Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 20 de 25
Filtrar
1.
Appl Microbiol Biotechnol ; 108(1): 126, 2024 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-38229302

RESUMEN

An alarming global public health and economic peril has been the emergence of antibiotic resistance resulting from clinically relevant bacteria pathogens, including Enterococcus faecium, Staphylococcus aureus, Klebsiella pneumonia, Acinetobacter baumannii, Pseudomonas aeruginosa, and Enterobacter species constantly exhibiting intrinsic and extrinsic resistance mechanisms against last-resort antibiotics like gentamycin, ciprofloxacin, tetracycline, colistin, and standard ampicillin prescription in clinical practices. The discovery and applications of antimicrobial peptides (AMPs) with antibacterial properties have been considered and proven as alternative antimicrobial agents to antibiotics. In this study, we have designed, produced, and purified a recombinant novel multifunctional hybrid antimicrobial peptide LL-37_Renalexin for the first time via the application of newly designed flexible GS peptide linker coupled with the use of our previously characterized small metal-binding proteins SmbP and CusF3H+ as carrier proteins that allow for an enhanced bacterial expression, using BL21(DE3) and SHuffle T7(DE3) Escherichia coli strains, and purification of the hybrid peptide via immobilized metal affinity chromatography. The purified tag-free LL-37_Renalexin hybrid peptide exhibited above 85% reduction in bacteria colony-forming units and broad-spectrum antimicrobial effects against Staphylococcus aureus, Escherichia coli, Methicillin-resistant Staphylococcus aureus (MRSA), and Klebsiella pneumoniae bacteria clinical isolates at a lower minimum inhibition concentration level (10-33 µM) as compared to its counterpart single-AMPs LL-37 and Renalexin (50-100 µM). KEY POINTS: • The hybrid antimicrobial peptide LL-37_Renalexin has been designed using a GS linker. • The peptide was expressed with the carrier proteins SmbP and CusF3H+. • The hybrid peptide shows antibacterial potency against clinical bacterial isolates.


Asunto(s)
Staphylococcus aureus Resistente a Meticilina , Catelicidinas/farmacología , Antibacterianos/farmacología , Antibacterianos/química , Bacterias , Staphylococcus aureus , Escherichia coli/genética , Proteínas Portadoras/farmacología , Pruebas de Sensibilidad Microbiana
2.
Int J Mol Sci ; 25(5)2024 Feb 27.
Artículo en Inglés | MEDLINE | ID: mdl-38474008

RESUMEN

Organic ammonium and phosphonium salts exert excellent antimicrobial effects by interacting lethally with bacterial membranes. Particularly, quaternary ammonium lipids have demonstrated efficiency both as gene vectors and antibacterial agents. Here, aiming at finding new antibacterial devices belonging to both classes, we prepared a water-soluble quaternary ammonium lipid (6) and a phosphonium salt (1) by designing a synthetic path where 1 would be an intermediate to achieve 6. All synthesized compounds were characterized by Fourier-transform infrared spectroscopy and Nuclear Magnetic Resonance. Additionally, potentiometric titrations of NH3+ groups 1 and 6 were performed to further confirm their structure by determining their experimental molecular weight. The antibacterial activities of 1 and 6 were assessed first against a selection of multi-drug-resistant clinical isolates of both Gram-positive and Gram-negative species, observing remarkable antibacterial activity of both compounds against Gram-positive isolates of Enterococcus and Staphylococcus genus. Further investigations on a wider variety of strains of these species confirmed the remarkable antibacterial effects of 1 and 6 (MICs = 4-16 and 4-64 µg/mL, respectively), while 24 h-time-killing experiments carried out with 1 on different S. aureus isolates evidenced a bacteriostatic behavior. Moreover, both compounds 1 and 6, at the lower MIC concentration, did not show significant cytotoxic effects when exposed to HepG2 human hepatic cell lines, paving the way for their potential clinical application.


Asunto(s)
Compuestos de Amonio , Humanos , Compuestos de Amonio/farmacología , Staphylococcus aureus , Compuestos de Amonio Cuaternario/química , Antibacterianos/farmacología , Bacterias Grampositivas , Bacterias , Cloruro de Sodio/farmacología , Cloruro de Sodio Dietético/farmacología , Lípidos/farmacología , Pruebas de Sensibilidad Microbiana
3.
BMC Microbiol ; 23(1): 146, 2023 05 22.
Artículo en Inglés | MEDLINE | ID: mdl-37217869

RESUMEN

BACKGROUND: This study aims to achieve biocontrol of multidrug-resistant Listeria monocytogenes in dairy cattle farms which poses a severe threat to our socio-economic balance and healthcare systems. METHODS: Naturally occurring phages from dairy cattle environments were isolated and characterized, and the antimicrobial effect of isolated L. monocytogenes phages (LMPs) against multidrug-resistant L. monocytogenes strains were assessed alone and in conjugation with silver nanoparticles (AgNPs). RESULTS: Six different phenotypic LMPs (LMP1-LMP6) were isolated from silage (n = 4; one by direct phage isolation and three by enrichment method) and manure (n = 2; both by enrichment method) from dairy cattle farms. The isolated phages were categorized into three different families by transmission electron microscopy (TEM): Siphoviridae (LMP1 and LMP5), Myoviridae (LMP2, LMP4, and LMP6), and Podoviridae (LMP3). The host range of the isolated LMPs was determined by the spot method using 22 multidrug-resistant L. monocytogenes strains. All 22 (100%) strains were susceptible to phage infection; 50% (3 out of 6) of the isolated phages showed narrow host ranges, while the other 50% showed moderate host ranges. We found that LMP3 (the phage with the shortest tail) had the ability to infect the widest range of L. monocytogenes strains. Eclipse and latent periods of LMP3 were 5 and 45 min, respectively. The burst size of LMP3 was 25 PFU per infected cell. LMP3 was stable with wide range of pH and temperature. In addition, time-kill curves of LMP3 alone at MOI of 10, 1 and 0.1, AgNPs alone, and LMP3 in combination with AgNPs against the most phage-resistant L. monocytogenes strain (ERIC A) were constructed. Among the five treatments, AgNPs alone had the lowest inhibition activity compared to LMP3 at a multiplicity of infection (MOI) of 0.1, 1, and 10. LMP3 at MOI of 0.1 in conjugation with AgNPs (10 µg/mL) exhibited complete inhibition activity after just 2 h, and the inhibition activity lasted for 24 h treatment. In contrast, the inhibition activity of AgNPs alone and phages alone, even at MOI of 10, stopped. Therefore, the combination of LMP3 and AgNPs enhanced the antimicrobial action and its stability and reduced the required concentrations of LMP3 and AgNPs, which would minimize the development of future resistance. CONCLUSIONS: The results suggested that the combination of LMP3 and AgNPs could be used as a powerful and ecofriendly antibacterial agent in the dairy cattle farm environment to overcome multidrug-resistant L. monocytogenes.


Asunto(s)
Bacteriófagos , Listeria monocytogenes , Nanopartículas del Metal , Animales , Bovinos , Granjas , Plata/farmacología , Antibacterianos/farmacología
4.
J Vet Pharmacol Ther ; 46(5): 332-343, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37060264

RESUMEN

Levofloxacin veterinary formulations are available in Argentina, China and India for the use in dogs, cattle, pig and sheep, but not currently in the rabbit. Only the extra-label use in rabbits is possible. Levofloxacin is not labelled for veterinary use in the EU or the USA. The activity of levofloxacin against rabbit pathogens Pasteurella multocida (P. multocida) and Escherichia coli (E. coli) was evaluated. Minimum inhibitory concentration (MIC) and minimal bactericidal concentration (MBC) were determined in broth and serum for 10 P. multocida isolates and 5 E. coli isolates from rabbits. One isolate of each bacterial species was used for the time-killing curve study in vitro and ex vivo. In vitro AUC24 /MIC ratios were used for building the inhibitory pharmacodynamic Imax model. The P. multocida MIC were 0.008-0.5 µg/mL, MBC - 0.015-0.5 µg/mL. Escherichia coli MIC was 0.008-0.03 µg/mL and MBC - 0.03-0.25 µg/mL. Bacterial counts were reduced to the limit of detection after 24 h with levofloxacin concentrations of 2 MIC and higher. All serum samples from rabbits treated with levofloxacin eliminated the bacteria within 24 h. AUC24 /MIC ratios for bacteriostatic, bactericidal and bacterial elimination effects for P. multocida and E. coli isolates were 21, 29 and 75 h and 27, 32 and 60 h, respectively. Proposed daily doses against P. multocida (MIC = 0.015 µg/mL) and E. coli (MIC = 0.03 µg/mL) isolates were calculated as ≤0.91 and ≤1.43 mg/kg, respectively. Fluoroquinolones are categorized by WHO as 'highest priority critically important antimicrobials'. Considering the increasing importance of antimicrobial stewardship, antimicrobials from a lower importance category that are active against the isolate of interest should be used in preference to fluoroquinolones. Fluoroquinolone use in veterinary medicine should be based on antimicrobial susceptibility testing in order to mitigate the risk to public health and prevent the spread of bacterial resistance.


Asunto(s)
Levofloxacino , Pasteurella multocida , Conejos , Animales , Porcinos , Bovinos , Perros , Ovinos , Levofloxacino/farmacología , Escherichia coli , Antibacterianos/farmacología , Antibacterianos/uso terapéutico , Fluoroquinolonas/farmacología , Pruebas de Sensibilidad Microbiana/veterinaria
5.
Arch Pharm (Weinheim) ; 355(1): e2100266, 2022 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-34747519

RESUMEN

A series of 3-[(1H-pyrazol-3-yl)imino]indolin-2-one derivatives were designed using the molecular hybridization method, characterized using different spectroscopic techniques, and evaluated for their in vitro antimicrobial activity. Most of the target compounds demonstrated good to moderate antimicrobial activity compared with ciprofloxacin and fluconazole. Four compounds (8b, 9a, 9c, and 10a) showed encouraging results, with minimal inhibitory concentration (MIC) values (53.45-258.32 µM) comparable to those of norfloxacin (100.31-200.63 µM) and ciprofloxacin (48.33-96.68 µM). Noticeably, the four derivatives revealed excellent bactericidal and fungicidal activities, except for the bacteriostatic potential of compounds 8b and 9a against Escherichia coli and Staphylococcus aureus, respectively. The time-killing kinetic study against S. aureus confirmed the efficacy of these derivatives. Furthermore, two of the four promising derivatives, 9a and 10a, could prevent the formation of biofilms of S. aureus without affecting the bacterial growth at low concentrations. A combination study with seven commercial antibiotics against the multidrug-resistant bacterium P. aeruginosa showed a notable reduction in the antibiotic MIC values, represented mainly through a synergistic or additive effect. The enzymatic assay implied that the most active derivatives had inhibition potency against DNA gyrase comparable to that of ciprofloxacin. Molecular docking and density functional theory calculations were performed to explore the binding mode and study the reactivity of the promising compounds.


Asunto(s)
Antiinfecciosos/farmacología , Indoles/farmacología , Pirazoles/farmacología , Inhibidores de Topoisomerasa II/farmacología , Antiinfecciosos/síntesis química , Antiinfecciosos/química , Ciprofloxacina/farmacología , Girasa de ADN/efectos de los fármacos , Girasa de ADN/metabolismo , Indoles/síntesis química , Indoles/química , Pruebas de Sensibilidad Microbiana , Modelos Moleculares , Simulación del Acoplamiento Molecular , Norfloxacino/farmacología , Pirazoles/síntesis química , Pirazoles/química , Relación Estructura-Actividad , Inhibidores de Topoisomerasa II/síntesis química , Inhibidores de Topoisomerasa II/química
6.
Molecules ; 25(15)2020 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-32752180

RESUMEN

Tetracycline (TET) has been widely used in the treatment of Streptococcus suis (S. suis) infection. However, it was found that the efficacy of many antibiotics in S. suis decreased significantly, especially tetracycline. In this study, GML-12 (a novel pleuromutilin derivative) was used in combination with TET against 12 S. suis isolates. In the checkerboard assay, the TET/GML-12 combination exhibited synergistic and additive effects against S. suis isolates (n = 12). In vitro time-killing assays and in vivo therapeutic experiments were used to confirm the synergistic effect of the TET/GML-12 combination against S. suis strains screened based on an FICI ≤ 0.5. In time-killing assays, the TET/GML-12 combination showed a synergistic effect or an additive effect against three isolates with a bacterial reduction of over 2.4-log10 CFU/mL compared with the most active monotherapy. Additionally, the TET/GML-12 combination displayed potent antimicrobial activity against four isolates in a mouse thigh infection model. These results suggest that the TET/GML-12 combination may be a potential therapeutic strategy for S. suis infection.


Asunto(s)
Antibacterianos/administración & dosificación , Diterpenos/administración & dosificación , Compuestos Policíclicos/administración & dosificación , Infecciones Estreptocócicas/tratamiento farmacológico , Streptococcus suis/efectos de los fármacos , Tetraciclina/administración & dosificación , Animales , Antibacterianos/toxicidad , Zoonosis Bacterianas/tratamiento farmacológico , Zoonosis Bacterianas/microbiología , Modelos Animales de Enfermedad , Diterpenos/toxicidad , Sinergismo Farmacológico , Quimioterapia Combinada , Femenino , Humanos , Técnicas In Vitro , Ratones , Ratones Endogámicos ICR , Pruebas de Sensibilidad Microbiana , Neutropenia/tratamiento farmacológico , Neutropenia/microbiología , Compuestos Policíclicos/toxicidad , Infecciones Estreptocócicas/microbiología , Streptococcus suis/aislamiento & purificación , Porcinos , Enfermedades de los Porcinos/tratamiento farmacológico , Enfermedades de los Porcinos/microbiología , Pleuromutilinas
7.
Lett Appl Microbiol ; 67(6): 579-588, 2018 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-30203855

RESUMEN

This study focused on the evaluation of fungal compound for their anti-pathogenic potential against respiratory pathogens. Soil samples were collected from various geographical regions in Madurai, fungal strain was isolated and identified as Aspergillus terreusDMTMGK004 (MGK004). Secondary metabolites were extracted and evaluated for antioxidant potential. It exhibited significantly high anti-proliferative property against gastric adenocarcinoma (AGS) cell lines. Antimicrobial activity against Gram positive (Streptococcus pneumoniae) and Gram negative (Klebsiella pneumoniae and Haemophilus influenzae) respiratory pathogens were analysed and the minimum inhibitory concentration (MIC) values were determined. Furthermore, the time-killing assay illustrated that the metabolite eliminates 50% of the vegetative cells within few hours of the treatment. From the spectral data, the major functional groups present in the compound were determined as carbonyl group and phenolic hydroxyl group which contribute towards its bioactivity. The compound significantly depreciates the production of extracellular polysaccharides which results in the weakening of biofilm architecture and resistance towards serum killing and phagocytosis. It also induced cell membrane damage which leads to protein and nucleic acid leakage. Hence, the results of the present study could provide a better insinuation towards the formulation of new drug targeting respiratory pathogens. SIGNIFICANCE AND IMPACT OF THE STUDY: The ubiquitous fungi Aspergillus terreus is well known for its secondary metabolite production. The fungus was evaluated for production of antagonistic molecule to reduce the growth of infectious agents causing respiratory infections. It exhibited the biological means of antioxidant, anti-proliferative and anti-pathogenic compound production. The compound exhibits killing effect against respiratory pathogens within two hours. It induced cell membrane damage leading to protein and nucleic acid leakage. It significantly reduced the production of extracellular polysaccharides. The results provide needed information to design innovative strategies for targeting pathogenic factors of the respiratory pathogens instead of killing it precisely.


Asunto(s)
Antibacterianos/farmacología , Antioxidantes/farmacología , Aspergillus/metabolismo , Haemophilus influenzae/efectos de los fármacos , Klebsiella pneumoniae/efectos de los fármacos , Streptococcus pneumoniae/efectos de los fármacos , Aspergillus/aislamiento & purificación , Membrana Celular/efectos de los fármacos , Humanos , India , Pruebas de Sensibilidad Microbiana , Estrés Oxidativo/efectos de los fármacos , Infecciones del Sistema Respiratorio/tratamiento farmacológico , Infecciones del Sistema Respiratorio/microbiología , Microbiología del Suelo , Virulencia
8.
BMC Infect Dis ; 16: 173, 2016 Apr 21.
Artículo en Inglés | MEDLINE | ID: mdl-27097724

RESUMEN

BACKGROUND: Mycobacterium tuberculosis Uganda family is the predominant cause of tuberculosis in Uganda. Reasons for this are not clear but are likely to be due to the rampant person-to-person transmission or delayed susceptibility of the organism to drugs during treatment, which may lead to continuous shedding of infectious bacilli, among others. The objective of this study was to determine in vitro, the susceptibility patterns of M. tuberculosis Uganda family compared with Beijing and Delhi/CAS, other M. tuberculosis sub-lineages that also circulate in Uganda but are not as prevalent. The comparisons were made after 10 days of exposure of the strains to Rifampicin and Isoniazid, the most important first-line anti-tuberculosis drugs. METHODS: Minimum inhibitory concentrations (MICs) for three Isoniazid- and Rifampicin-susceptible M. tuberculosis strains (Uganda II, Beijing and Delhi/CAS families) were determined by micro-dilution plate assay. Killing curves for each strain were deduced from colony forming units after exposure to Isoniazid and Rifampicin on days 0, 2, 4, 6, 8, and 10 under aerobic and oxygen-depleted conditions. Data were analyzed with GraphPad Prism 5 software. RESULTS: The MIC for Isoniazid was 0.05 µg/ml for M. tuberculosis Uganda II, and 0.03 µg/ml for M. tuberculosis Beijing and Delhi/CAS. Rifampicin MIC was 1 µg/ml for M. tuberculosis Uganda II, and 0.12 µg/ml for Beijing and Delhi/CAS. At low Rifampicin (0.03-2.5 µg/ml) and Isoniazid (0.12-5 µg/ml) concentrations under aerobic conditions, there was no significant difference in susceptibility patterns between M. tuberculosis Uganda II and Beijing or Delhi/CAS. However, at high Rifampicin (5 µg/ml) and Isoniazid (1.25 µg/ml) concentrations under oxygen-depleted conditions, M. tuberculosis Uganda II was more susceptible to the drugs compared with Beijing or Delhi/CAS families. CONCLUSION: The predominance of M. tuberculosis Uganda II family as the main causative agent of tuberculosis in Uganda is not attributed to its susceptibility behavior to Isoniazid and Rifampicin. Probably, its predominance is due to differences in the immune defenses in the general population against the strains, given that Beijing and Delhi/CAS families may have been introduced more recently. Further research beyond susceptibility to anti-tuberculosis drugs is required to fully explore tuberculosis strain predominance in Uganda.


Asunto(s)
Isoniazida/farmacología , Mycobacterium tuberculosis/efectos de los fármacos , Rifampin/farmacología , Genotipo , Humanos , Pruebas de Sensibilidad Microbiana , Mycobacterium tuberculosis/clasificación , Mycobacterium tuberculosis/genética , Oxígeno/metabolismo , Tuberculosis/diagnóstico , Tuberculosis/microbiología
9.
Front Microbiol ; 15: 1332458, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38601926

RESUMEN

Eravacycline (ERV) has emerged as a therapeutic option for the treatment of carbapenem-resistant pathogens. However, the advent of heteroresistance (HR) to ERV poses a challenge to these therapeutic strategies. This study aimed to investigate ERV HR prevalence among common clinical isolates and further characterize ERV HR in carbapenem-resistant Klebsiella pneumoniae (CRKP). A total of 280 clinical pathogens from two centers were selected for HR and analyzed using population analysis profiling (PAP) and modified E-tests. The PAP assay revealed an overall ERV HR prevalence of 0.7% (2/280), with intermediate heterogeneity observed in 24.3% (68/280) of strains. The proportion of heteroresistant strains was 18.3% according to modified E-test results. A time-killing assay demonstrated that CRKP CFU increased significantly after 10 h of ERV treatment, contributing to the reduced bactericidal effect of ERV in vitro. Interestingly, dual treatment with ERV and polymyxin B effectively inhibited the total CFU, simultaneously reducing the required polymyxin B concentration. Furthermore, fitness cost measurements revealed a growth trade-off in CRKP upon acquiring drug resistance, highlighting fitness costs as crucial factors in the emergence of ERV HR in CRKP. Overall, the findings of the current study suggest that ERV HR in clinical strains presents a potential obstacle in its clinical application.

10.
Mol Immunol ; 157: 202-213, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-37075611

RESUMEN

Cytotoxic CD8+ T lymphocytes (CTL) eliminate infected cells or transformed tumor cells by releasing perforin-containing cytotoxic granules at the immunological synapse. The secretion of such granules depends on Ca2+-influx through store operated Ca2+ channels, formed by STIM (stromal interaction molecule)-activated Orai proteins. Whereas molecular mechanisms of the secretion machinery are well understood, much less is known about the molecular machinery that regulates the efficiency of Ca2+-dependent target cell killing. CTL killing efficiency is of high interest considering the number of studies on CD8+ T lymphocytes modified for clinical use. Here, we isolated total RNA from primary human cells: natural killer (NK) cells, non-stimulated CD8+ T-cells, and from Staphylococcus aureus enterotoxin A (SEA) stimulated CD8+ T-cells (SEA-CTL) and conducted whole genome expression profiling by microarray experiments. Based on differential expression analysis of the transcriptome data and analysis of master regulator genes, we identified 31 candidates which potentially regulate Ca2+-homeostasis in CTL. To investigate a putative function of these candidates in CTL cytotoxicity, we transfected either SEA-stimulated CTL (SEA-CTL) or antigen specific CD8+ T-cell clones (CTL-MART-1) with siRNAs specific against the identified candidates and analyzed the killing capacity using a real-time killing assay. In addition, we complemented the analysis by studying the effect of inhibitory substances acting on the candidate proteins if available. Finally, to unmask their involvement in Ca2+ dependent cytotoxicity, candidates were also analyzed under Ca2+-limiting conditions. Overall, we identified four hits, CCR5 (C-C chemokine receptor type five), KCNN4 (potassium calcium-activated channel subfamily N), RCAN3 (regulator of calcineurin) and BCL (B-cell lymphoma) 2 which clearly affect the efficiency of Ca2+ dependent cytotoxicity in CTL-MART-1 cells, CCR5, BCL2, and KCNN4 in a positive manner, and RCAN3 in a negative way.


Asunto(s)
Antineoplásicos , Linfocitos T CD8-positivos , Humanos , Calcio , Citotoxicidad Inmunológica , Linfocitos T Citotóxicos , Células Asesinas Naturales
11.
Clin Cosmet Investig Dermatol ; 15: 403-409, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35300432

RESUMEN

Purpose: Benzoyl peroxide (BPO) is an effective acne treatment and has been used as a cleanser and short contact therapy. However, data on the minimum contact time of BPO needed to kill Cutibacterium acnes are lacking. Thus, the aim of this study was to determine the minimum contact time of commonly used BPO concentrations for bactericidal effects on C. acnes. Materials and Methods: An in vitro experimental study of clinically isolated C. acnes was performed to determine the minimal inhibitory concentration (MIC) of BPO using the broth microdilution method. Subsequently, the minimum contact times of various concentrations of BPO were evaluated, and their bactericidal effects were assessed by the plate count method. Results: The median MIC of BPO was 9375 µg/mL, which did not significantly differ between antibiotic-resistant and nonresistant C. acnes. The minimum contact time of BPO with C. acnes was significantly different among the BPO concentrations. For bactericidal activity against all isolates, 1.25%, 2.5%, 5%, and 10% BPO required 60 min, 15 min, 30 sec, and 30 sec, respectively. Conclusion: BPO demonstrated bactericidal activity against both antibiotic-resistant and antibiotic-susceptible C. acnes. The in vitro contact time needed to kill C. acnes was almost immediate with 5% or more BPO, but ≤ 2.5% BPO required longer contact times for bactericidal effects.

12.
Pathogens ; 11(6)2022 Jun 14.
Artículo en Inglés | MEDLINE | ID: mdl-35745536

RESUMEN

Legionella pneumophila (Lp), responsible for a severe pneumonia called Legionnaires' disease, represents an important health burden in Europe. Prevention and control of Lp contamination in warm water systems is still a great challenge often due to the failure in disinfection procedures. The aim of this study was to evaluate the in vitro activity of Terpinen-4-ol (T-4-ol) as potential agent for Lp control, in comparison with the essential oil of Melaleuca alternifolia (tea tree) (TTO. Minimum Inhibitory Concentration (MIC) and Minimum Bactericidal Concentration (MBC) of T-4-ol were determined by broth micro-dilution and a micro-atmosphere diffusion method to investigate the anti-Lp effects of T-4-ol and TTO vapors. Scanning Electron Microscopy (SEM) was adopted to highlight the morphological changes and Lp damage following T-4-ol and TTO treatments. The greatest antimicrobial activity against Lp was shown by T-4-ol with a MIC range of 0.06-0.125% v/v and MBC range of 0.25-0.5% v/v. The TTO and T-4-ol MIC and MBC decreased with increasing temperature (36 °C to 45 ± 1 °C), and temperature also significantly influenced the efficacy of TTO and T-4-ol vapors. The time-killing assay showed an exponential trend of T-4-ol bactericidal activity at 0.5% v/v against Lp. SEM observations revealed a concentration- and temperature- dependent effect of T-4-ol and TTO on cell surface morphology with alterations. These findings suggest that T-4-ol is active against Lp and further studies may address the potential effectiveness of T-4-ol for control of water systems.

13.
Nanomaterials (Basel) ; 12(16)2022 Aug 10.
Artículo en Inglés | MEDLINE | ID: mdl-36014607

RESUMEN

Untreatable infections, growing healthcare costs, and increasing human mortality due to the rising resistance of bacteria to most of the available antibiotics are global phenomena that urgently require the discovery of new and effective antimicrobial agents. Cationic macromolecules, acting as membrane disruptors, are widely studied, and several compounds, including two styrene-based copolymers developed by us (P5 and P7), have proved to possess potent broad-spectrum antibacterial effects, regardless of the resistance profiles of the bacteria. Here, we first reported the synthesis and physicochemical characterization of new cationic nanoparticles (NPs) (CP1 and OP2), obtained by polymerizing the monomers 4-ammoniummethylstyrene (4-AMSTY) and 4-ammoniumethylstyrene (4-AESTY) hydrochlorides, whose structures were designed using the cationic monomers of P5 and P7 as template compounds. The antibacterial activity of CP1 and OP2 was assessed against several Gram-positive and Gram-negative multi-drug resistant (MDR) pathogens, observing potent antibacterial effects for both CP1 (MICs = 0.1-0.8 µM) and OP2 (MICs = 0.35-2.8 µM) against most of the tested isolates. Additionally, time-killing studies carried out with CP1 and OP2 on different strains of the most clinically relevant MDR species demonstrated that they kill pathogens rapidly. Due to their interesting physicochemical characteristics, which could enable their mutual formulation as hydrogels, CP1 and OP2 could represent promising ingredients for the development of novel antibacterial dosage forms for topical applications, capable of overcoming severe infections sustained by bacteria resistant to the presently available antibiotics.

14.
Front Microbiol ; 12: 671153, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34413834

RESUMEN

Tigecycline has been used as one of the therapeutic choices for the treatment of infections caused by multidrug-resistant Klebsiella pneumoniae. However, the emergence of tigecycline heteroresistance has led to great challenges in treating these infections. The purpose of this study was to investigate whether tigecycline-heteroresistant K. pneumoniae (TGCHR-Kp) exists in clinical isolates, and to further characterize the underlying molecular mechanisms involved in the development of tigecycline-resistant subpopulations. Of the 268 tigecycline-susceptible clinical K. pneumoniae isolates, 69 isolates were selected as tigecycline-heteroresistant candidates in the preliminary heteroresistant phenotypic selection by a modified disk diffusion method, and only 21 strains were confirmed as TGCHR-Kp by the population analysis profile (PAP). Pulsed-field gel electrophoresis (PFGE) analysis demonstrated that all the parental TGCHR-Kp isolates were clonally unrelated, and colonies confirmed as the heteroresistant subpopulation showed no significant differences from their respective parental TGCHR-Kp isolates. Efflux pump inhibitors reversed the tigecycline susceptibility in heteroresistant subpopulations. Mutations in the ramR and soxR genes lead to upregulation of the ramA and soxS transcriptional regulators, which in turn induced overexpression of the AcrAB-TolC efflux pump genes in TGCHR-Kps-resistant subpopulations. Moreover, mutations of rpsJ were also found in resistant subpopulations, which suggested that the rpsJ mutation may also lead to tigecycline resistance. Time-kill assays showed that the efficacy of tigecycline against TGCHR-Kps was weakened, whereas the number of resistant subpopulations was enriched by the presence of tigecycline. Our findings imply that the presence of TGCHR-Kps in clinical strains causes severe challenges for tigecycline therapy in clinical practice.

15.
BMC Complement Med Ther ; 21(1): 135, 2021 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-33933037

RESUMEN

BACKGROUND: Nerium oleander (L.) is well known traditionally used medicinal plant with several pharmacological activities. However, the anti-bacterial, anti-inflammatory activity and in vivo toxicity potential of floral parts of this plant are not reported. Therefore the present study was designed to investigate these activities of Nerium oleander ethanolic flower extract (NOEE) in different animal models. METHODS: Antimicrobial activity of plant extract was compared with five different antibiotics using the disk diffusion method. The time-killing kinetic assay and bacterial killing mechanism of NOEE were also performed. Anti-inflammatory activity was assessed using granuloma induced by cotton-pellet, rat paw edema induced by carrageenan and levels of different inflammatory biomarkers on healthy Wistar rats. The protein and mRNA expressions of nitric oxide (NO), prostaglandin E2 (PGE2), tumor necrosis factor-α (TNF-α) and interleukin-1ß (IL-1ß) were also measured. Acute (14 days) and sub-acute (28 days) oral toxicity studies were also performed on healthy Sprague Dawley rats. RESULTS: NOEE produced highly significant (P < 0.005) and significant (P < 0.05) zones of inhibition at 30 mg/mL and 20 mg/mL respectively against most of the tested bacterial strains. NOEE produced a more drop in viable counts of Gram-negative isolates within 20 min. After 12 h exposure with NOEE, the SEM images of MRSA showed the destruction of cell membrane. NOEE showed highly significant (P < 0.005) anti-inflammatory activity in cotton-pellet and carrageenan inflammatory models. In addition, treatment with NOEE also decreased the production of NO, PGE2, TNF-α and IL-1ß in the rat paw after treated with carrageenan. Similarly, NOEE also suppressed the inducible nitric oxide synthase (iNOS), TNF-α, IL-1ß, and cyclooxygenase-2 (COX-2) mRNA expressions. It is also showed highly significant reduction in total leukocyte count (73.09%) and C-reactive protein levels (54.60%). NOEE also inhibited COX-1, COX-2, 5-LO and 12-LO in a highly significant manner. Moreover, acute and sub-acute toxicity studies of NOEE in rats confirm the toxicity with hepatotoxicity at higher doses (2000 mg/kg) i.e. four times greater than the therapeutic dose. CONCLUSION: It is concluded that crude flower extract of N. oleander is a potent antimicrobial and anti-inflammatory agent with no toxicity potential at therapeutic doses.


Asunto(s)
Antibacterianos , Antiinflamatorios , Nerium , Extractos Vegetales , Animales , Antibacterianos/química , Antibacterianos/farmacología , Antibacterianos/toxicidad , Antiinflamatorios/química , Antiinflamatorios/farmacología , Antiinflamatorios/toxicidad , Pruebas Antimicrobianas de Difusión por Disco , Femenino , Inflamación/inducido químicamente , Inflamación/metabolismo , Masculino , Extractos Vegetales/química , Extractos Vegetales/farmacología , Extractos Vegetales/toxicidad , Ratas , Ratas Sprague-Dawley , Pruebas de Toxicidad Aguda
16.
Antibiotics (Basel) ; 10(6)2021 Jun 05.
Artículo en Inglés | MEDLINE | ID: mdl-34198823

RESUMEN

The emergence and evolution of antibiotic-resistant bacteria is considered a public health concern. Salmonella is one of the most common pathogens that cause high mortality and morbidity rates in humans, animals, and poultry annually. In this work, we developed a combination of silver nanoparticles (AgNPs) with bacteriophage (phage) as an antimicrobial agent to control microbial growth. The synthesized AgNPs with propolis were characterized by testing their color change from transparent to deep brown by transmission electron microscopy (TEM) and Fourier-Transform Infrared Spectroscopy (FTIR). The phage ZCSE2 was found to be stable when combined with AgNPs. Both minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) were evaluated for AgNPs, phage, and their combination. The results indicated that MIC and MBC values were equal to 23 µg/mL against Salmonella bacteria at a concentration of 107 CFU/mL. The combination of 0.4× MIC from AgNPs and phage with Multiplicity of Infection (MOI) 0.1 showed an inhibitory effect. This combination of AgNPs and phage offers a prospect of nanoparticles with significantly enhanced antibacterial properties and therapeutic performance.

17.
Polymers (Basel) ; 13(7)2021 Apr 02.
Artículo en Inglés | MEDLINE | ID: mdl-33918374

RESUMEN

The growing resistance of bacteria to current chemotherapy is a global concern that urgently requires new and effective antimicrobial agents, aimed at curing untreatable infection, reducing unacceptable healthcare costs and human mortality. Cationic polymers, that mimic antimicrobial cationic peptides, represent promising broad-spectrum agents, being less susceptible to develop resistance than low molecular weight antibiotics. We, thus, designed, and herein report, the synthesis and physicochemical characterization of a water-soluble cationic copolymer (P5), obtained by copolymerizing the laboratory-made monomer 4-ammoniumbuthylstyrene hydrochloride with di-methyl-acrylamide as uncharged diluent. The antibacterial activity of P5 was assessed against several multi-drug-resistant clinical isolates of both Gram-positive and Gram-negative species. Except for strains characterized by modifications of the membrane charge, most of the tested isolates were sensible to the new molecule. P5 showed remarkable antibacterial activity against several isolates of genera Enterococcus, Staphylococcus, Pseudomonas, Klebsiella, and against Escherichia coli, Acinetobacter baumannii and Stenotrophomonas maltophilia, displaying a minimum MIC value of 3.15 µM. In time-killing and turbidimetric studies, P5 displayed a rapid non-lytic bactericidal activity. Due to its water-solubility and wide bactericidal spectrum, P5 could represent a promising novel agent capable of overcoming severe infections sustained by bacteria resistant the presently available antibiotics.

18.
Front Microbiol ; 11: 1007, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32582052

RESUMEN

Nisin is applied as a food preservative in processed foods and has the potential to be used synergistically with antibiotics for treatment of patients infected by antibiotic-resistant bacteria, such as methicillin-resistant Staphylococcus aureus. The present study explores the antimicrobial effect of nisin on S. aureus viability and membrane integrity and, for the first time, used super-resolution microscopy to study morphological changes induced in S. aureus cells exposed to nisin. The exposure of S. aureus to nisin caused membrane depolarization and rapid killing. Super-resolution structured-illumination microscopy and transmission electron microscopy confirmed that nisin damages the cellular membrane and causes lysis of cells. Strikingly, condensation of chromosomal DNA was observed in all cells exposed to nisin, a phenotype not previously reported for this compound. Moreover, cells exposed to nisin were significantly smaller than non-exposed cells indicating the emergence of cell shrinkage. The strong association of DNA condensation with nisin exposure indicates that nisin interferes with chromosome replication or segregation in S. aureus.

19.
Cancers (Basel) ; 11(2)2019 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-30781380

RESUMEN

Helicobacter pylori (H. pylori) is a bacterium capable of inducing chronic active gastritis, which in some people, develops into gastric cancers. One of the substances that may be useful in the eradication of this microorganism is 3-Bromopyruvate (3-BP), an anticancer compound with antimicrobial properties. The aim of this article was to determine the activity of 3-BP against antibiotic-susceptible and antibiotic-resistant H. pylori strains. The antimicrobial activity was determined using a disk-diffusion method, broth microdilution method, time-killing assay, and checkerboard assay. The research was extended by observations using light, fluorescence, and scanning electron microscopy. The growth inhibition zones produced by 2 mg/disk with 3-BP counted for 16⁻32.5 mm. The minimal inhibitory concentrations (MICs) ranged from 32 to 128 µg/mL, while the minimal bactericidal concentrations (MBCs) for all tested strains had values of 128 µg/mL. The time-killing assay demonstrated the concentration-dependent and time-dependent bactericidal activity of 3-BP. The decrease in culturability below the detection threshold (<100 CFU/mL) was demonstrated after 6 h, 4 h, and 2 h of incubation for MIC, 2× MIC, and 4× MIC, respectively. Bacteria treated with 3-BP had a several times reduced mean green/red fluorescence ratio compared to the control samples, suggesting bactericidal activity, which was independent from an induction of coccoid forms. The checkerboard assay showed the existence of a synergistic/additive interaction of 3-BP with amoxicillin, tetracycline, and clarithromycin. Based on the presented results, it is suggested that 3-BP may be an interesting anti-H. pylori compound.

20.
Pathogens ; 8(4)2019 Nov 10.
Artículo en Inglés | MEDLINE | ID: mdl-31717683

RESUMEN

Antibiotic resistance of Helicobacter pylori, a spiral bacterium associated with gastric diseases, is a topic that has been intensively discussed in last decades. Recent discoveries indicate promising antimicrobial and antibiotic-potentiating properties of sertraline (SER), an antidepressant substance. The aim of the study, therefore, was to determine the antibacterial activity of SER in relation to antibiotic-sensitive and antibiotic-resistant H. pylori strains. The antimicrobial tests were performed using a diffusion-disk method, microdilution method, and time-killing assay. The interaction between SER and antibiotics (amoxicillin, clarithromycin, tetracycline, and metronidazole) was determined by using a checkerboard method. In addition, the study was expanded to include observations by light, fluorescence, and scanning electron microscopy. The growth inhibition zones were in the range of 19-37 mm for discs impregnated with 2 mg of SER. The minimal inhibitory concentrations (MICs) and minimal bactericidal concentrations (MBCs) counted for 2-8 µg/mL and 4-8 µg/mL, respectively. The time-killing assay showed the time-dependent and concentration-dependent bactericidal activity of SER. Bacteria exposed to MBCs (but not sub-MICs and MICs ≠ MBCs) underwent morphological transformation into coccoid forms. This mechanism, however, was not protective because these cells after a 24-h incubation had a several-fold reduced green/red fluorescence ratio compared to the control. Using the checkerboard assay, a synergistic/additive interaction of SER with all four antibiotics tested was demonstrated. These results indicate that SER may be a promising anti-H. pylori compound.

SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda