ; 227(12)2024 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-38920135

RESUMEN

Warming global temperatures have consequences for biological rates. Feeding rates reflect the intake of energy that fuels survival, growth and reproduction. However, temperature can also affect food abundance and quality, as well as feeding behavior, which all affect feeding rate, making it challenging to understand the pathways by which temperature affects the intake of energy. Therefore, we experimentally assessed how clearance rate varied across a thermal gradient in a filter-feeding colonial marine invertebrate (the bryozoan Bugula neritina). We also assessed how temperature affects phytoplankton as a food source, and zooid states within a colony that affect energy budgets and feeding behavior. Clearance rate increased linearly from 18°C to 32°C, a temperature range that the population experiences most of the year. However, temperature increased algal cell size, and decreased the proportion of feeding zooids, suggesting indirect effects of temperature on clearance rates. Temperature increased polypide regression, possibly as a stress response because satiation occurred quicker, or because phytoplankton quality declined. Temperature had a greater effect on clearance rate per feeding zooid than it did per total zooids. Together, these results suggest that the effect of temperature on clearance rate at the colony level is not just the outcome of individual zooids feeding more in direct response to temperature but also emerges from temperature increasing polypide regression and the remaining zooids increasing their feeding rates in response. Our study highlights some of the challenges for understanding why temperature affects feeding rates, especially for understudied, yet ecologically important, marine colonial organisms.


Asunto(s)
Briozoos , Conducta Alimentaria , Fitoplancton , Temperatura , Animales , Briozoos/fisiología , Fitoplancton/fisiología
20.
J Exp Biol ; 227(17)2024 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-39221648

RESUMEN

Higher temperatures exacerbate drought conditions by increasing evaporation rates, reducing soil moisture and altering precipitation patterns. As global temperatures rise as a result of climate change, these effects intensify, leading to more frequent and severe droughts. This link between higher temperatures and drought is particularly evident in sensitive ecosystems like the Amazon rainforest, where reduced rainfall and higher evaporation rates result in significantly lower water levels, threatening biodiversity and human livelihoods. As an example, the serious drought experienced in the Amazon basin in 2023 resulted in a significant decline in fish populations. Elevated water temperatures, reaching up to 38°C, led to mass mortality events, because these temperatures surpass the thermal tolerance of many Amazonian fish species. We know this because our group has collected data on critical thermal maxima (CTmax) for various fish species over multiple years. Additionally, warmer waters can cause hypoxia, further exacerbating fish mortality. Thus, even Amazon fish species, which have relatively high thermal tolerance, are being impacted by climate change. The Amazon drought experienced in 2023 underscores the urgent need for climate action to mitigate the devastating effects on Amazonian biodiversity. The fact that we have been able to link fish mortality events to data on the thermal tolerance of fishes emphasizes the important role of experimental biology in elucidating the mechanisms behind these events, a link that we aim to highlight in this Perspective.


Asunto(s)
Cambio Climático , Sequías , Peces , Animales , Biodiversidad , Brasil , Peces/fisiología , Bosque Lluvioso
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda