Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Banco de datos
País como asunto
Tipo del documento
Publication year range
1.
Plants (Basel) ; 13(5)2024 Feb 21.
Artículo en Inglés | MEDLINE | ID: mdl-38475428

RESUMEN

The tomato is one of the most important vegetable crops grown worldwide. Tomato brown rugose fruit virus (ToBRFV), a seed-borne tobamovirus, poses a serious threat to tomato production due to its ability to break the resistant genes (Tm-1, Tm-2, Tm-22) in tomatoes. The objective of this work was to identify new resistant source(s) of tomato germplasm against ToBRFV. To achieve this aim, a total of 476 accessions from 12 Solanum species were tested with the ToBRFV US isolate for their resistance and susceptibility. As a result, a total of 44 asymptomatic accessions were identified as resistant/tolerant, including thirty-one accessions of S. pimpinellifolium, one accession of S. corneliomulleri, four accessions of S. habrochaites, three accessions of S. peruvianum, and five accessions of S. subsection lycopersicon hybrid. Further analyses using serological tests identified four highly resistant S. pimpinellifolium lines, PI 390713, PI 390714, PI 390716, and PI 390717. The inheritance of resistance in the selected lines was verified in the next generation and confirmed using RT-qPCR. To our knowledge, this is a first report of high resistance to ToBRFV in S. pimpinellifolium. These new genetic resources will expand the genetic pool available for breeders to develop new resistant cultivars of tomato against ToBRFV.

2.
Viruses ; 16(3)2024 03 17.
Artículo en Inglés | MEDLINE | ID: mdl-38543825

RESUMEN

Tomato Brown Rugose Fruit Virus (ToBRFV) is a plant pathogen that infects important Solanaceae crop species and can dramatically reduce tomato crop yields. The ToBRFV has rapidly spread around the globe due to its ability to escape detection by antiviral host genes which confer resistance to other tobamoviruses in tomato plants. The development of robust and reproducible methods for detecting viruses in the environment aids in the tracking and reduction of pathogen transmission. We detected ToBRFV in municipal wastewater influent (WWI) samples, likely due to its presence in human waste, demonstrating a widespread distribution of ToBRFV in WWI throughout Ontario, Canada. To aid in global ToBRFV surveillance efforts, we developed a tiled amplicon approach to sequence and track the evolution of ToBRFV genomes in municipal WWI. Our assay recovers 95.7% of the 6393 bp ToBRFV RefSeq genome, omitting the terminal 5' and 3' ends. We demonstrate that our sequencing assay is a robust, sensitive, and highly specific method for recovering ToBRFV genomes. Our ToBRFV assay was developed using existing ARTIC Network resources, including primer design, sequencing library prep, and read analysis. Additionally, we adapted our lineage abundance estimation tool, Alcov, to estimate the abundance of ToBRFV clades in samples.


Asunto(s)
Solanum lycopersicum , Tobamovirus , Purificación del Agua , Humanos , Ontario , Frutas , Tobamovirus/genética
3.
Plants (Basel) ; 12(5)2023 Feb 22.
Artículo en Inglés | MEDLINE | ID: mdl-36903859

RESUMEN

Tomato (Solanum lycopersicum) plants from a commercial glasshouse were identified with symptoms compatible with a tomato brown rugose fruit virus (ToBRFV) infection. Reverse transcription-PCR and quantitative PCR confirmed the presence of ToBRFV. Subsequently, the same RNA sample and a second from tomato plants infected with a similar tobamovirus, tomato mottle mosaic virus (ToMMV), were extracted and processed for high-throughput sequencing with the Oxford Nanopore Technology (ONT). For the targeted detection of ToBRFV, the two libraries were synthesized by using six ToBRFV sequence-specific primers in the reverse transcription step. This innovative target enrichment technology enabled deep coverage sequencing of ToBRFV, with 30% of the total reads mapping to the target virus genome and 57% mapping to the host genome. The same set of primers applied to the ToMMV library generated 5% of the total reads mapping to the latter virus, indicating that sequencing of similar, non-target viral sequences was also allowed. Further, the complete genome of pepino mosaic virus (PepMV) was also sequenced from the ToBRFV library, thus suggesting that, even using multiple sequence-specific primers, a low rate of off-target sequencing can usefully provide additional information on unexpected viral species coinfecting the same samples in an individual assay. These results demonstrate that targeted nanopore sequencing can specifically identify viral agents and has sufficient sensitivity towards non-target organisms to provide evidence of mixed virus infections.

SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda