Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 20 de 26
Filtrar
1.
BMC Microbiol ; 24(1): 18, 2024 Jan 10.
Artículo en Inglés | MEDLINE | ID: mdl-38200417

RESUMEN

BACKGROUND: Cinnamomum camphora (L.) Presl (C. camphora) is an evergreen broad-leaved tree cultivated in subtropical China. The use of C. camphora as clonal cuttings for coppice management has become popular recently. However, little is known about the relationship between soil core microbiota and ecosystem multi-functionality under tree planting. Particularly, the effects of soil core microbiota on maintaining ecosystem multi-functionality under C. camphora coppice planting remained unclear. MATERIALS AND METHODS: In this study, we collected soil samples from three points (i.e., the abandoned land, the root zone, and the transition zone) in the C. camphora coppice planting to investigate whether core microbiota influences ecosystem multi-functions. RESULTS: The result showed a significant difference in soil core microbiota community between the abandoned land (AL), root zone (RZ), and transition zone (TZ), and soil ecosystem multi-functionality of core microbiota in RZ had increased significantly (by 230.8%) compared to the AL. Soil core microbiota played a more significant influence on ecosystem multi-functionality than the non-core microbiota. Moreover, the co-occurrence network demonstrated that the soil ecosystem network consisted of five major ecological clusters. Soil core microbiota within cluster 1 were significantly higher than in cluster 4, and there is also a higher Copiotrophs/Oligotrophs ratio in cluster 1. Our results corroborated that soil core microbiota is crucial for maintaining ecosystem multi-functionality. Especially, the core taxa within the clusters of networks under tree planting, with the same ecological preferences, had a significant contribution to ecosystem multi-functionality. CONCLUSION: Overall, our results provide further insight into the linkage between core taxa and ecosystem multi-functionality. This enables us to predict how ecosystem functions respond to the environmental changes in areas under the C. camphora coppice planting. Thus, conserving the soil microbiota, especially the core taxa, is essential to maintaining the multiple ecosystem functions under the C. camphora coppice planting.


Asunto(s)
Cinnamomum camphora , Microbiota , China , Suelo , Árboles
2.
Glob Chang Biol ; 28(7): 2461-2475, 2022 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-34962005

RESUMEN

As a nature-based and cost-effective solution, forestation plays a crucial role in combating global warming, biodiversity collapse, environmental degradation, and global well-being. Although China is acknowledged as a global leader of forestation and has achieved considerable overall success in environmental improvements through mega-forestation programs, many negative effects have also emerged at local scales due to the planting of maladapted tree species. To better help achieve carbon neutrality and the new vision of an ecological civilization, China has committed to further increase forestation. However, where forestation lands and such efforts should really be located is not so well understood yet and agreed upon, especially in the face of rapid climate change. Based on an ensemble-learning machine, we predicted the spatial habitats (ecological niche) of the forest, grassland, shrubland, and desert under present and future climate conditions based on the natural climax vegetation distribution across China. We show that the potential forestation lands are mainly located in eastern China, which is east of the Hu Line (also known as the Heihe-Tengchong Line). Under future climate change, forests will shift substantially in the latitudinal, longitudinal, and elevational distribution. Potential forestation lands will increase by 33.1 million hectares through the 2070s, mainly due to the conversions of shrub and grassland to forests along the Hu Line. Our prediction map also indicates that grassland rehabilitation is the universal optimal vegetation restoration strategy in areas west of the Hu Line. This analysis is consistent with much of the observed evidence of forestation failures and recent climate-change-induced forest range shifts. Our results provide an overview and further show the importance of adaptive science-based forestation planning and forest management.


Asunto(s)
Agricultura Forestal , Bosques , China , Cambio Climático , Ecosistema , Árboles
3.
Ecol Appl ; 32(1): e02472, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34652865

RESUMEN

Competition with invasive grasses is one of the most important drivers of tree planting failures, especially in tropical forests. A widely disseminated weeding approach has been glyphosate spraying, the most used herbicide globally in forestry and ecosystem restoration. However, glyphosate use in restoration is highly controversial and requires further studies to elucidate its effects on restoration processes and the environment. We evaluated the use of glyphosate in riparian forest restoration and its impacts on tree planting costs, weed control efficiency, planted seedling performance, herbaceous and woody species regeneration, soil bacteria, and environmental contamination, using mowing treatments as a reference and based on a controlled experiment established in the Brazilian Atlantic Forest. Glyphosate spraying reduced by one-half and one-third the accumulated aboveground biomass of, respectively, weeds in general and of the invasive grass Urochloa decumbens compared to mowing treatments, and it reduced the cost by half. The performance of planted tree seedlings was markedly favored by glyphosate spraying compared to mowing treatments, as expressed by improved seedling height (~twice higher), crown area (~5× higher), and basal area (~5× higher); the regeneration of both native woody and ruderal herbaceous plants were also enhanced. Neither glyphosate nor its metabolite Aminomethylphosphonic acid (AMPA) residues were detected in either water runoff or soil samples, but they were found at relatively high concentrations in the runoff sediments (from 1.32 to 24.75 mg/kg for glyphosate and from 1.75 to 76.13 mg/kg for AMPA). Soil bacteria communities differed before and after glyphosate spraying in comparison to mowing plots (without glyphosate). Glyphosate spraying was far more cost effective than mowing for controlling U. decumbens and greatly improved the performance of planted tree seedlings and natural regeneration, while not leaving residues in soil and water. However, the changes in the structure of bacterial communities and high concentration of glyphosate and AMPA residues in runoff sediments highlight the need for caution when using this herbicide in riparian buffers. We present alternatives for reducing glyphosate use and minimizing its risks in tree planting initiatives.


Asunto(s)
Ecosistema , Bosques , Glicina/análogos & derivados , Malezas , Suelo , Árboles , Glifosato
4.
Environ Monit Assess ; 194(10): 750, 2022 Sep 08.
Artículo en Inglés | MEDLINE | ID: mdl-36074204

RESUMEN

In Bangkok, the crowded capital of Thailand, the capacity of 25 public parks as carbon (C) sinks was determined from the aboveground C sequestration (Cseq, tons (t)-C) and carbon dioxide absorption (CO2abs, t-CO2) of the trees in these parks. The results revealed that the estimated Cseq and CO2abs of these parks were 11,112.2 t-C and 41,219.4 t-CO2, respectively. Of these values, 10,166.8 t-C and 37,753.1 t-CO2 were obtained for the group 1 trees (all observed species except palms), and 945.5 t-C and 3,466.3 t-CO2 were obtained for the group 2 trees (palms). The CO2abs of the 25 parks was 83.6% of the estimated greenhouse gases (i.e., 49,279 t-CO2 equivalent) absorbed by all green areas in Bangkok, but this amount was trivial and approximately 0.1% of the greenhouse gases emitted by the city (i.e., 46.44 million t-CO2 equivalent). To enhance the capacity of C sinks in dense urban landscapes, both tree Cseq potential and park Cseq efficiency should be simultaneously considered. The results of the linear mixed model and Kendall correlation analysis identified the variables influencing tree Cseq potential, i.e., tree group, species diversity, tree density, and tree diameter at breast height. Based on the preliminary baseline proposed in this study, identifying appropriate specifications for tree planting and park management planning could improve park Cseq efficiency. In each park, the diverse tree subgroup species should be planted, and proportions of green area and tree density should be managed to meet relevant baseline values.


Asunto(s)
Secuestro de Carbono , Gases de Efecto Invernadero , Dióxido de Carbono , Monitoreo del Ambiente/métodos , Tailandia , Árboles
5.
Glob Chang Biol ; 27(7): 1328-1348, 2021 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-33494123

RESUMEN

Urgent solutions to global climate change are needed. Ambitious tree-planting initiatives, many already underway, aim to sequester enormous quantities of carbon to partly compensate for anthropogenic CO2 emissions, which are a major cause of rising global temperatures. However, tree planting that is poorly planned and executed could actually increase CO2 emissions and have long-term, deleterious impacts on biodiversity, landscapes and livelihoods. Here, we highlight the main environmental risks of large-scale tree planting and propose 10 golden rules, based on some of the most recent ecological research, to implement forest ecosystem restoration that maximizes rates of both carbon sequestration and biodiversity recovery while improving livelihoods. These are as follows: (1) Protect existing forest first; (2) Work together (involving all stakeholders); (3) Aim to maximize biodiversity recovery to meet multiple goals; (4) Select appropriate areas for restoration; (5) Use natural regeneration wherever possible; (6) Select species to maximize biodiversity; (7) Use resilient plant material (with appropriate genetic variability and provenance); (8) Plan ahead for infrastructure, capacity and seed supply; (9) Learn by doing (using an adaptive management approach); and (10) Make it pay (ensuring the economic sustainability of the project). We focus on the design of long-term strategies to tackle the climate and biodiversity crises and support livelihood needs. We emphasize the role of local communities as sources of indigenous knowledge, and the benefits they could derive from successful reforestation that restores ecosystem functioning and delivers a diverse range of forest products and services. While there is no simple and universal recipe for forest restoration, it is crucial to build upon the currently growing public and private interest in this topic, to ensure interventions provide effective, long-term carbon sinks and maximize benefits for biodiversity and people.


Asunto(s)
Secuestro de Carbono , Ecosistema , Biodiversidad , Conservación de los Recursos Naturales , Bosques , Humanos , Árboles
6.
J Environ Manage ; 285: 112207, 2021 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-33636449

RESUMEN

Most street tree inequality studies focus on examining tree abundance at single time point, while overlooking inequality dynamics measured based on a complete set of tree measures. Whether the severities of street tree inequalities vary with different tree structure measures, whether street tree inequalities are diminishing or growing over time, and how the inequality dynamics are affected by tree-planting programs remain largely unexplored. To fill these gaps, this study applied binned regression and cluster analyses to street tree census data of 1995-2015 in New York City. We investigated different structural measures of street tree inequalities pertaining to various aggregations of people, compared street tree inequalities over time, and revealed the inequity remediation role of the MillionTreesNYC initiative. We found that the underprivileged populations, characterized by higher percentages of the poor, racial minorities, young people, and less-educated people, are more likely to have lower tree abundance, less desired tree structure, poorer tree health condition, and more sidewalk damages. When disaggregating inequalities across various aggregations of people, income-based and education-based inequalities were the most severe, but the inequalities diminished over time. The race-based and age-based inequalities show mixed results that disfavor Hispanics, Blacks, and young people. The equity outcome of the MillionTreesNYC initiative is not ideal as the inequalities decrease when measured using tree count and species diversity, whereas they increase when measured using tree health and average diameter at breast height. The findings have important implications for more effective decision-making to balance resources between planting trees and protecting existing trees, and between increasing tree abundance and improving tree structure.


Asunto(s)
Árboles , Planificación Ambiental , Humanos , Ciudad de Nueva York , Factores Socioeconómicos
7.
Glob Chang Biol ; 26(9): 5178-5188, 2020 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-32662196

RESUMEN

Tree planting is increasingly being proposed as a strategy to combat climate change through carbon (C) sequestration in tree biomass. However, total ecosystem C storage that includes soil organic C (SOC) must be considered to determine whether planting trees for climate change mitigation results in increased C storage. We show that planting two native tree species (Betula pubescens and Pinus sylvestris), of widespread Eurasian distribution, onto heather (Calluna vulgaris) moorland with podzolic and peaty podzolic soils in Scotland, did not lead to an increase in net ecosystem C stock 12 or 39 years after planting. Plots with trees had greater soil respiration and lower SOC in organic soil horizons than heather control plots. The decline in SOC cancelled out the increment in C stocks in tree biomass on decadal timescales. At all four experimental sites sampled, there was no net gain in ecosystem C stocks 12-39 years after afforestation-indeed we found a net ecosystem C loss in one of four sites with deciduous B. pubescens stands; no net gain in ecosystem C at three sites planted with B. pubescens; and no net gain at additional stands of P. sylvestris. We hypothesize that altered mycorrhizal communities and autotrophic C inputs have led to positive 'priming' of soil organic matter, resulting in SOC loss, constraining the benefits of tree planting for ecosystem C sequestration. The results are of direct relevance to current policies, which promote tree planting on the assumption that this will increase net ecosystem C storage and contribute to climate change mitigation. Ecosystem-level biogeochemistry and C fluxes must be better quantified and understood before we can be assured that large-scale tree planting in regions with considerable pre-existing SOC stocks will have the intended policy and climate change mitigation outcomes.


Asunto(s)
Secuestro de Carbono , Árboles , Carbono/análisis , Ecosistema , Escocia , Suelo
8.
J Environ Manage ; 155: 162-70, 2015 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-25819571

RESUMEN

This study uses a mail survey of private landowners in the Midwest United States to understand the characteristics of owners who have planted trees or intend to plant trees in the future. The analysis examines what policy tools encourage owners to plant trees, and how policy tools operate across different ownership attributes to promote tree-planting on private lands. Logistic regression results suggest that cost-subsidizing policy tools, such as low-cost and free seedlings, significantly increase the odds of actual and planned reforestation when landowners consider them important for increasing forest cover. Individuals most likely to plant trees, when low-cost seedlings are available and important, are fairly recent (<5 years), college-educated owners who own small parcels (<4 ha) and use the land for recreation. Motivations to reforest were also shaped by owners' planning horizons, connection to the land, previous tree-planting experience, and peer influence. The study has relevance for the design of policy approaches that can encourage private forestation through provision of economic incentives and capacity to private landowners.


Asunto(s)
Conservación de los Recursos Naturales/economía , Motivación , Propiedad , Árboles/crecimiento & desarrollo , Conservación de los Recursos Naturales/métodos , Humanos , Indiana , Encuestas y Cuestionarios , Estados Unidos
9.
Trends Ecol Evol ; 39(1): 1-4, 2024 01.
Artículo en Inglés | MEDLINE | ID: mdl-37845119

RESUMEN

Afforesting grassy systems for carbon gain using flammable plantation trees could shift the fire regime from lower intensity grass-fuelled fires to high-intensity crown fires. Future changes in climate will worsen this. We highlight the fire risk of trees planted for carbon and costs of fire protection using African examples.


Asunto(s)
Incendios , Árboles , Carbono , Predicción , Ecosistema
10.
Sci Bull (Beijing) ; 69(10): 1506-1514, 2024 May 30.
Artículo en Inglés | MEDLINE | ID: mdl-38503651

RESUMEN

Trading water for carbon has cautioned large-scale afforestation in global drylands. However, model simulations suggested that the consumption of soil water could be partially offset by increasing precipitation due to vegetation feedback. A systematic meta-analysis of long-term and large-scale field observations is urgently required to address the abovementioned limitations, and the implementation of large-scale afforestation since 1978 in northern China provides an ideal example. This study collected data comprising 1226 observations from 98 sites in northern China to assess the variation in soil water content (SWC) with stand age after afforestation and discuss the effects of tree species, precipitation and conversions of land use types on SWC. We found that the SWC has been decreased by coniferous forest and broadleaf forest at rates of 0.6 and 3.2 mm decade-1, respectively, since 1978. There is a significant declining trend of SWC with the stand age of plantations, and the optimum growth stage for plantation forest is 0-20 a in northern China. However, we found increases in SWC for the conversion from grassland to forest and in the low-precipitation region, both are corresponding to the increased SWC in coniferous forest. Our study implies that afforestation might lead to a soil water deficit crisis in northern China in the long term at the regional scale but depends on prior land use types, tree taxa and the mean annual precipitation regime, which sheds light on decision-making regarding ecological restoration policies and water resource management in drylands.

11.
Sci Total Environ ; 928: 172282, 2024 Jun 10.
Artículo en Inglés | MEDLINE | ID: mdl-38614326

RESUMEN

Coastal cities are facing a rise in groundwater levels induced by sea level rise, further triggering saturation excess flooding where groundwater levels reach the topographic surface or reduce the storage capacity of the soil, thus stressing the existing infrastructure. Lowering groundwater levels is a priority for sustaining the long-term livelihood of coastal cities. In the absence of studies assessing the possibility of using tree-planting as a measure of alleviating saturation excess flooding in the context of rising groundwater levels, the multi-benefit nature of tree-planting programs as sustainable Nature-based solutions (NBSs) in coastal cities in the Global South is discussed. In environments where groundwater is shallow, trees uptake groundwater or reduce groundwater recharge, thereby contributing to lower groundwater levels and increasing the unsaturated zone thickness, further reducing the risk of saturation excess flooding. Tree-planting programs represent long-term solutions sustained by environmental factors that are complementary to conventional engineering solutions. The multi-benefit nature of such NBSs and the expected positive environmental, economic, and social outcomes make them particularly promising. Wide social acceptance was identified as crucial for the long-term success of any tree-planting program, as the social factor plays a major role in addressing most weaknesses and threats of the solution. In the case of Nouakchott City (Mauritania), where a rise in groundwater levels has led to permanent saturation excess flooding, a tree-planting program has the potential to lower the groundwater levels, thereby reducing flooding during the rainy season.

12.
Environ Evid ; 13(1): 16, 2024 Jun 02.
Artículo en Inglés | MEDLINE | ID: mdl-39294750

RESUMEN

BACKGROUND: Forest disturbances are projected to increase in intensity and frequency in the upcoming decades. The projected change in disturbance regimes is expected to alter the provision of ecosystem services and affect biodiversity. Both are critical for forest ecosystems to provide livelihoods for human societies. Forest management after natural disturbances shapes successional pathways of forest ecosystems. Therefore, the management of post-disturbance sites deserves critical attention to avoid negative effects of management interventions on ecosystem services and biodiversity. The two most common management interventions after natural disturbances are salvage logging (comparator: no salvage logging) and tree planting (comparator: natural regeneration). This planned systematic map of reviews aims to aggregate the existing evidence syntheses on the implications of common forest management interventions after natural disturbances on successional trajectories with regard to selected ecosystem services and biodiversity. Evidence-based post-disturbance management is highly relevant for protected area management as well as for the management of commercial forests. METHODS: We will systematically search the databases Scopus, Web of Science Core Collection and the Forest Science Collection of the CABI Digital Library for reviews and meta-analyses (after 2003). We will apply eligibility criteria for review selection and assess the evidence synthesis validity of selected reviews using the most recent version of CEESAT (Collaboration for Environmental Evidence Synthesis Assessment Tool). The results will be displayed in topic subgroups in summary of scope and summary of findings tables.

13.
Philos Trans R Soc Lond B Biol Sci ; 378(1867): 20210090, 2023 01 02.
Artículo en Inglés | MEDLINE | ID: mdl-36373930

RESUMEN

Current policy is driving renewed impetus to restore forests to return ecological function, protect species, sequester carbon and secure livelihoods. Here we assess the contribution of tree planting to ecosystem restoration in tropical and sub-tropical Asia; we synthesize evidence on mortality and growth of planted trees at 176 sites and assess structural and biodiversity recovery of co-located actively restored and naturally regenerating forest plots. Mean mortality of planted trees was 18% 1 year after planting, increasing to 44% after 5 years. Mortality varied strongly by site and was typically ca 20% higher in open areas than degraded forest, with height at planting positively affecting survival. Size-standardized growth rates were negatively related to species-level wood density in degraded forest and plantations enrichment settings. Based on community-level data from 11 landscapes, active restoration resulted in faster accumulation of tree basal area and structural properties were closer to old-growth reference sites, relative to natural regeneration, but tree species richness did not differ. High variability in outcomes across sites indicates that planting for restoration is potentially rewarding but risky and context-dependent. Restoration projects must prepare for and manage commonly occurring challenges and align with efforts to protect and reconnect remaining forest areas. The abstract of this article is available in Bahasa Indonesia in the electronic supplementary material. This article is part of the theme issue 'Understanding forest landscape restoration: reinforcing scientific foundations for the UN Decade on Ecosystem Restoration'.


Asunto(s)
Ecosistema , Clima Tropical , Biodiversidad , Plantas , Asia
14.
Environ Sci Pollut Res Int ; 30(38): 88641-88663, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37440133

RESUMEN

This study aims to examine the impact of planting strategies on improving thermal comfort in relation to the existing buildings within real high-rise residential complexes. Using numerical simulation via ENVI-met, we compare six planting scenarios characterized by two locational schemes-open-space planting and building-vicinity planting-and three tree quantities. The results highlight the importance of planting greater numbers of trees, and also of their locations, to moderate the thermal environment. The findings of the study demonstrated that increasing the number of trees in the open space by threefold of the advisory guidelines led to a significant reduction in the average air temperature by 0.87 °C, mean radiant temperature (MRT) by 11.00 °C, physiological equivalent temperature (PET) by 4.50 °C, and wind speed by 0.30 m/s. Planting the minimum number of trees under building-vicinity reduced air temperature by 0.07 °C, MRT by 2.48 °C, and PET by 0.92 °C, while showing a slight increase in wind speed of approximately 0.01 m/s. To achieve improvements in both thermal condition and air flow, we suggest planting rows of trees parallel to the prevailing wind direction in the ventilation corridors at some distance from buildings, to minimize overlap of shade from trees and from buildings. The findings of this study will provide useful guidelines for effective planting design in dense residential areas.


Asunto(s)
Hidrodinámica , Plantas , Temperatura , Árboles , Viento , Sensación Térmica , Ciudades
15.
Environ Sci Pollut Res Int ; 30(22): 63148-63174, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-36964464

RESUMEN

Mixed-vegetation planting patterns are commonly seen in urban areas for specific reasons like aesthetic, cooling, and particle deposition effects of the vegetation. However, they may have a negative impact on human health by worsening the air quality inside the street canyon due to the decreased air exchange rate. From the view of precise control of pollutant concentration in the sensitive areas of people's concern in the existed street canyons, thirty-four cases with different vegetation planting patterns and pressure loss coefficients (λ) are studied numerically to investigate the effects of vegetation on airflow and pollutant dispersion inside the canyon. The cases of treeless and 2 rows of tree planting patterns in wind-tunnel measurements were selected for the model validation. The results demonstrate that compared to the treeless case, the greenbelts can greatly change the airflow features and reduce the pollutant concentration at the leeward side, while the only-tree planting patterns have little impact on the flow and deteriorate dispersion within the street canyon. Moreover, rows of greenbelts planted under the corresponding trees can reduce the average pollutant concentrations on the leeward wall and the footpath of the street canyon by up to 22.6% and 33.2%, respectively. Besides, the pattern of 1 row of trees with 1 row of greenbelts planted in the street canyon center should be suggested as the optimal mixed vegetation configuration in this study. That is because compared to the treeless case the pollutant concentration on leeward wall, windward wall, leeward footpath, and windward footpath can be reduced by 14.2%, 10.0%, 24.6%, and 37%, respectively. It is helpful to the city planners to consider whether the disadvantages of planting vegetation inside the street canyon would overwhelm the advantages.


Asunto(s)
Contaminantes Atmosféricos , Contaminación del Aire , Contaminantes Ambientales , Humanos , Contaminantes Atmosféricos/análisis , Modelos Teóricos , Contaminación del Aire/análisis , Plantas , Árboles , Ciudades , Emisiones de Vehículos/análisis
16.
Philos Trans R Soc Lond B Biol Sci ; 378(1867): 20210070, 2023 01 02.
Artículo en Inglés | MEDLINE | ID: mdl-36374130

RESUMEN

Effective restoration planning tools are needed to mitigate global carbon and biodiversity crises. Published spatial assessments of restoration potential are often at large scales or coarse resolutions inappropriate for local action. Using a Tanzanian case study, we introduce a systematic approach to inform landscape restoration planning, estimating spatial variation in cost-effectiveness, based on restoration method, logistics, biomass modelling and uncertainty mapping. We found potential for biomass recovery across 77.7% of a 53 000 km2 region, but with some natural spatial discontinuity in moist forest biomass, that was previously assigned to human causes. Most areas with biomass deficit (80.5%) were restorable through passive or assisted natural regeneration. However, cumulative biomass gains from planting outweighed initially high implementation costs meaning that, where applicable, this method yielded greater long-term returns on investment. Accounting for ecological, funding and other uncertainty, the top 25% consistently cost-effective sites were within protected areas and/or moderately degraded moist forest and savanna. Agro-ecological mosaics had high biomass deficit but little cost-effective restoration potential. Socio-economic research will be needed to inform action towards environmental and human development goals in these areas. Our results highlight value in long-term landscape restoration investments and separate treatment of savannas and forests. Furthermore, they contradict previously asserted low restoration potential in East Africa, emphasizing the importance of our regional approach for identifying restoration opportunities across the tropics. This article is part of the theme issue 'Understanding forest landscape restoration: reinforcing scientific foundations for the UN Decade on Ecosystem Restoration'.


Asunto(s)
Ecosistema , Árboles , Humanos , Biodiversidad , Bosques , Biomasa , Conservación de los Recursos Naturales/métodos
17.
Heliyon ; 9(10): e20408, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37842597

RESUMEN

Urban forests provide direct and indirect benefits to human well-being that are increasingly captured in residential property values. Remote Sensing (RS) can be used to measure a wide range of forest and vegetation parameters that allows for a more detailed and better understanding of their specific influences on housing prices. Herein, through a systematic literature review approach, we reviewed 89 papers (from 2010 to 2022) from 21 different countries that used RS data to quantify vegetation indices, forest and tree parameters of urban forests and estimated their influence on residential property values. The main aim of this study was to understand and provide insights into how urban forests influence residential property values based on RS studies. Although more studies were conducted in developed (n = 55, 61.7%) than developing countries (n = 34, 38.3%), the results indicated for the most part that increasing tree canopy cover on property and neighborhood level, forest size, type, greenness, and proximity to urban forests increased housing prices. RS studies benefited from spatially explicit repetitive data that offer superior efficiency to quantify vegetation, forest, and tree parameters of urban forests over large areas and longer periods compared to studies that used field inventory data. Through this work, we identify and underscore that urban forest benefits outweigh management costs and have a mostly positive influence on housing prices. Thus, we encourage further discussions about prioritizing reforestation and conservation of urban forests during the urban planning of cities and suburbs, which could support UN Sustainable Development Goals (SDGs) and urban policy reforms.

18.
Annu Rev Phytopathol ; 60: 337-356, 2022 08 26.
Artículo en Inglés | MEDLINE | ID: mdl-35584884

RESUMEN

Tree planting and natural regeneration contribute to the ongoing effort to restore Earth's forests. Our review addresses how the plant microbiome can enhance the survival of planted and naturally regenerating seedlings and serve in long-term forest carbon capture and the conservation of biodiversity. We focus on fungal leaf endophytes, ubiquitous defensive symbionts that protect against pathogens. We first show that fungal and oomycetous pathogen richness varies greatly for tree species native to the United States (n = 0-876 known pathogens per US tree species), with nearly half of tree species either without pathogens in these major groups or with unknown pathogens. Endophytes are insurance against the poorly known and changing threat of tree pathogens. Next, we review studies of plant phyllosphere feedback, but knowledge gaps prevent us from evaluating whether adding conspecific leaf litter to planted seedlings promotes defensive symbiosis, analogous to adding soil to promote positive feedback. Finally, we discuss research priorities for integrating the plant microbiome into efforts to expand Earth's forests.


Asunto(s)
Bosques , Microbiota , Biodiversidad , Hojas de la Planta , Plantones , Suelo , Árboles
19.
Artículo en Inglés | MEDLINE | ID: mdl-35329210

RESUMEN

Rapid urbanisation and rising vehicular emissions aggravate urban air pollution. Outdoor pollutants could diffuse indoors through infiltration or ventilation, leading to residents' exposure. This study performed CFD simulations with a standard k-ε model to investigate the impacts of building configurations and tree planting on airflows, pollutant (CO) dispersion, and personal exposure in 3D urban micro-environments (aspect ratio = H/W = 30 m, building packing density λp = λf = 0.25) under neutral atmospheric conditions. The numerical models are well validated by wind tunnel data. The impacts of open space, central high-rise building and tree planting (leaf area density LAD= 1 m2/m3) with four approaching wind directions (parallel 0° and non-parallel 15°, 30°, 45°) are explored. Building intake fraction is adopted for exposure assessment. The change rates of demonstrate the impacts of different urban layouts on the traffic exhaust exposure on residents. The results show that open space increases the spatially-averaged velocity ratio (VR) for the whole area by 0.40−2.27%. Central high-rise building (2H) can increase wind speed by 4.73−23.36% and decrease the CO concentration by 4.39−23.00%. Central open space and high-rise building decrease under all four wind directions, by 6.56−16.08% and 9.59−24.70%, respectively. Tree planting reduces wind speed in all cases, raising by 14.89−50.19%. This work could provide helpful scientific references for public health and sustainable urban planning.


Asunto(s)
Contaminantes Atmosféricos , Contaminación del Aire , Contaminantes Ambientales , Contaminantes Atmosféricos/análisis , Contaminación del Aire/análisis , Ciudades , Monitoreo del Ambiente/métodos , Modelos Teóricos , Árboles , Emisiones de Vehículos/análisis
20.
Sci Total Environ ; 764: 142920, 2021 Apr 10.
Artículo en Inglés | MEDLINE | ID: mdl-33172638

RESUMEN

Urban tree planting has the potential to reduce urban heat island intensity and building energy consumption. However, the heterogeneity of cities makes it difficult to quantitatively assess the integrated impacts of tree planting and street layouts. Scaled outdoor experiments were conducted to investigate the influence of tree plantings on wind and thermal environments in two-dimensional (2D) north-south oriented street canyons with various aspect ratios (building height/street width, AR = H/W = 1, 2, 3; H = 1.2 m). The effects of tree species with similar leaf area index (C. kotoense, big crown; C. macrocarpa, small crown), tree planting densities (ρ = 1, 0.5), and arrangements (double-row, single-row) were considered. Vegetation reduces pedestrian-level wind speed by 29%-70%. For ρ = 1 and single-row arrangement, C. kotoense (big crown) has a better shading effect and decreases wall and air temperature during the daytime by up to 9.4 °C and 1.2 °C, respectively. In contrast, C. macrocarpa (small crown) leads to a temperature increase at the pedestrian level. Moreover, C. kotoense raises the air and wall temperature of the upper urban canopy layer and increases the street albedo during the daytime because of the solar radiation reflected by trees. C. kotoense/C. macrocarpa produces the maximum daytime cooling/warming and nighttime warming of air temperature when H/W = 2 owing to its weaker convective heat transfer. When H/W = 3, the building shade dominates the shading cooling and tree cooling is less significant. When ρ = 1, double-row trees (C. kotoense) reduce wall and air temperatures by up to 10.0 °C and 1.0 °C during the daytime. However, reducing ρ from 1 to 0.5 weakens the capacity of daytime cooling by C. kotoense and the warming effect by C. macrocarpa. Our study quantifies the influence of tree planting and aspect ratios on the thermal environment, which can provide meaningful references for urban tree planting and produce high-quality validation data for numerical modeling.


Asunto(s)
Calor , Árboles , Ciudades , Temperatura , Viento
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda