Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 20 de 168
Filtrar
1.
Proc Natl Acad Sci U S A ; 120(51): e2311961120, 2023 Dec 19.
Artículo en Inglés | MEDLINE | ID: mdl-38096411

RESUMEN

Crop engineering and de novo domestication using gene editing are new frontiers in agriculture. However, outside of well-studied crops and model systems, prioritizing engineering targets remains challenging. Evolution can guide us, revealing genes with deeply conserved roles that have repeatedly been selected in the evolution of plant form. Homologs of the transcription factor genes GRASSY TILLERS1 (GT1) and SIX-ROWED SPIKE1 (VRS1) have repeatedly been targets of selection in domestication and evolution, where they repress growth in many developmental contexts. This suggests a conserved role for these genes in regulating growth repression. To test this, we determined the roles of GT1 and VRS1 homologs in maize (Zea mays) and the distantly related grass brachypodium (Brachypodium distachyon) using gene editing and mutant analysis. In maize, gt1; vrs1-like1 (vrl1) mutants have derepressed growth of floral organs. In addition, gt1; vrl1 mutants bore more ears and more branches, indicating broad roles in growth repression. In brachypodium, Bdgt1; Bdvrl1 mutants have more branches, spikelets, and flowers than wild-type plants, indicating conserved roles for GT1 and VRS1 homologs in growth suppression over ca. 59 My of grass evolution. Importantly, many of these traits influence crop productivity. Notably, maize GT1 can suppress growth in arabidopsis (Arabidopsis thaliana) floral organs, despite ca. 160 My of evolution separating the grasses and arabidopsis. Thus, GT1 and VRS1 maintain their potency as growth regulators across vast timescales and in distinct developmental contexts. This work highlights the power of evolution to inform gene editing in crop improvement.


Asunto(s)
Arabidopsis , Arabidopsis/genética , Arabidopsis/metabolismo , Fenotipo , Flores/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Regulación de la Expresión Génica de las Plantas
2.
Plant J ; 120(1): 139-158, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39136678

RESUMEN

Strigolactones (SLs) are key regulators of shoot growth and responses to environmental stimuli. Numerous studies have indicated that nitrogen (N) limitation induces SL biosynthesis, suggesting that SLs may play a pivotal role in coordinating systemic responses to N availability, but this idea has not been clearly demonstrated. Here, we generated triple knockout mutants in the SL synthesis gene TaDWARF17 (TaD17) in bread wheat and investigated their phenotypic and transcriptional responses under N limitation, aiming to elucidate the role of SLs in the adaptation to N limitation. Tad17 mutants display typical SL mutant phenotypes, and fail to adapt their shoot growth appropriately to N. Despite exhibiting an increased tillering phenotype, Tad17 mutants continued to respond to N limitation by reducing tiller number, suggesting that SLs are not the sole regulators of tillering in response to N availability. RNA-seq analysis of basal nodes revealed that the loss of D17 significantly altered the transcriptional response of N-responsive genes, including changes in the expression profiles of key N response master regulators. Crucially, our findings suggest that SLs are required for the transcriptional downregulation of cytokinin (CK) synthesis and signalling in response to N limitation. Collectively, our results suggest that SLs are essential for the appropriate morphological and transcriptional adaptation to N limitation in wheat, and that the repressive effect of SLs on shoot growth is partly mediated by their repression of CK synthesis.


Asunto(s)
Citocininas , Lactonas , Nitrógeno , Reguladores del Crecimiento de las Plantas , Transducción de Señal , Triticum , Citocininas/metabolismo , Nitrógeno/metabolismo , Lactonas/metabolismo , Triticum/genética , Triticum/metabolismo , Triticum/crecimiento & desarrollo , Reguladores del Crecimiento de las Plantas/metabolismo , Regulación de la Expresión Génica de las Plantas , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Brotes de la Planta/metabolismo , Brotes de la Planta/genética , Brotes de la Planta/crecimiento & desarrollo
3.
Plant Physiol ; 2024 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-39404763

RESUMEN

Phytochromes are red/far-red light receptors that regulate various aspects of plant growth, development and stress responses. The precise mechanism by which Phytochrome B (PhyB)-mediated light signaling influences plant defense and development remains unclear. In this study, we showed that PhyB enhances rice (Oryza sativa) blast disease resistance, tillering, and grain size compared to wild-type plants. Notably, PhyB interacted with and degraded grassy tiller 1 (GT1), a negative regulator of tiller development. Knockdown of GT1 in a phyB background partially rescued the diminished tillering of phyB. However, GT1 negatively regulates rice resistance to blast, suggesting that PhyB degradation of GT1 promotes tillering but not blast resistance. Previously, PhyB was found to interact with and degrade phytochrome-interacting factor 15 (PIL15), a key regulator of seed development that reduces rice resistance to blast and seed size. pil15 mutation in phyB mutants rescued phyB seed size and blast resistance, suggesting that PhyB might interact with and degrade PIL15 to negatively regulate blast resistance and seed size. PIL15 directly activated sugar will be eventually exported transporter 2a (SWEET2a). sweet2a mutants were less susceptible to blast disease compared to wild type. Collectively, these data demonstrate that PhyB promotes rice yield and blast resistance by inhibiting the transcription factors GT1 and PIL15 and downstream signaling.

4.
Plant J ; 114(4): 729-742, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-36974032

RESUMEN

Improving crop yield potential through an enhanced response to rising atmospheric CO2 levels is an effective strategy for sustainable crop production in the face of climate change. Large-sized panicles (containing many spikelets per panicle) have been a recent ideal plant architecture (IPA) for high-yield rice breeding. However, few breeding programs have proposed an IPA under the projected climate change. Here, we demonstrate through the cloning of the rice (Oryza sativa) quantitative trait locus for MORE PANICLES 3 (MP3) that the improvement in panicle number increases grain yield at elevated atmospheric CO2 levels. MP3 is a natural allele of OsTB1/FC1, previously reported as a negative regulator of tiller bud outgrowth. The temperate japonica allele advanced the developmental process in axillary buds, moderately promoted tillering, and increased the panicle number without negative effects on the panicle size or culm thickness in a high-yielding indica cultivar with large-sized panicles. The MP3 allele, containing three exonic polymorphisms, was observed in most accessions in the temperate japonica subgroups but was rarely observed in the indica subgroup. No selective sweep at MP3 in either the temperate japonica or indica subgroups suggested that MP3 has not been involved and utilized in artificial selection during domestication or breeding. A free-air CO2 enrichment experiment revealed a clear increase of grain yield associated with the temperate japonica allele at elevated atmospheric CO2 levels. Our findings show that the moderately increased panicle number combined with large-sized panicles using MP3 could be a novel IPA and contribute to an increase in rice production under climate change with rising atmospheric CO2 levels.


Asunto(s)
Oryza , Dióxido de Carbono , Alelos , Fitomejoramiento , Grano Comestible/genética
5.
BMC Genomics ; 25(1): 682, 2024 Jul 09.
Artículo en Inglés | MEDLINE | ID: mdl-38982341

RESUMEN

BACKGROUND: Green foxtail [Setaria viridis (L.)] is one of the most abundant and troublesome annual grass weeds in alfalfa fields in Northeast China. Synthetic auxin herbicide is widely used in agriculture, while how auxin herbicide affects tillering on perennial grass weeds is still unclear. A greenhouse experiment was conducted to examine the effects of auxin herbicide 2,4-D on green foxtail growth, especially on tillers. RESULTS: In the study, 2,4-D isooctyl ester was used. There was an inhibition of plant height and fresh weight on green foxtail after application. The photosynthetic rate of the leaves was dramatically reduced and there was an accumulation of malondialdehyde (MDA) content. Moreover, applying 2,4-D isooctyl ester significantly reduced the tillering buds at rates between 2100 and 8400 ga. i. /ha. Transcriptome results showed that applying 2,4-D isooctyl ester on leaves affected the phytohormone signal transduction pathways in plant tillers. Among them, there were significant effects on auxin, cytokinin, abscisic acid (ABA), gibberellin (GA), and brassinosteroid signaling. Indeed, external ABA and GA on leaves also limited tillering in green foxtail. CONCLUSIONS: These data will be helpful to further understand the responses of green foxtail to 2, 4-D isooctyl ester, which may provide a unique perspective for the development and identification of new target compounds that are effective against this weed species.


Asunto(s)
Ácido 2,4-Diclorofenoxiacético , Herbicidas , Reguladores del Crecimiento de las Plantas , Setaria (Planta) , Ácido 2,4-Diclorofenoxiacético/farmacología , Setaria (Planta)/efectos de los fármacos , Setaria (Planta)/genética , Setaria (Planta)/metabolismo , Setaria (Planta)/crecimiento & desarrollo , Reguladores del Crecimiento de las Plantas/farmacología , Reguladores del Crecimiento de las Plantas/metabolismo , Herbicidas/farmacología , Hojas de la Planta/efectos de los fármacos , Hojas de la Planta/metabolismo , Ácidos Indolacéticos/metabolismo , Ácidos Indolacéticos/farmacología , Regulación de la Expresión Génica de las Plantas/efectos de los fármacos , Fotosíntesis/efectos de los fármacos , Giberelinas/farmacología , Giberelinas/metabolismo , Transducción de Señal/efectos de los fármacos , Transcriptoma/efectos de los fármacos , Ésteres
6.
BMC Plant Biol ; 24(1): 447, 2024 May 23.
Artículo en Inglés | MEDLINE | ID: mdl-38783192

RESUMEN

BACKGROUND: Amino acids are not only the main form of N in rice, but also are vital for its growth and development. These processes are facilitated by amino acid transporters within the plant. Despite their significance, only a few AAP amino acid transporters have been reported. RESULTS: In this study, we observed that there were differences in the expression of amino acid transporter OsAAP7 among 521 wild cultivated rice varieties, and it directly negatively correlated with tillering and grain yield per plant. We revealed that OsAAP7 protein was localized to the endoplasmic reticulum and had absorption and transport affinity for amino acids such as phenylalanine (Phe), lysine (Lys), leucine (Leu), and arginine (Arg) using subcellular localization, yeast substrate testing, fluorescent amino acid uptake, and amino acid content determination. Further hydroponic studies showed that exogenous application of amino acids Phe, Lys and Arg inhibited the growth of axillary buds in the overexpression lines, and promoted the elongation of axillary buds in the mutant lines. Finally, RNA-seq analysis showed that the expression patterns of genes related to nitrogen, auxin and cytokinin pathways were changed in axillary buds of OsAAP7 transgenic plants. CONCLUSIONS: This study revealed the gene function of OsAAP7, and found that blocking of amino acid transporter OsAAP7 with CRISPR/Cas9 technology promoted tillering and yield by determining basic and neutral amino acids accumulation in rice.


Asunto(s)
Oryza , Proteínas de Plantas , Oryza/genética , Oryza/metabolismo , Oryza/crecimiento & desarrollo , Proteínas de Plantas/metabolismo , Proteínas de Plantas/genética , Sistemas de Transporte de Aminoácidos/metabolismo , Sistemas de Transporte de Aminoácidos/genética , Plantas Modificadas Genéticamente , Aminoácidos Neutros/metabolismo , Regulación de la Expresión Génica de las Plantas , Aminoácidos/metabolismo
7.
BMC Plant Biol ; 24(1): 708, 2024 Jul 25.
Artículo en Inglés | MEDLINE | ID: mdl-39054432

RESUMEN

BACKGROUND: Squamosa promoter-binding protein-like (SPL) proteins are essential to plant growth and development as plant-specific transcription factors. However, the functions of SPL proteins in wheat need to be further explored. RESULTS: We cloned and characterized TaSPL6B of wheat in this study. Analysis of physicochemical properties revealed that it contained 961 amino acids and had a molecular weight of 105 kDa. Full-length TaSPL6B transcription activity was not validated in yeast and subcellular localization analysis revealed that TaSPL6B was distributed in the nucleus. Ectopic expression of TaSPL6B in Arabidopsis led to increasing number of branches and early flowering. TaSPL6B was highly transcribed in internodes of transgenic Arabidopsis. The expression of AtSMXL6/AtSMXL7/AtSMXL8 (homologous genes of TaD53) was markedly increased, whereas the expression of AtSPL2 (homologous genes of TaSPL3) and AtBRC1 (homologous genes of TaTB1) was markedly reduced in the internodes of transgenic Arabidopsis. Besides, TaSPL6B, TaSPL3 and TaD53 interacted with one another, as demonstrated by yeast two-hybrid and bimolecular fluorescence complementation assays. Therefore, we speculated that TaSPL6B brought together TaD53 and TaSPL3 and enhanced the inhibition effect of TaD53 on TaSPL3 through integrating light and strigolactone signaling pathways, followed by suppression of TaTB1, a key repressor of tillering. CONCLUSIONS: As a whole, our findings contribute to a better understanding of how SPL genes work in wheat and will be useful for further research into how TaSPL6B affects yield-related traits in wheat.


Asunto(s)
Arabidopsis , Proteínas de Plantas , Plantas Modificadas Genéticamente , Triticum , Arabidopsis/genética , Arabidopsis/crecimiento & desarrollo , Arabidopsis/metabolismo , Triticum/genética , Triticum/metabolismo , Triticum/crecimiento & desarrollo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Plantas Modificadas Genéticamente/genética , Regulación de la Expresión Génica de las Plantas , Brotes de la Planta/genética , Brotes de la Planta/crecimiento & desarrollo , Brotes de la Planta/metabolismo , Factores de Transcripción/metabolismo , Factores de Transcripción/genética , Flores/crecimiento & desarrollo , Flores/genética , Flores/metabolismo
8.
Planta ; 259(6): 148, 2024 May 08.
Artículo en Inglés | MEDLINE | ID: mdl-38717679

RESUMEN

MAIN CONCLUSION: Mutation of OsSHR2 adversely impacted root and shoot growth and impaired plant response to N conditions, further reducing the yield per plant. Nitrogen (N) is a crucial factor that regulates the plant architecture. There is still a lack of research on it. In our study, it was observed that the knockout of the SHORTROOT 2 (OsSHR2) which was induced by N deficiency, can significantly affect the regulation of plant architecture response to N in rice. Under N deficiency, the mutation of OsSHR2 significantly reduced root growth, and impaired the sensitivity of the root meristem length to N deficiency. The mutants were found to have approximately a 15% reduction in plant height compared to wild type. But mutants showed a significant increase in tillering at post-heading stage, approximately 26% more than the wild type, particularly in high N conditions. In addition, due to reduced seed setting rate and 1000-grain weight, mutant yield was significantly decreased by approximately 33% under low N fertilizer supply. The mutation also changed the distribution of N between the vegetative and reproductive organs. Our findings suggest that the transcription factor OsSHR2 plays a regulatory role in the response of plant architecture and yield per plant to N in rice.


Asunto(s)
Regulación de la Expresión Génica de las Plantas , Nitrógeno , Oryza , Factores de Transcripción , Regulación de la Expresión Génica de las Plantas/efectos de los fármacos , Meristema/genética , Meristema/crecimiento & desarrollo , Meristema/efectos de los fármacos , Mutación , Nitrógeno/metabolismo , Nitrógeno/farmacología , Oryza/genética , Oryza/crecimiento & desarrollo , Oryza/metabolismo , Oryza/efectos de los fármacos , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Raíces de Plantas/crecimiento & desarrollo , Raíces de Plantas/genética , Raíces de Plantas/efectos de los fármacos , Raíces de Plantas/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
9.
J Exp Bot ; 75(8): 2372-2384, 2024 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-38206130

RESUMEN

Charged multivesicular protein 1 (CHMP1) is a member of the endosomal sorting complex required for transport-III (ESCRT-III) complex that targets membrane localized signaling receptors to intralumenal vesicles in the multivesicular body of the endosome and eventually to the lysosome for degradation. Although CHMP1 plays roles in various plant growth and development processes, little is known about its function in wheat. In this study, we systematically analysed the members of the ESCRT-III complex in wheat (Triticum aestivum) and found that their orthologs were highly conserved in eukaryotic evolution. We identified CHMP1 homologous genes, TaSAL1s, and found that they were constitutively expressed in wheat tissues and essential for plant reproduction. Subcellular localization assays showed these proteins aggregated with and closely associated with the endoplasmic reticulum when ectopically expressed in tobacco leaves. We also found these proteins were toxic and caused leaf death. A genetic and reciprocal cross analysis revealed that TaSAL1 leads to defects in male gametophyte biogenesis. Moreover, phenotypic and metabolomic analysis showed that TaSAL1 may regulate tillering and heading date through phytohormone pathways. Overall, our results highlight the role of CHMP1 in wheat, particularly in male gametophyte biogenesis, with implications for improving plant growth and developing new strategies for plant breeding and genetic engineering.


Asunto(s)
Complejos de Clasificación Endosomal Requeridos para el Transporte , Triticum , Complejos de Clasificación Endosomal Requeridos para el Transporte/metabolismo , Triticum/genética , Fitomejoramiento , Endosomas/metabolismo , Polen/genética
10.
J Exp Bot ; 75(3): 708-720, 2024 Feb 02.
Artículo en Inglés | MEDLINE | ID: mdl-37933683

RESUMEN

Tillering, also known as shoot branching, is a fundamental trait for cereal crops such as rice to produce sufficient panicle numbers. Effective tillering that guarantees successful panicle production is essential for achieving high crop yields. Recent advances in molecular biology have revealed the mechanisms underlying rice tillering; however, in rice breeding and cultivation, there remain limited genes or alleles suitable for effective tillering and high yields. A recently identified quantitative trait locus (QTL) called MORE PANICLES 3 (MP3) has been cloned as a single gene and shown to promote tillering and to moderately increase panicle number. This gene is an ortholog of the maize domestication gene TB1, and it has the potential to increase grain yield under ongoing climate change and in nutrient-poor environments. This review reconsiders the potential and importance of tillering for sustainable food production. Thus, I provide an overview of rice tiller development and the currently understood molecular mechanisms that underly it, focusing primarily on the biosynthesis and signaling of strigolactones, effective QTLs, and the importance of MP3 (TB1). The possible future benefits in using promising QTLs such as MP3 to explore agronomic solutions under ongoing climate change and in nutrient-poor environments are also highlighted.


Asunto(s)
Oryza , Oryza/genética , Fitomejoramiento , Sitios de Carácter Cuantitativo , Grano Comestible/genética , Fenotipo
11.
Mol Breed ; 44(7): 47, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38939116

RESUMEN

Branching/tillering is a critical process for plant architecture and grain yield. However, Branching is intricately controlled by both endogenous and environmental factors. The underlying mechanisms of tillering in wheat remain poorly understood. In this study, we identified Less Tiller 1 (LT1) as a novel regulator of wheat tillering using an enhanced bulked segregant analysis (BSA) method, uni-BSA. This method effectively reduces alignment noise caused by the high repetitive sequence content in the wheat genome. Loss-of-function of LT1 results in fewer tillers due to defects in axillary meristem initiation and bud outgrowth. We mapped LT1 to a 6 Mb region on the chromosome 2D short arm and validated a nucleotide-binding (NB) domain encoding gene as LT1 using CRISPR/Cas9. Furthermore, the lower sucrose concentration in the shoot bases of lt1 might result in inadequate bud outgrowth due to disturbances in the sucrose biosynthesis pathways. Co-expression analysis suggests that LT1 controls tillering by regulating TaROX/TaLAX1, the ortholog of the Arabidopsis tiller regulator REGULATOR OF AXILLARY MERISTEM FORMATION (ROX) or the rice axillary meristem regulator LAX PANICLE1 (LAX1). This study not only offers a novel genetic resource for cultivating optimal plant architecture but also underscores the importance of our innovative BSA method. This uni-BSA method enables the swift and precise identification of pivotal genes associated with significant agronomic traits, thereby hastening gene cloning and crop breeding processes in wheat. Supplementary Information: The online version contains supplementary material available at 10.1007/s11032-024-01484-7.

12.
Mol Breed ; 44(2): 7, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38263978

RESUMEN

Tiller number is a key component of wheat plant architecture having a direct impact on grain yield. Because of their viability, biotic resistance, and abiotic stress tolerance, wild relative species are a valuable gene source for increasing wheat genetic diversity, including yield potential. Agropyron glael, a perennial hybrid of Thinopyrum intermedium and Th. ponticum, was created in the 1930s. Recent genome analyses identified five evolutionarily distinct subgenomes (J, Jst, Jvs, Jr, and St), making A. glael an important gene source for transferring useful agronomical traits into wheat. During a bread wheat × A. glael crossing program, a genetically stable translocation line, WT153397, was developed. Sequential in situ hybridizations (McGISH) with J-, St-, and D-genomic DNA probes and pSc119.2, Afa family, pTa71, and (GAA)7 DNA repeats, as well as molecular markers specific for the wheat 6D chromosome, revealed the presence of a 6DS.6Jvs Robertsonian translocation in the genetic line. Field trials in low-input and high-input breeding nurseries over four growing seasons demonstrated the Agropyron chromosome arm's high compensating ability for the missing 6DL, as spike morphology and fertility of WT153397 did not differ significantly from those of wheat parents, Mv9kr1 and 'Mv Karizma.' Moreover, the introgressed 6Jvs chromosome arm significantly increased the number of productive tillers, resulting in a significantly higher grain yield potential compared to the parental wheat cultivars. The translocated chromosome could be highly purified by flow cytometric sorting due to the intense fluorescent labeling of (GAA)7 clusters on the Thinopyrum chromosome arm, providing an opportunity to use chromosome genomics to identify Agropyron gene variant(s) responsible for the tillering capacity. The translocation line WT153397 is an important genetic stock for functional genetic studies of tiller formation and useful breeding material for increasing wheat yield potential. The study also discusses the use of the translocation line in wheat breeding. Supplementary information: The online version contains supplementary material available at 10.1007/s11032-024-01439-y.

13.
Mol Breed ; 44(2): 12, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38313680

RESUMEN

Tiller number greatly contributes to grain yield in wheat. Using ethylmethanesulfonate mutagenesis, we previously discovered the oligo-tillering mutant ot1. The tiller number was significantly lower in ot1 than in the corresponding wild type from the early tillering stage until the heading stage. Compared to the wild type, the thousand-grain weight and grain length were increased by 15.41% and 31.44%, respectively, whereas the plant height and spike length were decreased by 26.13% and 37.25%, respectively. Transcriptomic analysis was conducted at the regreening and jointing stages to identify differential expressed genes (DEGs). Functional enrichment analysis with the Kyoto Encyclopedia of Genes and Genomes (KEGG) and Gene Ontology (GO) databases showed differential expression of genes associated with ADP binding, transmembrane transport, and transcriptional regulation during tiller development. Differences in tiller number in ot1 led to the upregulation of genes in the strigolactone (SL) and abscisic acid (ABA) pathways. Specifically, the SL biosynthesis genes DWARF (D27), D17, D10, and MORE AXILLARY GROWTH 1 (MAX1) were upregulated by 3.37- to 8.23-fold; the SL signal transduction genes D14 and D53 were upregulated by 1.81- and 1.32-fold, respectively; the ABA biosynthesis genes 9-CIS-EPOXICAROTENOID DIOXIGENASE 3 (NCED3) and NCED5 were upregulated by 1.66- and 3.4-fold, respectively; and SNF1-REGULATED PROTEIN KINASE2 (SnRK2) and PROTEIN PHOSPHATASE 2C (PP2C) genes were upregulated by 1.30- to 4.79-fold. This suggested that the tiller number reduction in ot1 was due to alterations in plant hormone pathways. Genes known to promote tillering growth were upregulated, whereas those known to inhibit tillering growth were downregulated. For example, PIN-FORMED 9 (PIN9), which promotes tiller development, was upregulated by 8.23-fold in ot1; Ideal Plant Architecture 1 (IPA1), which inhibits tiller development, was downregulated by 1.74-fold. There were no significant differences in the expression levels of TILLER NUMBER 1 (TN1) or TEOSINTE BRANCHED 1 (TB1), indicating that the tiller reduction in ot1 was not controlled by known genes. Our findings provide valuable data for subsequent research into the genetic bases and regulatory mechanisms of wheat tillering. Supplementary Information: The online version contains supplementary material available at 10.1007/s11032-024-01450-3.

14.
Int J Mol Sci ; 25(7)2024 Mar 31.
Artículo en Inglés | MEDLINE | ID: mdl-38612714

RESUMEN

Strigolactones (SLs) are plant hormones that regulate several key agronomic traits, including shoot branching, leaf senescence, and stress tolerance. The artificial regulation of SL biosynthesis and signaling has been considered as a potent strategy in regulating plant architecture and combatting the infection of parasitic weeds to help improve crop yield. DL1b is a previously reported SL receptor inhibitor molecule that significantly promotes shoot branching. Here, we synthesized 18 novel compounds based on the structure of DL1b. We performed rice tillering activity assay and selected a novel small molecule, C6, as a candidate SL receptor inhibitor. In vitro bioassays demonstrated that C6 possesses various regulatory functions as an SL inhibitor, including inhibiting germination of the root parasitic seeds Phelipanche aegyptiaca, delaying leaf senescence and promoting hypocotyl elongation of Arabidopsis. ITC analysis and molecular docking experiments further confirmed that C6 can interact with SL receptor proteins, thereby interfering with the binding of SL to its receptor. Therefore, C6 is considered a novel SL receptor inhibitor with potential applications in plant architecture control and prevention of root parasitic weed infestation.


Asunto(s)
Arabidopsis , Ésteres , Compuestos Heterocíclicos con 3 Anillos , Lactonas , Naftalenos , Simulación del Acoplamiento Molecular , Ácidos Carboxílicos
15.
Int J Mol Sci ; 25(5)2024 Mar 04.
Artículo en Inglés | MEDLINE | ID: mdl-38474217

RESUMEN

Nitrogen is a crucial element that impacts rice yields, and effective tillering is a significant agronomic characteristic that can influence rice yields. The way that reduced nitrogen affects effective tillering is a complex quantitative trait that is controlled by multiple genes, and its genetic basis requires further exploration. In this study, 469 germplasm varieties were used for a genome-wide association analysis aiming to detect quantitative trait loci (QTL) associated with effective tillering at low (60 kg/hm2) and high (180 kg/hm2) nitrogen levels. QTLs detected over multiple years or under different treatments were scrutinized in this study, and candidate genes were identified through haplotype analysis and spatio-temporal expression patterns. A total of seven genes (NAL1, OsCKX9, Os01g0690800, Os02g0550300, Os02g0550700, Os04g0615700, and Os04g06163000) were pinpointed in these QTL regions, and were considered the most likely candidate genes. These results provide favorable information for the use of auxiliary marker selection in controlling effective tillering in rice for improved yields.


Asunto(s)
Estudio de Asociación del Genoma Completo , Oryza , Mapeo Cromosómico , Oryza/genética , Nitrógeno , Sitios de Carácter Cuantitativo
16.
Int J Mol Sci ; 25(3)2024 Jan 29.
Artículo en Inglés | MEDLINE | ID: mdl-38338929

RESUMEN

Moderate control of rice tillering and the development of rice varieties with large panicles are important topics for future high-yield rice breeding. Herein, we found that low-tillering rice varieties stopped tillering earlier and had a larger leaf area of the sixth leaf. Notably, at 28 days after sowing, the rice seedlings of the low-tillering group had an average single-culm above-ground biomass of 0.84 g, significantly higher than that of the multi-tillering group by 56.26%, and their NSC (non-structural carbohydrate) and starch contents in sheaths were increased by 43.34% and 97.75%, respectively. These results indicated that the low-tillering group of rice varieties had a stronger ability to store photosynthetic products in the form of starch in their sheaths, which was thus more beneficial for their large panicle development. The results of carbon and nitrogen metabolism analyses showed that the low-tillering group had a relatively strong carbon metabolism activity, which was more favorable for the accumulation of photosynthesis products and the following development of large panicles, while the multi-tillering group showed relatively strong nitrogen metabolism activity, which was more beneficial for the development and formation of new organs, such as tillers. Accordingly, in the low-tillering rice varieties, the up-regulated genes were enriched in the pathways mainly related to the synthesis of carbohydrates, while the down-regulated genes were mainly enriched in the nitrogen metabolism pathways. This study provides new insights into the mechanism of rice tillering regulation and promotes the development of new varieties with ideal plant types.


Asunto(s)
Oryza , Oryza/metabolismo , Fitomejoramiento , Perfilación de la Expresión Génica , Nitrógeno/metabolismo , Carbono/metabolismo , Almidón/metabolismo , Transcriptoma
17.
Int J Mol Sci ; 25(3)2024 Jan 25.
Artículo en Inglés | MEDLINE | ID: mdl-38338776

RESUMEN

Rice effective panicle is a major trait for grain yield and is affected by both the genetic tiller numbers and the early tillering vigor (ETV) traits to survive environmental adversities. The mechanism behind tiller bud formation has been well described, while the genes and the molecular mechanism underlying rice-regulating ETV traits are unclear. In this study, the candidate genes in regulating ETV traits have been sought by quantitative trait locus (QTL) mapping and bulk-segregation analysis by resequencing method (BSA-seq) conjoint analysis using rice backcross inbred line (BIL) populations, which were cultivated as late-season rice of double-cropping rice systems. By QTL mapping, seven QTLs were detected on chromosomes 1, 3, 4, and 9, with the logarithm of the odds (LOD) values ranging from 3.52 to 7.57 and explained 3.23% to 12.98% of the observed phenotypic variance. By BSA-seq analysis, seven QTLs on chromosomes 1, 2, 4, 5, 7, and 9 were identified using single-nucleotide polymorphism (SNP) and insertions/deletions (InDel) index algorithm and Euclidean distance (ED) algorithm. The overlapping QTL resulting from QTL mapping and BSA-seq analysis was shown in a 1.39 Mb interval on chromosome 4. In the overlap interval, six genes, including the functional unknown genes Os04g0455650, Os04g0470901, Os04g0500600, and ethylene-insensitive 3 (Os04g0456900), sialyltransferase family domain containing protein (Os04g0506800), and ATOZI1 (Os04g0497300), showed the differential expression between ETV rice lines and late tillering vigor (LTV) rice lines and have a missense base mutation in the genomic DNA sequences of the parents. We speculate that the six genes are the candidate genes regulating the ETV trait in rice, which provides a research basis for revealing the molecular mechanism behind the ETV traits in rice.


Asunto(s)
Oryza , Sitios de Carácter Cuantitativo , Oryza/genética , Estaciones del Año , Mapeo Cromosómico/métodos , Fenotipo
18.
Plant J ; 112(6): 1337-1349, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-36288411

RESUMEN

Structure-based high-throughput screening of chemical compounds that target protein-protein interactions (PPIs) is a promising technology for gaining insight into how plant development is regulated, leading to many potential agricultural applications. At present, there are no examples of using high-throughput screening to identify chemicals that target plant transcriptional complexes, some of which are responsible for regulating multiple physiological functions. Florigen, a protein encoded by FLOWERING LOCUS T (FT), was initially identified as a molecule that promotes flowering and has since been shown to regulate flowering and other developmental phenomena such as tuber formation in potato (Solanum tuberosum). FT functions as a component of the florigen activation complex (FAC) with a 14-3-3 scaffold protein and FD, a bZIP transcription factor that activates downstream gene expression. Although 14-3-3 is an important component of FAC, little is known about the function of the 14-3-3 protein itself. Here, we report the results of a high-throughput in vitro fluorescence resonance energy transfer (FRET) screening of chemical libraries that enabled us to identify small molecules capable of inhibiting FAC formation. These molecules abrogate the in vitro interaction between the 14-3-3 protein and the OsFD1 peptide, a rice (Oryza sativa) FD, by directly binding to the 14-3-3 protein. Treatment with S4, a specific hit molecule, strongly inhibited FAC activity and flowering in duckweed, tuber formation in potato, and branching in rice in a dose-dependent manner. Our results demonstrate that the high-throughput screening approach based on the three-dimensional structure of PPIs is suitable in plants. In this study, we have proposed good candidate compounds for future modification to obtain inhibitors of florigen-dependent processes through inhibition of FAC formation.


Asunto(s)
Florigena , Oryza , Florigena/metabolismo , Proteínas de Plantas/metabolismo , Proteínas 14-3-3/genética , Proteínas 14-3-3/metabolismo , Ensayos Analíticos de Alto Rendimiento , Oryza/metabolismo , Regulación de la Expresión Génica de las Plantas , Flores/genética
19.
Plant Cell Physiol ; 64(9): 967-983, 2023 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-37526426

RESUMEN

There have been substantial advances in our understanding of many aspects of strigolactone regulation of branching since the discovery of strigolactones as phytohormones. These include further insights into the network of phytohormones and other signals that regulate branching, as well as deep insights into strigolactone biosynthesis, metabolism, transport, perception and downstream signaling. In this review, we provide an update on recent advances in our understanding of how the strigolactone pathway co-ordinately and dynamically regulates bud outgrowth and pose some important outstanding questions that are yet to be resolved.


Asunto(s)
Ácidos Indolacéticos , Reguladores del Crecimiento de las Plantas , Reguladores del Crecimiento de las Plantas/metabolismo , Ácidos Indolacéticos/metabolismo , Brotes de la Planta/metabolismo , Lactonas/metabolismo , Hormonas/metabolismo
20.
Funct Integr Genomics ; 23(2): 157, 2023 May 12.
Artículo en Inglés | MEDLINE | ID: mdl-37171682

RESUMEN

Wheat (Triticum aestivum) is one of the most important food crops worldwide, providing up to 20% of the caloric intake per day. Developing high-yielding wheat cultivars with tolerance against abiotic and biotic stresses is important to keep up with the increasing human population. Tiller number is one of the major yield-related traits, directly affecting the number of grains produced per plant; however, only a small number of QTL and underlining genes have been identified for this important factor. Identification of novel genetic variation underlying contrasting traits and their precise genetic mapping in wheat is considered difficult due to the complexity and size of the genome; however, advancements in genomic resources have made efficient gene localization more possible. In this study, we report the characterization of a novel tillering number gene using a mutant identified in the forward genetic screen of an ethyl methane sulfonate (EMS)-treated population of cv. "Jagger." By crossing the low tillering mutant with the Jagger wild-type plant, we generated an F2 population and used the MutMap approach to identify a novel physical interval on 11 Mb on chromosome 2DS. Using an F2 population of 442 gametes and polymorphic SNP markers, we were able to delineate the tin6 locus to a 2.1 Mb region containing 22 candidate genes.


Asunto(s)
Sitios de Carácter Cuantitativo , Triticum , Humanos , Triticum/genética , Pan , Mapeo Cromosómico , Fenotipo
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda