Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 20 de 26
Filtrar
Más filtros

Tipo del documento
Publication year range
1.
Macromol Rapid Commun ; 45(12): e2300665, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38444218

RESUMEN

Glycidyl ethers are prepared from a series of furan-based diols and cured with a diamine to form thermosets. The furan diols demonstrate lower toxicity than bisphenol-A in a prior study. The diglycidyl ethers show improved thermal stability compared to the parent diols. Cured thermosets are prepared at elevated temperature using isophorone diamine (IPDA). Glass transition temperatures are in the range of 30-54 °C and depend on the structure of the furan diol. Coatings are prepared on steel substrates and show very high hardness, good adhesion, and a range of flexibility. Properties compare favorably with a control based on a bisphenol-A epoxy resin. The study demonstrates that epoxy resins based on furan diols, which have been shown to have lower toxicity than bisphenol-A, can form thermosets having properties comparable to a standard epoxy resin system; and thus, are viable as replacements for bisphenol-A epoxy resins.


Asunto(s)
Resinas Epoxi , Furanos , Resinas Epoxi/química , Furanos/química , Compuestos de Bencidrilo/química , Temperatura , Estructura Molecular , Compuestos Epoxi/química , Fenoles/química
2.
Macromol Rapid Commun ; 45(9): e2300735, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38281084

RESUMEN

The covalently cross-linked network gives thermosets superior thermal, mechanical, and electrical properties, which, however, squarely makes the large residual stress that is inevitably induced during preparation hardly relieved in the glassy state. In this work, an incredible reduction in residual stress is successfully achieved in bulk thermosets in the glassy state through introducing highly dynamic thiocarbamate bonds by "click" reactions of thiols and isocyanates. Due to the excellent dynamic behaviors of thiocarbamate bonds, local network rearrangement is achieved through thermal stimulation, while the strong 3D cross-linked network is well maintained. Ultimately, a decrease by 44% in residual stress is detected by simply annealing samples at 30 °C below glass transition temperature (Tg), during which they could well maintain more than 98.4% of the storage modulus. After the annealing, more uniform residual stress distribution is also observed, showing a 32% decline in sample standard deviation. However, the residual stress of epoxy resin, a typical thermoset as a reference, changes little even after annealing at Tg. The results prove it a feasible strategy to reduce residual stress in bulk thermosets in the glassy state by introducing proper dynamic covalent bonds.


Asunto(s)
Vidrio , Vidrio/química , Temperatura de Transición , Compuestos de Sulfhidrilo/química , Estructura Molecular , Isocianatos/química , Estrés Mecánico , Temperatura
3.
Appl Compos Mater (Dordr) ; 31(2): 739-764, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38544784

RESUMEN

Structural adhesives characterized a turning point in the post-connection of structural elements due to their excellent performances and ability to transfer stress without losing their integrity. These materials are typically particle-reinforced composites made by a thermoset polymer matrix and fillers. During the in-situ application of this material, the thermal activation of the polymer is typically not possible, leading to an undefined degree of cure and therefore to a variation of the mechanical performance over time. This altering means that after applying a sustained load on a bonded anchor system installed at regular temperature, the adhesive changes material properties. Ample studies convince that the progressive increase of the degree of cure of the thermosetting polymer leads to higher strength and stiffness. However, limited studies have been dedicated to the post-curing effects on the long-term behavior. The main goal of this work is to investigate the tensile and shear creep behavior of two commercially available structural adhesives and the influence of curing conditions on their long-term performances. An extensive experimental campaign comprising short and long-term characterizations has been carried out on specimens subjected to three different curing and post-curing protocols, with the scope of imitating relevant in-situ conditions. The results demonstrate that structural adhesives cured at higher temperatures are less subjected to creep deformations. As a material equation, the generalized Kelvin model is utilized to fit the tensile and shear creep data, and two continuous creep spectra have been selected to represent the creep behavior and facilitate extrapolations to the long-term behavior.

4.
Polymers (Basel) ; 16(8)2024 Apr 09.
Artículo en Inglés | MEDLINE | ID: mdl-38674944

RESUMEN

The Diels-Alder equilibrium is a widely known process in chemistry that can be used to provide a thermoset structure with recyclability and reprocessability mechanisms. In this study, a commercial epoxy resin is modified through the integration of functional groups into the network structure to provide superior performance. The present study has demonstrated that it is possible to adapt the curing process to efficiently incorporate these moieties in the final structure of commercial epoxy-based resins. It also evaluates the impact that they have on the final properties of the cured composites. In addition, different approaches have been studied for the incorporation of the functional group, adjusting and adapting the stoichiometry of the system components due to the differences in reactivity caused by the presence of the incorporated reactive groups, with the objective of maintaining comparable ratios of epoxy/amine groups in the formulation. Finally, it has been demonstrated that although the Diels-Alder equilibrium responds under external conditions, such as temperature, different sets of parameters and behaviors are to be expected as the structures are integrated into the thermoset, generating new equilibrium temperatures. In this way, the present research has explored sustainable strategies to enable the recyclability of commercial thermoset systems through crosslinking control and its modification.

5.
Acta Crystallogr E Crystallogr Commun ; 80(Pt 6): 645-648, 2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38845703

RESUMEN

The cis- form of di-amino-dibenzo-cyclo-octane (DADBCO, C16H18N2) is of inter-est as a negative coefficient of thermal expansion (CTE) material. The crystal structure was determined through single-crystal X-ray diffraction at 100 K and is presented herein.

6.
Polymers (Basel) ; 16(12)2024 Jun 07.
Artículo en Inglés | MEDLINE | ID: mdl-38931966

RESUMEN

The development of eco-friendly, mechanically stable, and biocompatible materials for medical packaging has gained significant attention in recent years. Halloysite nanotubes (HNTs) have emerged as a promising nanomaterial due to their unique tubular structure, high aspect ratio, and biocompatibility. We aim to develop a novel soybean oil-based thermoset bio-resin incorporating HNTs and to characterize its physical and functional properties for medical packaging. Soybean oil was epoxidized using an eco-friendly method and used as a precursor for preparing the thermoset resin (ESOR). Different amounts of HNTs (0.25, 0.50, and 1.0 wt.%) were used to prepare the ESOR/HNTs blends. Various characteristics such as transparency, tensile strength, thermal resistance, and water absorption were investigated. While incorporating HNTs improved the tensile strength and thermal properties of the ESOR, it noticeably reduced its transparency at the 1.0 wt.% level. Therefore, HNTs were modified using sodium hydroxide and (3-Aminopropyl) triethoxysilane (APTES) and ESOR/HNTs blends were made using 1.0 wt.% of modified HNTs. It was shown that modifying HNTs using NaOH improved the transparency and mechanical properties of prepared blends compared to those with the same amount of unmodified HNTs. However, modifying using (3-Aminopropyl) triethoxysilane (APTES) decreased the transparency but improved the water absorption of prepared resins. This study provides valuable insights into the design of HNT-based ESOR blends as a sustainable material for medical packaging, contributing to the advancement of eco-friendly packaging solutions in the healthcare industry.

7.
Polymers (Basel) ; 16(12)2024 Jun 10.
Artículo en Inglés | MEDLINE | ID: mdl-38931992

RESUMEN

Pultrusion is a highly efficient continuous process to manufacture advanced fiber-reinforced composites. The injection pultrusion variant permits a higher control of the resin flow, enabling the manufacturing of a high reinforcement volume fraction. Moreover, it reduces the emission of volatile compounds that are dangerous for the operators and for the working environment. The present study proposes an experimental analysis of injection pultrusion in three different operative conditions. In particular, the activity focused on the effects of the temperature setup on the thermochemical and rheological behaviors of the resin system and on the interaction between the processed materials and the pultrusion die wall. The setup of the parameters was selected to evidence the behavior of the viscous interaction during the thermoset transition to the solid state, which is particularly challenging due to the localization of high adhesive forces related to the sharp increase in resin viscosity. Microscope observations of the cross-sections were performed to discuss the effects of the process parameters.

8.
Adv Mater ; 36(28): e2402627, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38652482

RESUMEN

While valued for their durability and exceptional performance, crosslinked thermosets are challenging to recycle and reuse. Here, inherent reprocessability in industrially relevant polyolefin thermosets is unveiled. Unlike prior methods, this approach eliminates the need to introduce exchangeable functionality to regenerate the material, relying instead on preserving the activity of the metathesis catalyst employed in the curing reaction. Frontal ring-opening metathesis polymerization (FROMP) proves critical to preserving this activity. Conditions controlling catalytic viability are explored to successfully reclaim performance across multiple generations of material, thus demonstrating long-term reprocessability. This straightforward and scalable remolding strategy is poised for widespread adoption. Given the anticipated growth in polyolefin thermosets, these findings represent an important conceptual advance in the pursuit of a fully circular lifecycle for thermoset polymers.

9.
Int J Biol Macromol ; 272(Pt 2): 132871, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38862321

RESUMEN

Fabrication of sustainable bio-based malleable thermosets (BMTs) with excellent mechanical properties and reprocessing ability for applications in electronic devices has attracted more and more attention but remains significant challenges. Herein, the BMTs with excellent mechanical robustness and reprocessing ability were fabricated via integrating with radical polymerization and Schiff-base chemistry, and employed as the flexible substrate to prepare the capacitive sensor. To prepare the BMTs, an elastic bio-copolymer derived from plant oil and 5-hydroxymethylfurfural was first synthesized, and then used to fabricate the dynamic crosslinked BMTs through Schiff-base chemistry with the amino-modified cellulose and polyether amine. The synergistic effect of rigid cellulose backbone and the construction of dynamic covalent crosslinking network not only achieved high tensile strength (8.61 MPa) and toughness (3.77 MJ/m3) but also endowed the BMTs with excellent reprocessing ability with high mechanical toughness recovery efficiency of 104.8 %. More importantly, the BMTs were used as substrates to fabricate the capacitive sensor through the CO2-laser irradiation technique. The resultant capacitive sensor displayed excellent and sensitive humidity sensing performance, which allowed it to be successfully applied in human health monitoring. This work paved a promising way for the preparation of mechanical robustness malleable bio-thermosets for electronic devices.


Asunto(s)
Celulosa , Furaldehído , Aceites de Plantas , Celulosa/química , Furaldehído/química , Furaldehído/análogos & derivados , Aceites de Plantas/química , Capacidad Eléctrica , Temperatura , Resistencia a la Tracción , Humanos
10.
Polymers (Basel) ; 16(9)2024 Apr 28.
Artículo en Inglés | MEDLINE | ID: mdl-38732698

RESUMEN

Bio-based epoxy resins have received significant attention in terms of concerns regarding carbon emission. Epoxidized soybean oil (ESO) derived from sustainable feedstock has been widely used to blend with traditional diglycidyl ether of bisphenol-A (DGEBA) to replace some of the petroleum-based components. In this work, molecular dynamics (MD) simulations were applied to track the network formation and predict the performance of methyl hexahydrophthalic anhydride (MHHPA)-cured ESO/DGEBA blend systems. The effects of ESO content and cross-linking degree on the mass density, volumetric shrinkage, glass transition temperature (Tg), coefficient of thermal expansion (CTE), Young's modulus, yield strength, and Poisson's ratio of the epoxy resin were systematically investigated. The results show that systems with high ESO content achieve gelation at low cross-linking degree. The Tg value, Young's modulus, and yield strength increase with the increase in cross-linking degree, but the CTE at the glassy state and Poisson's ratio decrease. The comparison results between the simulated and experimental data demonstrated that the MD simulations can accurately predict the thermal and mechanical properties of ESO-based thermosets. This study gains insight into the variation in thermo-mechanical properties of anhydride-cured ESO/DGEBA-based epoxy resins during the cross-linking process and provides a rational strategy for optimizing bio-based epoxy resins.

11.
Materials (Basel) ; 17(13)2024 Jul 02.
Artículo en Inglés | MEDLINE | ID: mdl-38998348

RESUMEN

In the polymeric material industry, thermosets and related composites have played a substantial role in the production of rubber and plastics. One important subset of these is thermoset composites with carbon reinforcement. The incorporation of carbon fillers and fibers gives polymeric materials improved electrical and mechanical properties, among other benefits. However, the covalently crosslinked network of thermosets presents significant challenges for recycling and reprocessing because of its intractable nature. The introduction of vitrimer materials opens a new avenue to produce biodegradable and recyclable thermosets. Carbon-reinforced vitrimer composites are pursued for high-performance, long-lasting materials with attractive physical properties, the ability to be recycled and processed, and other features that respond uniquely to stimuli. The development of carbon-reinforced vitrimer composites over the last few years is summarized in this article. First, an overview of vitrimers and the methods used to prepare carbon fiber-reinforced vitrimer composites is provided. Because of the vitrimer nature of such composites, reprocessing, healing, and recycling are viable ways to greatly extend their service life; these approaches are thoroughly explained and summarized. The conclusion is our prediction for developing carbon-based vitrimer composites.

12.
Polymers (Basel) ; 16(6)2024 Mar 11.
Artículo en Inglés | MEDLINE | ID: mdl-38543370

RESUMEN

Several researchers have examined the interest in using a thermoplastic to increase thermoset polymers' shock resistance. However, fewer studies have examined the nature of the mechanisms involved between both kinds of polymers. This was the objective of our work, which was carried out using a gradual approach. First, we describe the synthesis of a poly(ether ether ketone) oligomer (oPEEK) with hydroxyl terminations from the reaction of hydroquinone and 4,4'-difluorobenzophenone in N-methyl-2-pyrrolidone. Then, the main physicochemical properties of this oligomer were determined using different thermal analyses (i.e., differential scanning calorimetry (DSC), thermogravimetric (ATG), and thermomechanical analyses) to isolate its response alone. The chemical characterisation of this compound using conventional analytical chemistry techniques was more complex due to its insolubility. To this end, it was sulfonated, according to a well-known process, to make it soluble and enable nuclear magnetic resonance (NMR) and size exclusion chromatography (SEC) experiments. Additional information about the structural and chemical characteristics of the oligomer and its average molecular weight could thus be obtained. The synthesis of an oligoPEEK with α,ω-hydroxyl end-groups and a molecular weight of around 5070 g/mol was thus confirmed by NMR. This value was in accordance with that determined by SEC analysis. Next, the reaction of oPEEK with an epoxy prepolymer was demonstrated using DSC and dynamic rheometry. To this end, uncured mixtures of epoxy prepolymer (DGEBA) with different proportions of oPEEK (3, 5, 10 and 25%) were prepared and characterised by both techniques. Ultimately, the epoxy-oPEEK mixture was cured with isophorone diamine. Finally, topological analyses were performed by atomic force microscopy (AFM) in tapping mode to investigate the interface quality between the epoxy matrix and the oPEEK particles indirectly. No defects, such as decohesion areas, microvoids, or cracks, were observed between both systems.

13.
Adv Mater ; 36(28): e2311758, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38758171

RESUMEN

Thermoset elastomers have been extensively applied in many fields because of their excellent mechanical strengths and durable characteristics, such as an excellent chemical resistance. However, in the context of environmental issues, the nonrecyclability of thermosets has become a major barrier to the further development of these materials. Here, a well-tailored strategy is reported to solve this problem by introducing mismatched supramolecular interactions (MMSIs) into a covalently cross-linked poly(urethane-urea) network with dynamic acylsemicarbazide moieties. The MMSIs significantly strengthen and toughen the thermoset elastomer by effectively dissipating energy and resisting external stress. In addition, the elastomer recycling efficiency is improved 2.7-fold due to the superior reversibility of the MMSIs. The optimized thermoset elastomer features outstanding characteristics, including an ultrahigh tensile strength (110.8 MPa), an unprecedented tensile toughness (1245.2 MJ m-3), as well as remarkable resistance to chemical media, creep, and damage. Most importantly, it exhibits an extraordinary multirecyclability, and the 4th recycling efficiency remains close to 100%. This scalable method promotes the development of thermosets with both high performance and excellent recyclability, thereby providing valuable guidance for addressing the issue of nonrecyclability from a molecular design standpoint.

14.
Polymers (Basel) ; 16(15)2024 Aug 03.
Artículo en Inglés | MEDLINE | ID: mdl-39125243

RESUMEN

Until recently, recycling thermoset polyurethanes (PUs) was limited to degrading methods. The development of covalent adaptable networks (CANs), to which PUs can be assigned, has opened novel possibilities for actual recycling. Most efforts in this area have been directed toward inventing new materials that can benefit from CAN theory; presently, little or nothing has been applied to industrially producible materials. In this study, both an industrially available polyol (Sovermol780®) and isocyanate (Tolonate X FLO 100®) with percentages of bioderived components were employed, resulting in a potentially scalable and industrially producible material. The resultant network could be reworked up to three times, maintaining the crosslinked structure without significantly changing the thermal properties. Improvements in mechanical parameters were observed when comparing the pristine material to the material exposed to three rework processes, with gains of roughly 50% in elongation at break and 20% in tensile strength despite a 25% decrease in Young's modulus and crosslink density. Thus, it was demonstrated that theory may be profitably applied even to materials that are not designed including additional bonds but instead rely just on the dynamic urethane bond that is naturally present in the network.

15.
Waste Manag ; 187: 134-144, 2024 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-39032436

RESUMEN

Here we report a novel chemical recycling of carbon fiber-reinforced plastic (CFRP) using meta-chloroperoxybenzoic acid (mCPBA) as the representative oxidizing agent. The optimal decomposition conditions for the epoxy (EP) resin in CFRP were investigated by varying mCPBA concentration and reaction time. The CFRP decomposed completely within 6 h using a 1.5 M mCPBA solution at 40 °C. Tensile strength of recovered CF (r-CF) measured 4.4 GPa, 93.6% of virgin CF (v-CF), and electrical conductivity reached 590 S/cm, 95% of v-CF. Furthermore, the interfacial shear strength (IFSS) of the recovered carbon fibers (r-CF) using EP resin and polyamide 6 (PA6) was analyzed. For EP resin, the IFSS of r-CF was 88 MPa, a 26 % increase compared to v-CF. In the case of PA6 resin, IFSS values were 80 MPa for r-CF, a 17% improvement over v-CF. The study highlights superior mechanical properties and favorable IFSS of r-CF, positioning them as promising for composite regeneration. Remarkably, this method operated at relatively low temperatures compared to existing technologies, with energy consumption recorded at 35 MJ/kg, establishing it as the most energy-efficient recycling method available.


Asunto(s)
Fibra de Carbono , Reciclaje , Resistencia al Corte , Fibra de Carbono/química , Reciclaje/métodos , Plásticos/química , Resinas Epoxi/química , Resistencia a la Tracción , Carbono/química , Caprolactama/análogos & derivados , Polímeros
16.
Polymers (Basel) ; 16(6)2024 Mar 21.
Artículo en Inglés | MEDLINE | ID: mdl-38543462

RESUMEN

Modern science and technology demand a low glass transition temperature, yet one tailored to specific thermoset needs and specific to individual hardener applications. Two novel, nonterminal liquid crystalline epoxy resins (LCER) were synthesised, with their structures characterized via nuclear magnetic resonance (NMR), mass spectrometry (MS), and elemental analysis. Their liquid crystalline nature and thermal properties were determined using polarized optical microscopy (POM), thermogravimetric analysis (TGA), and differential scanning calorimetry (DSC). A set of seven aromatic amines serving as curing agents was used to perform curing in fourteen different systems in order to assess the glass transition temperature (Tg) of the obtained polymer networks using DSC. The liquid crystalline elastomers were obtained with vitrification occurring in a low temperature range (-10-40 °C), with a more predictable outcome for amines with two aromatic rings in the structure than with one. Moreover, the resin with a core consisting of four aromatic rings produces networks with higher Tg than the three-aromatic resin. The use of nonterminal LCER allowed the lowering of the glass transition temperature of the polymers to more than 70 °C compared to a terminal analogue. This brings new possibilities of designing highly elastic yet cured polymers with potential for use in smart applications due to the LC nature of the resin.

17.
Adv Healthc Mater ; : e2401202, 2024 Jul 17.
Artículo en Inglés | MEDLINE | ID: mdl-39021283

RESUMEN

There is an overwhelming demand for new scaffolding materials for tissue engineering (TE) purposes. Polymeric scaffolds have been explored as TE materials; however, their high glass transition state (Tg) limits their applicability. In this study, a novel materials platform for fabricating TE scaffolds is proposed based on solvent-free two-component heterocyclic triazine-trione (TATO) formulations, which cure at room temperature via thiol-ene/yne photochemistry. Three ester-containing thermosets, TATO-1, TATO-2, and TATO-3, are used for the fabrication of TE scaffolds including rigid discs, elastic films, microporous sponges, and 3D printed objects. After 14 days' incubation the materials covered a wide range of properties, from the soft TATO-2 having a compression modulus of 19.3 MPa and a Tg of 30.4 °C to the hard TATO-3 having a compression modulus of 411 MPa and a Tg of 62.5 °C. All materials exhibit micro- and nano-surface morphologies suited for bone tissue engineering, and in vitro studies found them all to be cytocompatible, supporting fast cell proliferation while minimizing cell apoptosis and necrosis. Moreover, bone marrow-derived mesenchymal stem cells on the surface of the materials are successfully differentiated into osteoblasts, adipocytes, and neuronal cells, underlining the broad potential for the biofabrication of TATO materials for TE clinical applications.

18.
Polymers (Basel) ; 16(13)2024 Jun 27.
Artículo en Inglés | MEDLINE | ID: mdl-39000682

RESUMEN

Continuous carbon fiber-reinforced (CCFR) thermoset composites have received significant attention due to their excellent mechanical and thermal properties. The implementation of 3D printing introduces cost-effectiveness and design flexibility into their manufacturing processes. The light-assisted 3D printing process shows promise for manufacturing CCFR composites using low-viscosity thermoset resin, which would otherwise be unprintable. Because of the lack of shape-retaining capability, 3D printing of various shapes is challenging with low-viscosity thermoset resin. This study demonstrated an overshoot-associated algorithm for 3D printing various shapes using low-viscosity thermoset resin and continuous carbon fiber. Additionally, 3D-printed unidirectional composites were mechanically characterized. The printed specimen exhibited tensile strength of 390 ± 22 MPa and an interlaminar strength of 38 ± 1.7 MPa, with a fiber volume fraction of 15.7 ± 0.43%. Void analysis revealed that the printed specimen contained 5.5% overall voids. Moreover, the analysis showed the presence of numerous irregular cylindrical-shaped intra-tow voids, which governed the tensile properties. However, the inter-tow voids were small and spherical-shaped, governing the interlaminar shear strength. Therefore, the printed specimens showed exceptional interlaminar shear strength, and the tensile strength had the potential to increase further by improving the impregnation of polymer resin within the fiber.

19.
Artículo en Inglés | MEDLINE | ID: mdl-38867885

RESUMEN

Simultaneous rheology and conversion measurements of neat and composite epoxy resins reveal that conventional models neither accurately nor fully describe the relationship between rheology and conversion. We find that models predicting thermoset conversion based on mixing rules of rheological properties are quantitatively inaccurate and do not account for chemical gelation. Models based on percolation theory and the divergence of the viscosity at the gel point are more accurate but only valid before the gel point. Here, we propose the use of the generalized effective medium (GEM) model, which incorporates the divergence of rheological properties on both sides of the critical gel point. We show that the GEM model works well for both neat resins and filled systems, and the resulting parameters estimate the gel point and scaling behavior on either side of the sol-gel transition.

20.
Micromachines (Basel) ; 15(5)2024 Apr 27.
Artículo en Inglés | MEDLINE | ID: mdl-38793155

RESUMEN

In this work, an additive manufacturing process for extruding fully compounded thermosetting elastomers based on fluorine-containing polymer compositions is reported. Additive manufacturing printers are designed with a dry ice container to precool filaments made from curable fluoroelastomer (FKM) and perfluoroelastomer (FFKM) compounds. A support tube guides the stiffened filament towards the printer nozzle. This support tube extends near the inlet to a printer nozzle. This approach allows low-modulus, uncured rubber filaments to be printed without buckling, a phenomenon common when 3D printing low-modulus elastomers via the fused deposition modeling (FDM) process. Modeling studies using thermal analyses data from a Dynamic Mechanical Analyzer (DMA) and a Differential Scanning Calorimeter (DSC) are used to calculate the Young's modulus and buckling force, which helps us to select the appropriate applied pressure and the nozzle size for printing. Using this additive manufacturing (AM) method, the successful printing of FKM and FFKM compounds is demonstrated. This process can be used for the future manufacturing of seals or other parts from fluorine-containing polymers.

SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda