Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Banco de datos
Tipo del documento
Publication year range
1.
Drug Dev Res ; 83(3): 578-585, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-34636064

RESUMEN

The problem of antimicrobial resistance is an important global public health challenge. We propose that a development of new antibiotic compounds around known natural substances is a solution to this problem. We investigate reengineer natural products into potent antibiotics. Uracil fragment is abundant in nature and significant to treat infectious diseases due to its affection to the replication of the bacterial chromosome. 12 new uracil S-derivatives were obtained and tested for their in vitro antimicrobial properties. N3 -(thietan-3-yl)- and N3 -(1,1-dioxothietan-3-yl)uracils derivatives were synthesized by thietanylation of 6-methyluracil with 2-chloromethylthiirane and subsequent oxidation of the thietan ring. A method of their alkylation with ethyl-2-chloroacetate was developed and acetohydrazides containing 3-(thietan-3-yl)- and 3-(1,1-dioxothietan-3-yl)uracilyls fragments in the acetyl group were obtained by hydrazinolysis of 2-(thietanyluracil-1-yl)acetic acid ethyl esters. Their interaction with ß-dicarbonyl compounds, anhydride of mono- and dicarboxylic acids was studied. Antimicrobial activity was determined by the agar diffusion method on test organisms: S. aureus, E. coli, P. vulgaris, K. pneumoniae, C. diversus, E. aerogenes, P. aeruginosa, S. abosit. N-acyl-5-hydroxypyrazolines and N,N'-diacylhydrazines of 6-methyluracil thietanyl- and dioxothietanyl derivatives showed high antimicrobial activity, which is consistent with the results of structure activity relationship analysis (MIC 0.1-10 µg/ml).


Asunto(s)
Antiinfecciosos , Staphylococcus aureus , Antibacterianos/química , Antibacterianos/farmacología , Antiinfecciosos/farmacología , Escherichia coli , Pruebas de Sensibilidad Microbiana , Uracilo/química , Uracilo/farmacología
2.
ADMET DMPK ; 9(2): 167-176, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-35299769

RESUMEN

The synthesis and antimicrobial evaluation of new 2-[6-methyl-4-(thietan-3-yloxy)pyrimidin-2-ylthio]acetohydrazide derivatives was investigated. According to the literature, there are a lot of antimicrobial agents among the pyrimidines and hydrazides, and therefore it seems promising to use 2-[6-methyl-4-(thietan-3-yloxy)pyrimidin-2-ylthio]acetohydrazide as a base object for synthesizing new biologically active substances. 2-[6-methyl-4-(thietan-3-yloxy)pyrimidin-2-ylthio]acetohydrazide was obtained by the hydrazinolysis of ethyl thioacetate, using a 3-fold molar excess of 85 % hydrazine hydrate in ethanol, at room temperature. Interaction of 2-[6-methyl-4-(thietan-3-yloxy)pyrimidin-2-ylthio]acetohydrazide with ketones during boiling in ethanol yielded N-ylidenehydrazides. The solid obtained by concentration was collected, and then purified by recrystallization. The new compounds were characterized by 1H, 13C NMR, IR spectroscopy and elemental analysis. The antibacterial and antifungal activities of the new compounds were analysed using agar diffusion and tenfold broth (pH 7.2 - 7.4) dilution methods, in comparison with the clinical used drugs, ceftriaxone and Pimafucin. The structure-activity studies showed that, depending on the nature of the hydrazide fragment, the newly synthesized compounds exhibited varying degrees of microbial inhibition. Within the same series the antimicrobial activity depends on the nature of the substituent attached to the benzene ring. The investigation of antibacterial screening data revealed that the compounds N'-[1-(4-aminophenyl)ethylidene]-2-[6-methyl-4-(thietan-3-yloxy)pyrimidin-2-ylthio]acetohydrazide, N'-[1-(4-hydroxyphenyl)ethylidene]-2-[6-methyl-4-(thietan-3-yloxy)pyrimidin-2-ylthio]acetohydrazide, N'-[1- (2,5-dihydroxyphenyl) ethylidene]-2-[6-methyl-4-(thietan-3-yloxy)-pyrimidin-2-ylthio]acetohydrazide were found to be more potent than the other synthesized analogues.

3.
ACS Med Chem Lett ; 8(8): 864-868, 2017 Aug 10.
Artículo en Inglés | MEDLINE | ID: mdl-28835803

RESUMEN

The oxetane ring serves as an isostere of the carbonyl moiety, suggesting that oxetan-3-ol may be considered as a potential surrogate of the carboxylic acid functional group. To investigate this structural unit, as well as thietan-3-ol and the corresponding sulfoxide and sulfone derivatives, as potential carboxylic acid bioisosteres, a set of model compounds has been designed, synthesized, and evaluated for physicochemical properties. Similar derivatives of the cyclooxygenase inhibitor, ibuprofen, were also synthesized and evaluated for inhibition of eicosanoid biosynthesis in vitro. Collectively, the data suggest that oxetan-3-ol, thietan-3-ol, and related structures hold promise as isosteric replacements of the carboxylic acid moiety.

SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda