Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
1.
J Integr Neurosci ; 22(2): 26, 2023 Feb 10.
Artículo en Inglés | MEDLINE | ID: mdl-36992594

RESUMEN

BACKGROUND: A gerbil model of ischemia and reperfusion (IR) injury in the forebrain has been developed for studies on mechanisms, prevention and therapeutic strategies of IR injury in the forebrain. Pycnogenol® (PYC), a standardized extract of French maritime pine tree (Pinus pinaster Aiton) has been exploited as an additive for dietary supplement. In the present study, we investigated the neuroprotective effects of post-treatment with PYC and its therapeutic mechanisms in gerbils. METHODS: The gerbils were given sham and IR operation and intraperitoneally injected with vehicle and Pycnogenol® (25, 50 and 100 mg/kg, respectively) immediately, at 24 hours and 48 hours after sham and IR operation. Through 8-arm radial maze test and passive avoidance test, each spatial memory and short-term memory function was assessed. To examine the neuroprotection of Pycnogenol®, we conducted cresyl violet staining, immunohistochemistry for neuronal nuclei, and Fluoro-Jade B histofluorescence. Moreover, we carried out immunohistochemistry for immunoglobulin G (IgG) to investigate blood-brain barrier (BBB) leakage and interleukin-1ß (IL-1ß) to examine change in pro-inflammatory cytokine. RESULTS: We found that IR-induced memory deficits were significantly ameliorated when 100 mg/kg Pycnogenol® was treated. In addition, treatment with 100 mg/kg Pycnogenol®, not 25 mg/kg nor 50 mg/kg, conferred neuroprotective effect against IR injury. For its mechanisms, we found that 100 mg/kg Pycnogenol® significantly reduced BBB leakage and inhibited the expression of IL-1ß. CONCLUSIONS: Therapeutic treatment (post-treatment) with Pycnogenol® after IR effectively attenuated ischemic brain injury in gerbils. Based on these results, we suggest that PYC can be employed as an important material for ischemic drugs.


Asunto(s)
Lesiones Encefálicas , Disfunción Cognitiva , Fármacos Neuroprotectores , Animales , Gerbillinae , Barrera Hematoencefálica , Enfermedades Neuroinflamatorias , Hipocampo , Disfunción Cognitiva/tratamiento farmacológico , Disfunción Cognitiva/etiología , Fármacos Neuroprotectores/farmacología
2.
Int J Mol Sci ; 22(8)2021 Apr 12.
Artículo en Inglés | MEDLINE | ID: mdl-33921375

RESUMEN

It has been studied that the damage or death of neurons in the hippocampus is different according to hippocampal subregions, cornu ammonis 1-3 (CA1-3), after transient ischemia in the forebrain, showing that pyramidal neurons located in the subfield CA1 (CA1) are most vulnerable to this ischemia. Hyperthermia is a proven risk factor for brain ischemia and can develop more severe and extensive brain damage related with mortality rate. It is well known that heme oxygenase-1 (HO-1) activity and expression is increased by various stimuli in the brain, including hyperthermia. HO-1 can be either protective or deleterious in the central nervous system, and its roles depend on the expression levels of enzymes. In this study, we investigated the effects of hyperthermia during ischemia on HO-1 expression and neuronal damage/death in the hippocampus to examine the relationship between HO-1 and neuronal damage/death following 5-min transient ischemia in the forebrain using gerbils. Gerbils were assigned to four groups: (1) sham-operated gerbils with normothermia (Normo + sham group); (2) ischemia-operated gerbils with normothermia (Normo + ischemia group); (3) sham-operated gerbils with hyperthermia (39.5 ± 0.2 °C) during ischemia (Hyper + sham group); and (4) ischemia-operated gerbils with hyperthermia during ischemia (Hyper + ischemia group). HO-1 expression levels in CA1-3 of the Hyper + ischemia group were significantly higher than those in the Normo + ischemia group. HO-1 immunoreactivity in the Hyper + ischemia group was significantly increased in pyramidal neurons and astrocytes with time after ischemia, and the immunoreactivity was significantly higher than that in the Normo + ischemia group. In the Normo + Ischemia group, neuronal death was shown in pyramidal neurons located only in CA1 at 5 days after ischemia. However, in the Hyper + ischemia group, pyramidal neuronal death occurred in CA1-3 at 2 days after ischemia. Taken together, our findings showed that brain ischemic insult during hyperthermic condition brings up earlier and severer neuronal damage/death in the hippocampus, showing that HO-1 expression in neurons and astrocytes is different according to brain subregions and temperature condition. Based on these findings, we suggest that hyperthermia in patients with ischemic stroke must be taken into the consideration in the therapy.


Asunto(s)
Lesiones Encefálicas/genética , Hemo-Oxigenasa 1/genética , Hipocampo/metabolismo , Daño por Reperfusión/genética , Animales , Astrocitos/metabolismo , Astrocitos/patología , Lesiones Encefálicas/metabolismo , Lesiones Encefálicas/patología , Gerbillinae/genética , Gerbillinae/metabolismo , Hipocampo/lesiones , Hipocampo/fisiopatología , Células Piramidales/metabolismo , Células Piramidales/patología , Daño por Reperfusión/patología
3.
Molecules ; 26(8)2021 Apr 09.
Artículo en Inglés | MEDLINE | ID: mdl-33918660

RESUMEN

Angelica gigas Nakai root contains decursin which exerts beneficial properties such as anti-amnesic and anti-inflammatory activities. Until now, however, the neuroprotective effects of decursin against transient ischemic injury in the forebrain have been insufficiently investigated. Here, we revealed that post-treatment with decursin and the root extract saved pyramidal neurons in the hippocampus following transient ischemia for 5 min in gerbil forebrain. Through high-performance liquid chromatography, we defined that decursin was contained in the extract as 7.3 ± 0.2%. Based on this, we post-treated with 350 mg/kg of extract, which is the corresponding dosage of 25 mg/kg of decursin that exerted neuroprotection in gerbil hippocampus against the ischemia. In addition, behavioral tests were conducted to evaluate ischemia-induced dysfunctions via tests of spatial memory (by the 8-arm radial maze test) and learning memory (by the passive avoidance test), and post-treatment with the extract and decursin attenuated ischemia-induced memory impairments. Furthermore, we carried out histochemistry, immunohistochemistry, and double immunohistofluorescence. Pyramidal neurons located in the subfield cornu ammonis 1 (CA1) among the hippocampal subfields were dead at 5 days after the ischemia; however, treatment with the extract and decursin saved the pyramidal neurons after ischemia. Immunoglobulin G (IgG, an indicator of extravasation), which is not found in the parenchyma in normal brain tissue, was apparently shown in CA1 parenchyma from 2 days after the ischemia, but IgG leakage was dramatically attenuated in the CA1 parenchyma treated with the extract and decursin. Furthermore, astrocyte endfeet, which are a component of the blood-brain barrier (BBB), were severely damaged at 5 days after the ischemia; however, post-treatment with the extract and decursin dramatically attenuated the damage of the endfeet. In brief, therapeutic treatment of the extract of Angelica gigas Nakai root and decursin after 5 min transient forebrain ischemia protected hippocampal neurons from the ischemia, showing that ischemia-induced BBB leakage and damage of astrocyte endfeet was significantly attenuated by the extract and decursin. Based on these findings, we suggest that Angelica gigas Nakai root containing decursin can be employed as a pharmaceutical composition to develop a therapeutic strategy for brain ischemic injury.


Asunto(s)
Angelica/química , Astrocitos/patología , Benzopiranos/uso terapéutico , Barrera Hematoencefálica/patología , Butiratos/uso terapéutico , Ataque Isquémico Transitorio/patología , Extractos Vegetales/uso terapéutico , Animales , Astrocitos/efectos de los fármacos , Astrocitos/metabolismo , Benzopiranos/química , Benzopiranos/farmacología , Barrera Hematoencefálica/efectos de los fármacos , Butiratos/química , Butiratos/farmacología , Gerbillinae , Proteína Ácida Fibrilar de la Glía/metabolismo , Transportador de Glucosa de Tipo 1/metabolismo , Inmunoglobulina G/metabolismo , Masculino , Neuraminidasa/metabolismo , Fármacos Neuroprotectores/farmacología , Fármacos Neuroprotectores/uso terapéutico , Extractos Vegetales/farmacología , Estándares de Referencia , Memoria Espacial/efectos de los fármacos
4.
Metab Brain Dis ; 35(2): 335-342, 2020 02.
Artículo en Inglés | MEDLINE | ID: mdl-31786728

RESUMEN

Fat-mass and obesity-associated protein (Fto) plays important roles in energy metabolism. It also acts as a demethylase and is most abundantly found in the brain. In the present study, we examined the spatial and temporal changes of Fto immunoreactivity after five minutes of transient forebrain ischemia in the hippocampus. In the control group, Fto immunoreactivity was mainly observed in the nucleus of pyramidal cells in the CA1 and CA3 regions as well as the polymorphic layer, granule cell layer, and subgranular zone of the dentate gyrus. Fto immunoreactivity was transiently, but not significantly, increased in the hippocampal CA3 region and the dentate gyrus two days after ischemia compared to mice without ischemia in the sham-operated group. Four days after ischemia, low Fto immunoreactivity was observed in the stratum pyramidale of the CA1 region because of neuronal death, but Fto immunoreactive cells were abundantly detected in the stratum pyramidale of the CA3 region, which is relatively resistant to ischemic damage. Thereafter, Fto immunoreactivity progressively decreased in the hippocampal CA1 and CA3 regions and the dentate gyrus until ten days after ischemia. At this time-point, Fto immunoreactivity was significantly lower in the hippocampal CA1 and CA3 regions and the dentate gyrus compared to that in the sham-operated group. The reduction of Fto immunoreactive structures in the hippocampus may be associated with impairments in Fto-related hippocampal function.


Asunto(s)
Dioxigenasa FTO Dependiente de Alfa-Cetoglutarato/biosíntesis , Isquemia Encefálica/metabolismo , Hipocampo/metabolismo , Dioxigenasa FTO Dependiente de Alfa-Cetoglutarato/genética , Animales , Isquemia Encefálica/genética , Isquemia Encefálica/patología , Expresión Génica , Gerbillinae , Hipocampo/patología , Masculino
5.
Molecules ; 25(16)2020 Aug 06.
Artículo en Inglés | MEDLINE | ID: mdl-32781658

RESUMEN

Chlorogenic acid (CGA), an ester of caffeic acid and quinic acid, is among the phenolic acid compounds which can be naturally found in green coffee extract and tea. CGA has been studied since it displays significant pharmacological properties. The aim of this study was to investigate the effects of CGA on cognitive function and neuroprotection including its mechanisms in the hippocampus following transient forebrain ischemia in gerbils. Memory and learning following the ischemia was investigated by eight-arm radial maze and passive avoidance tests. Neuroprotection was examined by immunohistochemistry for neuronal nuclei-specific protein and Fluoro-Jade B histofluorescence staining. For mechanisms of the neuroprotection, alterations in copper, zinc-superoxide dismutase (SOD1), SOD2 as antioxidant enzymes, dihydroethidium and 4-hydroxy-2-nonenal as indicators for oxidative stress, and anti-inflammatory cytokines (interleukin (IL)-4 and IL-13) and pro-inflammatory cytokines (tumor necrosis factor α (TNF-α) and IL-2) were examined by Western blotting and/or immunohistochemistry. As a result, pretreatment with 30 mg/kg CGA attenuated cognitive impairment and displayed a neuroprotective effect against transient forebrain ischemia (TFI). In Western blotting, the expression levels of SOD2 and IL-4 were increased due to pretreatment with CGA and, furthermore, 4-HNE production and IL-4 expressions were inhibited by CGA pretreatment. Additionally, pretreated CGA enhanced antioxidant enzymes and anti-inflammatory cytokines and, in contrast, attenuated oxidative stress and pro-inflammatory cytokine expression. Based on these results, we suggest that CGA can be a useful neuroprotective material against ischemia-reperfusion injury due to its antioxidant and anti-inflammatory efficacies.


Asunto(s)
Ácido Clorogénico/farmacología , Cognición/efectos de los fármacos , Hipocampo/patología , Isquemia/patología , Isquemia/fisiopatología , Neuronas/efectos de los fármacos , Neuronas/patología , Aldehídos/metabolismo , Animales , Antiinflamatorios/farmacología , Antioxidantes/farmacología , Hipocampo/efectos de los fármacos , Interleucina-2/metabolismo , Interleucina-4/metabolismo , Isquemia/metabolismo , Ratones , Fármacos Neuroprotectores/farmacología , Superóxido Dismutasa/metabolismo
6.
Mol Neurobiol ; 2024 Apr 27.
Artículo en Inglés | MEDLINE | ID: mdl-38676810

RESUMEN

It is established that neurogenesis of dentate gyrus is increased after ischemic insult, although the regulatory mechanisms have not yet been elucidated. In this study, we focused on Ezh2 which suppresses gene expression through catalyzing trimethylation of lysine 27 of histone 3. Male gerbils were injected with adeno-associated virus (AAV) carrying shRNA targeting to Ezh2 into right dentate gyrus 2 weeks prior to forebrain ischemia. One week after ischemia, animals were injected with thymidine analogue to label proliferating cells. Three weeks after ischemia, animals were killed for histological analysis. AAV-mediated knockdown of Ezh2 significantly decreased the ischemia-induced increment of proliferating cells, and the proliferated cells after ischemia showed significantly longer migration from subgranular zone (SGZ), compared to the control group. Furthermore, the number of neural stem cells in SGZ significantly decreased after ischemia with Ezh2 knockdown group. Of note, Ezh2 knockdown did not affect the number of proliferating cells or the migration from SGZ in the non-ischemic condition. Our data showed that, specifically after ischemia, Ezh2 knockdown shifted the balance between self-renewal and differentiation toward differentiation in adult dentate gyrus.

7.
Int J Mol Med ; 49(4)2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-35234273

RESUMEN

The hippocampus has a different vulnerability to ischemia according to the subfields CA1 to CA3 (initials of cornu ammonis). It has been reported that body temperature changes during ischemia affect the degree of neuronal death following transient ischemia. Hypoxia­inducible factor 1α (HIF­1α) plays a key role in regulating cellular adaptation to low oxygen conditions. In the present study, we investigated the pattern of neuronal death (loss) in CA1 and CA2/3 following 5 min transient forebrain ischemia (TFI) under hyperthermia (39.5±0.2˚C) and the relationship between neuronal death and changes in HIF­1α expression using western blot analysis and immunohistochemistry in gerbils. Normothermia or hyperthermia was induced for 30 min before and during the TFI, and neuronal death and HIF­1α expression were observed at 0, 3, 6 and 12 h, 1, 2 and 5 days after TFI. Under normothermia, TFI­induced neuronal death of CA1 pyramidal neurons occurred on day 5 after TFI, but CA2/3 pyramidal neurons did not die. In contrast, under hyperthermia, the death of CA1 and CA2/3 pyramidal neurons was observed on day 2 after TFI. Under normothermia, HIF­1α expression was significantly elevated in both CA1 and CA2/3 pyramidal neurons at 12 h and 1 day after TFI, and the increased HIF­1α immunoreactivity in CA1 was dramatically reduced from 2 days after TFI, but not in CA2/3 pyramidal neurons. Under hyperthermia, the basal expression of HIF­1α in the sham group was significantly higher in both CA1 and CA2/3 pyramidal neurons at 0 h after TFI than in the normothermia group. HIF­1 expression was continuously higher, peaked at 12 h after TFI, and then significantly decreased from 1 day after TFI. Overall, the present results indicate that resistance to ischemia in CA2/3 pyramidal neurons is closely associated with the persistence of increased expression of HIF­1α after ischemic insults and that hyperthermia­induced exacerbation of death of pyramidal neurons is closely related to decreased HIF­1α expression after ischemic insults.


Asunto(s)
Hipocampo , Hipertermia Inducida , Animales , Gerbillinae/metabolismo , Hipocampo/metabolismo , Isquemia/metabolismo , Células Piramidales/metabolismo
8.
Exp Ther Med ; 21(3): 183, 2021 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-33488792

RESUMEN

Erigeron annuus (L.) PERS. (EALP) and Clematis mandshurica RUPR. (CMR) have been used in traditional remedies due to their medicinal effects. Recently, we reported that pretreatment with 200 mg/kg of YES-10® (a combination of extracts from leaves of EALP and CMR) displayed neuroprotective effects against brain ischemia and reperfusion injury. The present study analyzed the major ingredients of YES-10® and investigated whether neuroprotection from YES-10® was dependent upon antioxidant effects in the cornu ammonis 1 (CA1) field in the gerbil hippocampus, after transient forebrain ischemia for 5 min. YES-10® was demonstrated to predominantly contain scutellarin and chlorogenic acid. Pretreatment with YES-10® significantly increased protein levels and the immunoreactivity of copper/zinc-superoxide dismutase (SOD1) and manganese-superoxide dismutase (SOD2) was in the pyramidal neurons of the hippocampal CA1 field when these were examined prior to transient ischemia induction. The increased SODs in CA1 pyramidal neurons following YES-10® treatment were maintained after ischemic injury. In this case, the CA1 pyramidal neurons were protected from ischemia-reperfusion injury. Oxidative stress was significantly attenuated in the CA1 pyramidal neurons, and this was determined by 4-hydroxy-2-nonenal immunohistochemistry and dihydroethidium histofluorescence staining. Taken together, the results indicated that YES-10® significantly attenuated transient ischemia-induced oxidative stress and may be utilized for developing a protective agent against ischemic insults.

9.
Mol Med Rep ; 24(3)2021 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-34212986

RESUMEN

Tumor necrosis factor (TNF)­α and TNF receptor 1 (TNF­R1) play diverse roles in modulating the neuronal damage induced by cerebral ischemia. The present study compared the time­dependent changes of TNF­α and TNF­R1 protein expression levels in the hippocampal subfield cornu ammonis 1 (CA1) between adult and young gerbils following transient forebrain ischemia (tFI), via western blot and immunohistochemistry analyses. In adult gerbils, delayed neuronal death of pyramidal neurons, the principal neurons in CA1, was recorded 4 days after tFI; however, in young gerbils, delayed neuronal death was recorded 7 days after tFI. TNF­α protein expression levels gradually increased in both groups following tFI; however, TNF­α expression was higher in young gerbils compared with adult gerbils. TNF­R1 protein expression levels markedly increased in both groups 1 day after tFI. Subsequently, TNF­R1 expression gradually decreased in young gerbils, whereas TNF­R1 expression levels were irregularly altered in adult gerbils following tFI. Notably, TNF­α immunoreactivity significantly increased in pyramidal neurons in both groups 1 day after tFI; however, the patterns altered between both groups. In adult gerbils, TNF­α immunoreactivity was rarely exhibited in pyramidal neurons 4 days after tFI due to neuronal death, suggesting that TNF­α immunoreactivity was newly expressed in astrocytes. In young gerbils, TNF­α immunoreactivity increased in pyramidal neurons 4 days after tFI, and TNF­α immunoreactivity was newly expressed in astrocytes. In addition, TNF­R1 immunoreactivity was exhibited in pyramidal cells of both sham groups, and significantly increased 1 day after tFI; however, the patterns altered between both groups. In adult gerbils, TNF­R1 immunoreactivity was rarely exhibited 4 days after tFI, and astrocytes newly expressed TNF­R1 immunoreactivity. In young gerbils, TNF­R1 immunoreactivity increased in pyramidal neurons 4 days after tFI; however, TNF­R1 immunoreactivity was not reported in pyramidal neurons and astrocytes thereafter. Taken together, the results of the present study suggest that different expression levels of TNF­α and TNF­R1 in ischemic CA1 between adult and young gerbils may be due to age­dependent differences of tFI­induced neuronal death.


Asunto(s)
Astrocitos/metabolismo , Región CA1 Hipocampal/metabolismo , Gerbillinae/metabolismo , Neuronas/metabolismo , Receptores Tipo I de Factores de Necrosis Tumoral/metabolismo , Factor de Necrosis Tumoral alfa/metabolismo , Animales , Isquemia Encefálica/patología , Muerte Celular , Corteza Cerebral/metabolismo , Hipocampo/metabolismo , Isquemia/patología , Masculino , Neurogénesis , Prosencéfalo , Células Piramidales/metabolismo , Receptores Tipo I de Factores de Necrosis Tumoral/genética , Factor de Necrosis Tumoral alfa/genética
10.
Artículo en Inglés | MEDLINE | ID: mdl-32428535

RESUMEN

The γ-aminobutyric acid A (GABAA) receptor, which contains a chloride channel, is a typical inhibitory neurotransmitter receptor in the central nervous system. Although the GABAergic neurotransmitter system has been discovered to be involved in various psychological behaviors, such as anxiety, convulsions, and cognitive function, its functional changes under conditions of ischemic pathological situation are still uncovered. In the present study, we attempted to elucidate the functional changes in the GABAergic system after transient forebrain ischemia in mice. A bilateral common carotid artery occlusion for 20 min was used to establish a model of transient forebrain ischemia/reperfusion (tI/R). Delayed treatment with diazepam, a positive allosteric modulator of the GABAA receptor, increased locomotor activity in the open field test and spontaneous alternations in the Y-maze test in tI/R mice, but not in shams. Delayed treatment with diazepam did not alter neuronal death or the number of GABAergic neurons in tI/R mice. However, tI/R induced changes in the protein levels of GABAA receptor subunits in the hippocampus. In particular, the most marked increase in the tI/R group was found in the level of α5 subunit of the GABAA receptor. Similar to delayed treatment with diazepam, delayed treatment with imidazenil, an α5-sensitive benzodiazepine, increased spontaneous alternations in the Y-maze in tI/R mice, whereas zolpidem, an α5-insensitive benzodiazepine, failed to show such effects. These results suggest that tI/R-induced changes in the level of the α5 subunit of the GABAA receptor can alter the function of GABAergic drugs in a mouse model of forebrain ischemia.


Asunto(s)
Ataque Isquémico Transitorio/fisiopatología , Ataque Isquémico Transitorio/psicología , Memoria a Corto Plazo , Actividad Motora , Receptores de GABA-A/efectos de los fármacos , Animales , Ansiedad/psicología , Benzodiazepinas/farmacología , Estenosis Carotídea/fisiopatología , Estenosis Carotídea/psicología , Diazepam/farmacología , Moduladores del GABA , Imidazoles/farmacología , Masculino , Aprendizaje por Laberinto/efectos de los fármacos , Ratones , Ratones Endogámicos C57BL , Neuronas/efectos de los fármacos , Daño por Reperfusión/fisiopatología , Daño por Reperfusión/psicología , Zolpidem/farmacología
11.
Mol Med Rep ; 22(2): 1044-1052, 2020 08.
Artículo en Inglés | MEDLINE | ID: mdl-32468005

RESUMEN

Monocarboxylate transporter 4 (MCT4) is a high­capacity lactate transporter in cells and the alteration in MCT4 expression harms cellular survival. The present study investigated whether hypothermia affects tumor necrosis factor­α (TNF­α) and MCT4 immunoreactivity in the subfield cornu ammonis 1 (CA1) following cerebral ischemia/reperfusion (IR) in gerbils. Hypothermia was induced for 30 min before and during ischemia. It was found that IR­induced death of pyramidal neurons was markedly augmented and occurred faster under hyperthermia than under normothermia. TNF­α immunoreactivity in the pyramidal cells started to increase at 3 h after IR and peaked at 1 day after IR under normothermia. However, in hyperthermic control and sham operated gerbils, TNF­α immunoreactivity was significantly increased compared with the normothermic gerbils, and IR under hyperthermia caused a more rapid and significant increase in TNF­α immunoreactivity in pyramidal neurons than under normothermia. In addition, in the normothermic gerbils, MCT4 immunoreactivity began to decrease in pyramidal neurons from 3 h after IR and markedly increased at 1 and 2 days after IR. On the other hand, MCT4 immunoreactivity in pyramidal neurons of the hyperthermic gerbils was significantly increased from 3 h after IR, maintained until 1 day after IR and markedly decreased at 2 days after IR. These results indicate that acceleration of IR­induced neuronal death under hyperthermia might be closely associated with early alteration of TNF­α and MCT4 protein expression in the gerbil hippocampus after IR.


Asunto(s)
Región CA1 Hipocampal/metabolismo , Muerte Celular , Hipertermia/metabolismo , Transportadores de Ácidos Monocarboxílicos/metabolismo , Neuronas/metabolismo , Daño por Reperfusión/metabolismo , Factor de Necrosis Tumoral alfa/metabolismo , Animales , Isquemia Encefálica/metabolismo , Isquemia Encefálica/patología , Región CA1 Hipocampal/patología , Modelos Animales de Enfermedad , Fluoresceínas/química , Gerbillinae , Masculino , Neuronas/citología , Células Piramidales/metabolismo , Células Piramidales/patología
12.
Brain Behav ; 10(3): e01534, 2020 03.
Artículo en Inglés | MEDLINE | ID: mdl-31957985

RESUMEN

INTRODUCTION: We examined the effects of exogenous protein disulfide isomerase A3 (PDIA3) on hippocampal neurogenesis in gerbils under control and ischemic damage. METHODS: To facilitate the delivery of PDIA3 to the brain, we constructed Tat-PDIA3 protein and administered vehicle (10% glycerol) or Tat-PDIA3 protein once a day for 28 days. On day 24 of vehicle or Tat-PDIA3 treatment, ischemia was transiently induced by occlusion of both common carotid arteries for 5 min. RESULTS: Administration of Tat-PDIA3 significantly reduced ischemia-induced spontaneous motor activity, and the number of NeuN-positive nuclei in the Tat-PDIA3-treated ischemic group was significantly increased in the CA1 region compared to that in the vehicle-treated ischemic group. Ki67- and DCX-immunoreactive cells were significantly higher in the Tat-PDIA3-treated group compared to the vehicle-treated control group. In vehicle- and Tat-PDIA3-treated ischemic groups, the number of Ki67- and DCX-immunoreactive cells was significantly higher as compared to those in the vehicle- and Tat-PDIA3-treated control groups, respectively. In the dentate gyrus, the numbers of Ki67-immunoreactive cells were comparable between vehicle- and Tat-PDIA3-treated ischemic groups, while more DCX-immunoreactive cells were observed in the Tat-PDIA3-treated group. Transient forebrain ischemia increased the expression of phosphorylated cAMP-response element-binding protein (pCREB) in the dentate gyrus, but the administration of Tat-PDIA3 robustly increased pCREB-positive nuclei in the normal gerbils, but not in the ischemic gerbils. Brain-derived neurotrophic factor (BDNF) mRNA expression was significantly increased in the Tat-PDIA3-treated group compared to that in the vehicle-treated group. Transient forebrain ischemic increased BDNF mRNA levels in both vehicle- and Tat-PDIA3-treated groups, and there were no significant differences between groups. CONCLUSIONS: These results suggest that Tat-PDIA3 enhances cell proliferation and neuroblast numbers in the dentate gyrus in normal, but not in ischemic gerbils, by increasing BDNF mRNA and phosphorylation of pCREB.


Asunto(s)
Isquemia Encefálica/patología , Proliferación Celular/efectos de los fármacos , Hipocampo/efectos de los fármacos , Células-Madre Neurales/efectos de los fármacos , Neurogénesis/efectos de los fármacos , Proteína Disulfuro Isomerasas/farmacología , Animales , Recuento de Células , Gerbillinae , Masculino , Fosforilación
13.
Ther Hypothermia Temp Manag ; 9(3): 197-203, 2019 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-30566035

RESUMEN

Although modest hypothermia of 35°C has been demonstrated to provide histological neuroprotection in a rodent model of cerebral ischemia, the long-term behavioral outcome is still not clear. This study was designed to investigate whether modest hypothermia of 35°C provides sustained histological and behavioral neuroprotection following transient forebrain ischemia in rats. Male Sprague-Dawley rats were randomly assigned to one of three groups: sham, control, and modest hypothermia group. Each group contained eight rats. Ten-minute transient forebrain ischemia was produced by bilateral carotid artery occlusion plus hemorrhagic hypotension (mean arterial pressure = 40 mmHg). The hypothermic group was cooled to 35°C in preischemic period, and the cooling was continued for 1 hour postischemia. To evaluate behavioral outcome, spontaneous alternation behavior and locomotor activity were assessed using Y-maze test on a weekly basis. The rats were sacrificed after 28 days, and the number of intact neurons per 1 mm in the hippocampal CA1 subfield was counted microscopically. There was significant difference between the control [19(24.5)/mm: median (interquartile range)] and hypothermia groups [116(24)/mm; p < 0.01] in the intact CA1 neuron count. In the control and modest hypothermia groups, the locomotor activities were gradually decreased, and reached significantly lower levels in comparison with the sham group at 14 days postischemia. This study indicates that intraischemic modest hypothermia provided long-term histological neuroprotection, but did not reverse the onset of locomotor inactivity in a rat transient forebrain ischemia model.


Asunto(s)
Isquemia Encefálica/fisiopatología , Hipotermia Inducida , Actividad Motora/fisiología , Prosencéfalo/fisiopatología , Animales , Conducta Animal/fisiología , Región CA1 Hipocampal/citología , Masculino , Aprendizaje por Laberinto , Ratas , Ratas Sprague-Dawley
14.
Chin J Nat Med ; 16(6): 428-435, 2018 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-30047464

RESUMEN

Artemisia capillaris Thunberg is a medicinal plant used as a traditional medicine in many cultures. It is an effective remedy for liver problems including hepatitis. Recent pharmacological reports have indicated that Artemisia species can exert various neurological effects. Previously, we reported a memory-enhancing effect of Artemisia species. However, the mechanisms underlying the neuroprotective effect of A. capillaris (AC) are still unknown. In the present study, we investigated the effect of an ethanol extract of AC on ischemic brain injury in a mouse model of transient forebrain ischemia. The mice were treated with AC for seven days, beginning one day before induction of transient forebrain ischemia. Behavioral deficits were investigated using the Y-maze. Nissl and Fluoro-jade B staining were used to indicate the site of injury. To determine the underlying mechanisms for the drug, we measured acetylcholinesterase activity. AC (200 mg·kg-1) treatment reduced transient forebrain ischemia-induced neuronal cell death in the hippocampal CA1 region. The AC-treated group also showed significant amelioration in the spontaneous alternation of the Y-maze test performance, compared to that in the untreated transient forebrain ischemia group. Moreover, AC treatment showed a concentration-dependent inhibitory effect on acetylcholinesterase activity in vitro. Finally, the effect of AC on forebrain ischemia was blocked by mecamylamine, a nonselective nicotinic acetylcholine receptor antagonist. Our results suggested that in a model of forebrain ischemia, AC protected against neuronal death through the activation of nicotinic acetylcholine receptors.


Asunto(s)
Artemisia , Ataque Isquémico Transitorio/patología , Ataque Isquémico Transitorio/fisiopatología , Fármacos Neuroprotectores/farmacología , Extractos Vegetales/farmacología , Receptores Colinérgicos/metabolismo , Acetilcolinesterasa/metabolismo , Animales , Muerte Celular/efectos de los fármacos , Antagonistas Colinérgicos/farmacología , Modelos Animales de Enfermedad , Etanol/química , Hipocampo/patología , Hipocampo/fisiopatología , Ataque Isquémico Transitorio/tratamiento farmacológico , Masculino , Mecamilamina/farmacología , Memoria/efectos de los fármacos , Ratones , Ratones Endogámicos C57BL , Modelos Neurológicos , Fármacos Neuroprotectores/administración & dosificación , Fitoterapia , Componentes Aéreos de las Plantas/química , Extractos Vegetales/administración & dosificación
15.
Neural Regen Res ; 11(8): 1254-9, 2016 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-27651772

RESUMEN

Recent evidence exists that glucose transporter 3 (GLUT3) plays an important role in the energy metabolism in the brain. Most previous studies have been conducted using focal or hypoxic ischemia models and have focused on changes in GLUT3 expression based on protein and mRNA levels rather than tissue levels. In the present study, we observed change in GLUT3 immunoreactivity in the adult gerbil hippocampus at various time points after 5 minutes of transient forebrain ischemia. In the sham-operated group, GLUT3 immunoreactivity in the hippocampal CA1 region was weak, in the pyramidal cells of the CA1 region increased in a time-dependent fashion 24 hours after ischemia, and in the hippocampal CA1 region decreased significantly between 2 and 5 days after ischemia, with high level of GLUT3 immunoreactivity observed in the CA1 region 10 days after ischemia. In a double immunofluorescence study using GLUT3 and glial-fibrillary acidic protein (GFAP), we observed strong GLUT3 immunoreactivity in the astrocytes. GLUT3 immunoreactivity increased after ischemia and peaked 7 days in the dentate gyrus after ischemia/reperfusion. In a double immunofluorescence study using GLUT3 and doublecortin (DCX), we observed low level of GLUT3 immunoreactivity in the differentiated neuroblasts of the subgranular zone of the dentate gyrus after ischemia. GLUT3 immunoreactivity in the sham-operated group was mainly detected in the subgranular zone of the dentate gyrus. These results suggest that the increase in GLUT3 immunoreactivity may be a compensatory mechanism to modulate glucose level in the hippocampal CA1 region and to promote adult neurogenesis in the dentate gyrus.

16.
Neural Regen Res ; 11(7): 1081-9, 2016 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-27630689

RESUMEN

Ischemic preconditioning (IPC) is a condition of sublethal transient global ischemia and exhibits neuroprotective effects against subsequent lethal ischemic insult. We, in this study, examined the neuroprotective effects of IPC and its effects on immunoreactive changes of antioxidant enzymes including superoxide dismutase (SOD) 1 and SOD2, catalase (CAT) and glutathione peroxidase (GPX) in the gerbil hippocampal CA1 region after transient forebrain ischemia. Pyramidal neurons of the stratum pyramidale (SP) in the hippocampal CA1 region of animals died 5 days after lethal transient ischemia without IPC (8.6% (ratio of remanent neurons) of the sham-operated group); however, IPC prevented the pyramidal neurons from subsequent lethal ischemic injury (92.3% (ratio of remanent neurons) of the sham-operated group). SOD1, SOD2, CAT and GPX immunoreactivities in the sham-operated animals were easily detected in pyramidal neurons in the stratum pyramidale (SP) of the hippocampal CA1 region, while all of these immunoreactivities were rarely detected in the stratum pyramidale at 5 days after lethal transient ischemia without IPC. Meanwhile, their immunoreactivities in the sham-operated animals with IPC were similar to (SOD1, SOD2 and CAT) or higher (GPX) than those in the sham-operated animals without IPC. Furthermore, their immunoreactivities in the stratum pyramidale of the ischemia-operated animals with IPC were steadily maintained after lethal ischemia/reperfusion. Results of western blot analysis for SOD1, SOD2, CAT and GPX were similar to immunohistochemical data. In conclusion, IPC maintained or increased the expression of antioxidant enzymes in the stratum pyramidale of the hippocampal CA1 region after subsequent lethal transient forebrain ischemia and IPC exhibited neuroprotective effects in the hippocampal CA1 region against transient forebrain ischemia.

17.
Brain Res Bull ; 109: 127-31, 2014 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-25445611

RESUMEN

The present study investigates the neuroprotective effects of d-allose, a rare sugar, against ischemia/reperfusion injury in a gerbil model. Transient forebrain ischemia was induced by occlusion of the bilateral common carotid arteries for 5 min. D-Allose was intravenously injected before and after ischemia (200 mg/kg). Extracellular glutamate and lactate release from the gerbil brain, and PO2 profiles were monitored during ischemia and reperfusion. We also examined neuronal death and oxidative damage in the hippocampus one week after ischemia reperfusion, and investigated functional outcome. D-Allose administration suppressed glutamate and lactate release compared to vehicle controls. Brain damage, 8-OHdG levels (a marker of oxidative stress) and locomotor activities were significantly decreased by D-allose treatment. The present results suggest that d-allose reduces delayed neuronal death and behavioral deficits after transient ischemia by changing cerebral metabolism and inhibiting oxidative stress.


Asunto(s)
Glucosa/farmacología , Ataque Isquémico Transitorio/patología , Neuronas/efectos de los fármacos , 8-Hidroxi-2'-Desoxicoguanosina , Análisis de Varianza , Animales , Corteza Cerebral/efectos de los fármacos , Corteza Cerebral/metabolismo , Corteza Cerebral/patología , Daño del ADN/efectos de los fármacos , Desoxiguanosina/análogos & derivados , Modelos Animales de Enfermedad , Esquema de Medicación , Gerbillinae , Glucosa/uso terapéutico , Ácido Glutámico/metabolismo , Ataque Isquémico Transitorio/complicaciones , Ataque Isquémico Transitorio/tratamiento farmacológico , Ácido Láctico/metabolismo , Masculino , Microdiálisis , Trastornos del Movimiento/etiología , Oxígeno/metabolismo , Factores de Tiempo
18.
Food Chem Toxicol ; 72: 1-7, 2014 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-24997311

RESUMEN

The neuroprotective effects of two isomers (Z- and E-) of ajoene, a major compound in oil-macerated garlic products, against ischemic damage were investigated in the gerbil hippocampus. Vehicle (corn oil), Z- or E-ajoenes (25 mg/kg) was orally administered 30 min prior to the induction of transient forebrain ischemia by occlusion of the common carotid arteries for 5 min. One day after ischemia/reperfusion (I/R), I/R-induced hyperactivity significantly reduced in the E- and Z-ajoene-treated groups, compared to that in the vehicle-treated group 5 days after I/R, the number of cresyl violet-positive neurons in the E- and Z-ajoene-treated groups increased, compared to that in the vehicle-treated group. Reactive gliosis in the CA1 region of E- and Z-ajoene-treated groups reduced, compared to that in the vehicle-treated group. These neuroprotective effects were more prominent in animals treated with Z-ajoene, than in those treated with E-ajoene. In addition, Z-ajoene significantly decreased lipid peroxidation, as indicated by 4-hydroxy-2-nonenal levels in hippocampal homogenates, compared to that observed in the vehicle-treated group at a range of time points after I/R. These results suggested that Z-ajoene protected against I/R-induced delayed neuronal death and gliosis by reducing lipid peroxidation in the gerbil hippocampal CA1 region.


Asunto(s)
Isquemia Encefálica/tratamiento farmacológico , Región CA1 Hipocampal/efectos de los fármacos , Disulfuros/farmacología , Ajo/química , Fármacos Neuroprotectores/farmacología , Aceites de Plantas/química , Aldehídos/metabolismo , Animales , Isquemia Encefálica/patología , Región CA1 Hipocampal/metabolismo , Muerte Celular/efectos de los fármacos , Disulfuros/química , Gerbillinae , Inmunohistoquímica , Peroxidación de Lípido/efectos de los fármacos , Masculino , Neuronas/citología , Neuronas/efectos de los fármacos , Neuronas/patología , Estrés Oxidativo/efectos de los fármacos , Prosencéfalo/efectos de los fármacos , Prosencéfalo/patología , Sulfóxidos
19.
Neurochem Int ; 65: 14-22, 2014 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-24334056

RESUMEN

Although acute bolus of genistein treatment has been shown to protect against neuronal damage in experimental brain injury animal models, chronic continuous low dose treatment of genistein on ischemic brain injury has not been well elucidated. In the present study, female rats were received either pure genistein (0.1mg/kg/day via osmotic minipumps) or placebo at the time of ovariectomy, and transient forebrain ischemia was induced 7days later. Results demonstrated that genistein treatment for 14days significantly improved ischemic neuronal survival in hippocampal CA1 region of ovariectomized rats. Glucocorticoid receptor (GR) is a member of the adrenal steroid hormone receptor, which is highly expressed in the rat hippocampus. Activation of the GR plays a critical role in the neuronal stress responses, including ischemic brain damage. This study therefore examined the potential mechanisms by which genistein regulates GR signaling, including the protein distribution and receptor activation in hippocampus following ischemic reperfusion (I/R). Results showed that GR expression in the ovariectomized rats was excessively increased both in neurons (I/R 6h) and activated microglial cells (I/R 7d) in hippocampal CA1 region. Genistein treatment significantly attenuated GR induction and the enhanced GR nuclear translocation and DNA-binding capacity. The effects of genistein on the GR levels was accompanied with decreased blood plasma levels of corticosterone (primary glucocorticoid in rodents) and coupled to an E3 ubiquitin ligase Mdm2 targeted proteasomal degradation of GR, because genistein treatment could enhance the GR-Mdm2 interaction and the ubiquitination level of GR protein. In addition, our results indicated that genistein markedly prevented the excessive activation of microglia in CA1 sector. These results demonstrate the neuroprotective action of chronic low dose genistein replacement against ischemic brain damage, and a potential mechanism associated with the inhibition of both neuronal and microglial GR signaling following ischemic stress.


Asunto(s)
Isquemia Encefálica/tratamiento farmacológico , Genisteína/farmacología , Receptores de Glucocorticoides/metabolismo , Animales , Isquemia Encefálica/metabolismo , Modelos Animales de Enfermedad , Femenino , Genisteína/administración & dosificación , Glucocorticoides/metabolismo , Microglía/efectos de los fármacos , Microglía/metabolismo , Neuronas/efectos de los fármacos , Neuronas/metabolismo , Ratas , Ratas Sprague-Dawley , Transducción de Señal/efectos de los fármacos
20.
Anat Cell Biol ; 46(2): 131-40, 2013 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-23869260

RESUMEN

Recent studies have suggested that nestin facilitates cellular structural remodeling in vasculature-associated cells in response to ischemic injury. The current study was designed to investigate the potential role of post-ischemic nestin expression in parenchymal astrocytes. With this aim, we characterized ischemia-induced nestin expression in the CA1 hippocampal region, an area that undergoes a delayed neuronal death, followed by a lack of neuronal generation after transient forebrain ischemia. Virtually all of the nestin-positive cells in the ischemic CA1 hippocampus were reactive astrocytes. However, induction of nestin expression did not correlate simply with astrogliosis, but rather showed characteristic time- and strata-dependent expression patterns. Nestin induction in astrocytes of the pyramidal cell layer was rapid and transient, while a long-lasting induction of nestin was observed in astrocytes located in the CA1 dendritic subfields, such as the stratum oriens and radiatum, until at least day 28 after ischemia. There was no detectable expression in the stratum lacunosum moleculare despite the evident astroglial reaction. Almost all of the nestin-positive cells also expressed a transcription factor for neural/glial progenitors, i.e., Sox-2 or Sox-9, and some cells were also positive for Ki-67. However, all of the nestin-positive astrocytes expressed the calcium-binding protein S100ß, which is known to be expressed in a distinct, post-mitotic astrocyte population. Thus, our data indicate that in the ischemic CA1 hippocampus, nestin expression was induced in astroglia that were becoming reactive, but not in a progenitor/stem cell population, suggesting that nestin may allow for the structural remodeling of these cells in response to ischemic injury.

SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda