Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 20 de 129
Filtrar
1.
Immunol Rev ; 314(1): 280-301, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36331258

RESUMEN

Tumor-targeting monoclonal antibodies are available for a number of cancer cell types (over)expressing the corresponding tumor antigens. Such antibodies can limit tumor progression by different mechanisms, including direct growth inhibition and immune-mediated mechanisms, in particular complement-dependent cytotoxicity, antibody-dependent cellular phagocytosis, and antibody-dependent cellular cytotoxicity (ADCC). ADCC can be mediated by various types of immune cells, including neutrophils, the most abundant leukocyte in circulation. Neutrophils express a number of Fc receptors, including Fcγ- and Fcα-receptors, and can therefore kill tumor cells opsonized with either IgG or IgA antibodies. In recent years, important insights have been obtained with respect to the mechanism(s) by which neutrophils engage and kill antibody-opsonized cancer cells and these findings are reviewed here. In addition, we consider a number of additional ways in which neutrophils may affect cancer progression, in particular by regulating adaptive anti-cancer immunity.


Asunto(s)
Neoplasias , Neutrófilos , Humanos , Citotoxicidad Celular Dependiente de Anticuerpos , Receptores Fc , Anticuerpos Monoclonales/uso terapéutico , Anticuerpos Monoclonales/farmacología , Receptores de IgG/metabolismo
2.
J Neurosci ; 43(15): 2653-2664, 2023 04 12.
Artículo en Inglés | MEDLINE | ID: mdl-36878726

RESUMEN

The photoreceptor outer segment (OS) is the phototransductive organelle in the vertebrate retina. OS tips are regularly ingested and degraded by the adjacent retinal pigment epithelium (RPE), offsetting the addition of new disk membrane at the base of the OS. This catabolic role of the RPE is essential for photoreceptor health, with defects in ingestion or degradation underlying different forms of retinal degeneration and blindness. Although proteins required for OS tip ingestion have been identified, spatiotemporal analysis of the ingestion process in live RPE cells is lacking; hence, the literature reflects no common understanding of the cellular mechanisms that affect ingestion. We imaged live RPE cells from mice (both sexes) to elucidate the ingestion events in real time. Our imaging revealed roles for f-actin dynamics and specific dynamic localizations of two BAR (Bin-Amphiphysin-Rvs) proteins, FBP17 and AMPH1-BAR, in shaping the RPE apical membrane as it surrounds the OS tip. Completion of ingestion was observed to occur by scission of the OS tip from the remainder of the OS, with a transient concentration of f-actin forming around the site of imminent scission. Actin dynamics were also required for regulating the size of the ingested OS tip, and the time course of the overall ingestion process. The size of the ingested tip is consistent with the term "phagocytosis." However, phagocytosis usually refers to engulfment of an entire particle or cell, whereas our observations of OS tip scission indicate a process that is more specifically described as "trogocytosis," in which one cell "nibbles" another cell.SIGNIFICANCE STATEMENT The ingestion of the photoreceptor outer segment (OS) tips by the retinal pigment epithelium (RPE) is a dynamic cellular process that has fascinated scientists for 60 years. Yet its molecular mechanisms had not been addressed in living cells. We developed a live-cell imaging approach to investigate OS tip ingestion, and focused on the dynamic participation of actin filaments and membrane-shaping BAR proteins. We observed scission of OS tips for the first time, and were able to monitor local changes in protein concentration preceding, during, and following scission. Our approach revealed that actin filaments were concentrated at the site of OS scission and were required for regulating the size of the ingested OS tip and the time course of the ingestion process.


Asunto(s)
Actinas , Epitelio Pigmentado de la Retina , Masculino , Femenino , Ratones , Animales , Epitelio Pigmentado de la Retina/metabolismo , Actinas/metabolismo , Fagocitosis/fisiología , Citoesqueleto de Actina/metabolismo , Ingestión de Alimentos
3.
Semin Cell Dev Biol ; 129: 126-134, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-35260295

RESUMEN

Cell-cell communications are central to a variety of physiological and pathological processes in multicellular organisms. Cells often rely on cellular protrusions to communicate with one another, which enable highly selective and efficient signaling within complex tissues. Owing to significant improvements in imaging techniques, identification of signaling protrusions has increased in recent years. These protrusions are structurally specialized for signaling and facilitate interactions between cells. Therefore, physical regulation of these structures must be key for the appropriate strength and pattern of signaling outcomes. However, the typical approaches for understanding signaling regulation tend to focus solely on changes in signaling molecules, such as gene expression, protein-protein interaction, and degradation. In this short review, we summarize the studies proposing the removal of different types of signaling protrusions-including cilia, neurites, MT (microtubule based)-nanotubes and microvilli-and discuss their mechanisms and significance in signaling regulation.


Asunto(s)
Comunicación Celular , Extensiones de la Superficie Celular , Extensiones de la Superficie Celular/metabolismo , Microtúbulos/metabolismo , Neuritas , Transducción de Señal
4.
J Virol ; 97(4): e0186422, 2023 04 27.
Artículo en Inglés | MEDLINE | ID: mdl-36976017

RESUMEN

The monoclonal antibodies (MAbs) NCI05 and NCI09, isolated from a vaccinated macaque that was protected from multiple simian immunodeficiency virus (SIV) challenges, both target an overlapping, conformationally dynamic epitope in SIV envelope variable region 2 (V2). Here, we show that NCI05 recognizes a CH59-like coil/helical epitope, whereas NCI09 recognizes a ß-hairpin linear epitope. In vitro, NCI05 and, to a lesser extent, NCI09 mediate the killing of SIV-infected cells in a CD4-dependent manner. Compared to NCI05, NCI09 mediates higher titers of antibody-dependent cellular cytotoxicity (ADCC) to gp120-coated cells, as well as higher levels of trogocytosis, a monocyte function that contributes to immune evasion. We also found that passive administration of NCI05 or NCI09 to macaques did not affect the risk of SIVmac251 acquisition compared to controls, demonstrating that these anti-V2 antibodies alone are not protective. However, NCI05 but not NCI09 mucosal levels strongly correlated with delayed SIVmac251 acquisition, and functional and structural data suggest that NCI05 targets a transient state of the viral spike apex that is partially opened, compared to its prefusion-closed conformation. IMPORTANCE Studies suggest that the protection against SIV/simian-human immunodeficiency virus (SHIV) acquisition afforded by the SIV/HIV V1 deletion-containing envelope immunogens, delivered by the DNA/ALVAC vaccine platform, requires multiple innate and adaptive host responses. Anti-inflammatory macrophages and tolerogenic dendritic cells (DC-10), together with CD14+ efferocytes, are consistently found to correlate with a vaccine-induced decrease in the risk of SIV/SHIV acquisition. Similarly, V2-specific antibody responses mediating ADCC, Th1 and Th2 cells expressing no or low levels of CCR5, and envelope-specific NKp44+ cells producing interleukin 17 (IL-17) also are reproducible correlates of decreased risk of virus acquisition. We focused on the function and the antiviral potential of two monoclonal antibodies (NCI05 and NCI09) isolated from vaccinated animals that differ in antiviral function in vitro and recognize V2 in a linear (NCI09) or coil/helical (NCI05) conformation. We demonstrate that NCI05, but not NCI09, delays SIVmac251 acquisition, highlighting the complexity of antibody responses to V2.


Asunto(s)
Anticuerpos Monoclonales , Virus de la Inmunodeficiencia de los Simios , Proteínas Virales , Virus de la Inmunodeficiencia de los Simios/inmunología , Anticuerpos Monoclonales/administración & dosificación , Anticuerpos Monoclonales/aislamiento & purificación , Anticuerpos Monoclonales/metabolismo , Proteínas Virales/química , Proteínas Virales/inmunología , Epítopos/inmunología , Síndrome de Inmunodeficiencia Adquirida del Simio/inmunología , Síndrome de Inmunodeficiencia Adquirida del Simio/prevención & control , Estructura Terciaria de Proteína , Modelos Moleculares , Células CHO , Cricetulus , Animales , Macaca/inmunología , Macaca/virología , Anticuerpos Antivirales/sangre
5.
Parasite Immunol ; 46(2): e13025, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38372623

RESUMEN

Trichomonas vaginalis (Tv) is a parasite that causes trichomoniasis, a prevalent sexually-transmitted infection. Neutrophils are found at the site of infection, and can rapidly kill the parasite in vitro, using trogocytosis. However, the specific molecular players in neutrophil killing of Tv are unknown. Here, we show that complement proteins play a role in Tv killing by human neutrophil-like cells (NLCs). Using CRISPR/Cas9, we generated NLCs deficient in each of three complement receptors (CRs) known to be expressed on human neutrophils: CR1, CR3, and CR4. Using in vitro trogocytosis assays, we found that CR3, but not CR1 or CR4 is required for maximum trogocytosis of the parasite by NLCs, with NLCs lacking CR3 demonstrating ~40% reduction in trogocytosis, on average. We also observed a reduction in NLC killing of Tv in CR3 knockout, but not CR1 or CR4 knockout NLCs. On average, NLCs lacking CR3 had ~50% reduction in killing activity. We also used a parallel approach of pre-incubating NLCs with blocking antibodies against CR3, which similarly reduced NLC killing of parasites. These data support a model in which Tv is opsonized by the complement protein iC3b, and bound by neutrophil CR3 receptor, to facilitate trogocytic killing of the parasite.


Asunto(s)
Parásitos , Trichomonas vaginalis , Humanos , Animales , Antígeno de Macrófago-1 , Trichomonas vaginalis/genética , Neutrófilos , Antígeno CD11b
6.
Exp Parasitol ; : 108841, 2024 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-39362393

RESUMEN

Developing countries continuously face challenges to get rid of amoebiasis, a protozoan disease caused by Entamoeba histolytica. Every year around 900 million people get affected by amoebiasis, among them only 10 % of people show the symptoms of the disease while 90 % of people do not show any symptoms but still, serve as carriers of the disease. Asymptomatic persons carry cysts of Entamoeba in their fecal matter, which is carried by house flies to contaminate the food and water. Entamoeba histolytica is a very successful pathogen because it has very well-developed virulence factors that function in infection to host as well as in overcoming the host's immune response. However, researchers have very little information about the clear relationship between virulence factors and the virulence of Entamoeba histolytica, through various research, researchers have been able to identify key pathogenic factors that are crucial to the pathogenesis of amebiasis and have provided valuable insights into the development of the disease. The objective of this review is to underscore various virulence factors (Monosaccharides, Gal/GalNAc lectin, extracellular vesicles, cysteine proteases, amoeba-pores, and actin microfilament) involved in pathogenesis which may be helpful for designing of future drug or therapy.

7.
Proc Natl Acad Sci U S A ; 118(48)2021 11 30.
Artículo en Inglés | MEDLINE | ID: mdl-34819374

RESUMEN

Cancer cells can develop an immunosuppressive tumor microenvironment to control tumor-infiltrating lymphocytes. The underlying mechanisms still remain unclear. Here, we report that mouse and human colon cancer cells acquire lymphocyte membrane proteins including cellular markers such as CD4 and CD45. We observed cell populations harboring both a tumor-specific marker and CD4 in the tumor microenvironment. Sorted cells from these populations were capable of forming organoids, identifying them as cancer cells. Live imaging analysis revealed that lymphocyte membrane proteins were transferred to cancer cells via trogocytosis. As a result of the transfer in vivo, cancer cells also acquired immune regulatory surface proteins such as CTLA4 and Tim3, which suppress activation of immune cells [T. L. Walunas et al, Immunity 1, 405-413 (1994) and L. Monney et al., Nature 415, 536-541 (2002)]. RNA sequencing analysis of ex vivo-cocultured splenocytes with trogocytic cancer cells showed reductions in Th1 activation and natural killer cell signaling pathways compared with the nontrogocytic control. Cancer cell trogocytosis was confirmed in the patient-derived xenograft models of colorectal cancer and head and neck cancer. These findings suggest that cancer cells utilize membrane proteins expressed in lymphocytes, which in turn contribute to the development of the immunosuppressive tumor microenvironment.


Asunto(s)
Linfocitos T CD4-Positivos/citología , Antígeno CTLA-4/metabolismo , Neoplasias del Colon/inmunología , Neoplasias del Colon/metabolismo , Linfocitos Infiltrantes de Tumor/citología , Animales , Células CACO-2 , Membrana Celular/metabolismo , Células Cultivadas , Técnicas de Cocultivo , Células Madre Hematopoyéticas/citología , Humanos , Sistema Inmunológico , Inmunosupresores , Células Jurkat , Células Asesinas Naturales/inmunología , Activación de Linfocitos/inmunología , Ratones , Ratones Endogámicos C57BL , Organoides/metabolismo , Transducción de Señal/inmunología , Linfocitos T Reguladores/inmunología , Trogocitosis , Microambiente Tumoral
8.
Proc Natl Acad Sci U S A ; 118(30)2021 07 27.
Artículo en Inglés | MEDLINE | ID: mdl-34301886

RESUMEN

Foxp3-expressing CD4+CD25+ regulatory T cells (Tregs) constitutively and highly express the immune checkpoint receptor cytotoxic T-lymphocyte-associated antigen-4 (CTLA-4), whose Treg-specific deficiency causes severe systemic autoimmunity. As a key mechanism of Treg-mediated suppression, Treg-expressed CTLA-4 down-regulates the expression of CD80/CD86 costimulatory molecules on antigen-presenting cells (APCs). Here, we show that Treg-expressed CTLA-4 facilitated Treg-APC conjugation and immune synapse formation. The immune synapses thus formed provided a stable platform whereby Tregs were able to deplete CD80/CD86 molecules on APCs by extracting them via CTLA-4-dependent trogocytosis. The depletion occurred even with Tregs solely expressing a mutant CTLA-4 form lacking the cytoplasmic portion required for its endocytosis. The CTLA-4-dependent trogocytosis of CD80/CD86 also accelerated in vitro and in vivo passive transfer of other membrane proteins and lipid molecules from APCs to Tregs without their significant reduction on the APC surface. Furthermore, CD80 down-regulation or blockade by Treg-expressed membrane CTLA-4 or soluble CTLA-4-immunoglobulin (CTLA-4-Ig), respectively, disrupted cis-CD80/programmed death ligand-1 (PD-L1) heterodimers and increased free PD-L1 on dendritic cells (DCs), expanding a phenotypically distinct population of CD80lo free PD-L1hi DCs. Thus, Tregs are able to inhibit the T cell stimulatory activity of APCs by reducing their CD80/CD86 expression via CTLA-4-dependent trogocytosis. This CD80/CD86 reduction on APCs is able to exert dual suppressive effects on T cell immune responses by limiting CD80/CD86 costimulation to naïve T cells and by increasing free PD-L1 available for the inhibition of programmed death-1 (PD-1)-expressing effector T cells. Blockade of CTLA-4 and PD-1/PD-L1 in combination may therefore synergistically hinder Treg-mediated immune suppression, thereby effectively enhancing immune responses, including tumor immunity.


Asunto(s)
Células Presentadoras de Antígenos/inmunología , Antígeno B7-1/fisiología , Antígeno B7-2/fisiología , Antígeno B7-H1/metabolismo , Antígeno CTLA-4/fisiología , Linfocitos T Reguladores/inmunología , Trogocitosis , Animales , Antígeno B7-H1/genética , Células Dendríticas/inmunología , Femenino , Activación de Linfocitos/inmunología , Ratones , Ratones Endogámicos BALB C , Ratones Endogámicos C57BL , Ratones Noqueados
9.
Mol Cancer ; 22(1): 183, 2023 11 16.
Artículo en Inglés | MEDLINE | ID: mdl-37974170

RESUMEN

Chimeric antigen receptor (CAR) NK and T cell therapy are promising immunotherapeutic approaches for the treatment of cancer. However, the efficacy of CAR NK/T cell therapy is often hindered by various factors, including the phenomenon of trogocytosis, which involves the bidirectional exchange of membrane fragments between cells. In this review, we explore the role of trogocytosis in CAR NK/T cell therapy and highlight potential strategies for its modulation to improve therapeutic efficacy. We provide an in-depth analysis of trogocytosis as it relates to the fate and function of NK and T cells, focusing on its effects on cell activation, cytotoxicity, and antigen presentation. We discuss how trogocytosis can mediate transient antigen loss on cancer cells, thereby negatively affecting the effector function of CAR NK/T cells. Additionally, we address the phenomenon of fratricide and trogocytosis-associated exhaustion, which can limit the persistence and effectiveness of CAR-expressing cells. Furthermore, we explore how trogocytosis can impact CAR NK/T cell functionality, including the acquisition of target molecules and the modulation of signaling pathways. To overcome the negative effects of trogocytosis on cellular immunotherapy, we propose innovative approaches to modulate trogocytosis and augment CAR NK/T cell therapy. These strategies encompass targeting trogocytosis-related molecules, engineering CAR NK/T cells to resist trogocytosis-induced exhaustion and leveraging trogocytosis to enhance the function of CAR-expressing cells. By overcoming the limitations imposed by trogocytosis, it may be possible to unleash the full potential of CAR NK/T therapy against cancer. The knowledge and strategies presented in this review will guide future research and development, leading to improved therapeutic outcomes in the field of immunotherapy.


Asunto(s)
Neoplasias , Receptores Quiméricos de Antígenos , Humanos , Células Asesinas Naturales , Trogocitosis , Inmunoterapia Adoptiva , Linfocitos T , Receptores Quiméricos de Antígenos/metabolismo , Neoplasias/metabolismo , Tratamiento Basado en Trasplante de Células y Tejidos
10.
J Cell Sci ; 134(1)2021 01 11.
Artículo en Inglés | MEDLINE | ID: mdl-33277382

RESUMEN

Gap junctions have well-established roles in cell-cell communication by way of forming permeable intercellular channels. Less is understood about their internalization, which forms double membrane vesicles containing cytosol and membranes from another cell called connexosomes or annular gap junctions. Here, we systematically investigated the fate of connexosomes in intact ovarian follicles. High-pressure frozen, serial-sectioned tissue was immunogold labeled for connexin 43 (Cx43, also known as GJA1). Within a volume corresponding to ∼35 cells, every labeled structure was categorized and had its surface area measured. Measurements support the concept that multiple connexosomes form from larger invaginated gap junctions. Subsequently, the inner and outer membranes separate, Cx43 immunogenicity is lost from the outer membrane, and the inner membrane appears to undergo fission. One pathway for processing involves lysosomes, based on localization of cathepsin B to some processed connexosomes. In summary, this study demonstrates new technology for high-resolution analyses of gap junction processing.This article has an associated First Person interview with the first author of the paper.


Asunto(s)
Comunicación Celular , Uniones Comunicantes , Femenino , Humanos , Lisosomas , Microscopía Electrónica , Microscopía Inmunoelectrónica , Folículo Ovárico
11.
Transfusion ; 63(10): 1978-1982, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37668082

RESUMEN

INTRODUCTION: Warm antibody-mediated autoimmune hemolysis (WAIHA) is most often due to immunoglobulin G (IgG) antibodies and is detected by direct antiglobulin test (DAT). However, about 10% cases of hemolytic anemia are DAT negative. Herein, we describe a patient with DAT-negative hemolytic anemia due to an anti-IgA antibody. We investigate if isolated IgA can promote erythrophagocytosis. METHODS: We isolated patient and control IgA on Jacalin agarose. Isolated IgA was used to sensitize healthy ABO/Rh-matched donor red blood cells (RBC). Antibody binding was examined by flowcytometry. The effect of IgA on erythrophagocytosis was evaluated using Macrophage colony stimulating factor 1 (M-CSF)-differentiated autologous macrophages by Giemsa staining and immunofluorescence microscopy. RESULTS: We show that isolated IgA from the serum can bind to red cells. In addition, RBCs were phagocytosed efficiently by autologous macrophages in the presence of patient IgA. CONCLUSION: Our results show that IgA antibodies are capable of inducing erythrophagocytosis like IgG antibodies in the absence of complement fixation.


Asunto(s)
Anemia Hemolítica Autoinmune , Linfohistiocitosis Hemofagocítica , Humanos , Inmunoglobulina A , Hemólisis , Autoanticuerpos , Eritrocitos/metabolismo , Inmunoglobulina G , Prueba de Coombs/métodos
12.
Inflamm Res ; 72(7): 1453-1463, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-37378671

RESUMEN

BACKGROUND: RhoG is a multifaceted member of the Rho family of small GTPases, sharing the highest sequence identity with the Rac subfamily members. It acts as a molecular switch, when activated, plays a central role in regulating the fundamental processes in immune cells, such as actin-cytoskeleton dynamics, transendothelial migration, survival, and proliferation, including immunological functions (e.g., phagocytosis and trogocytosis) during inflammatory responses. METHOD: We have performed a literature review based on published original and review articles encompassing the significant effect of RhoG on immune cell functions from central databases, including PubMed and Google Scholar. RESULTS AND CONCLUSIONS: Recently published data shows that the dynamic expression of different transcription factors, non-coding RNAs, and the spatiotemporal coordination of different GEFs with their downstream effector molecules regulates the cascade of Rho signaling in immune cells. Additionally, alterations in RhoG-specific signaling can lead to physiological, pathological, and developmental adversities. Several mutations and RhoG-modulating factors are also known to pre-dispose the downstream signaling with abnormal gene expression linked to multiple diseases. This review focuses on the cellular functions of RhoG, interconnecting different signaling pathways, and speculates the importance of this small GTPase as a prospective target against several pathological conditions.


Asunto(s)
Transducción de Señal , Proteínas de Unión al GTP rho , Proteínas de Unión al GTP rho/genética , Proteínas de Unión al GTP rho/metabolismo , Transducción de Señal/fisiología , Fagocitosis , Factores de Transcripción/metabolismo
13.
Int J Mol Sci ; 24(10)2023 May 13.
Artículo en Inglés | MEDLINE | ID: mdl-37240076

RESUMEN

CD30, a member of the tumor necrosis factor receptor superfamily, plays roles in pro-survival signal induction and cell proliferation in peripheral T-cell lymphoma (PTCL) and adult T-cell leukemia/lymphoma (ATL). Previous studies have identified the functional roles of CD30 in CD30-expressing malignant lymphomas, not only PTCL and ATL, but also Hodgkin lymphoma (HL), anaplastic large cell lymphoma (ALCL), and a portion of diffuse large B-cell lymphoma (DLBCL). CD30 expression is often observed in virus-infected cells such as human T-cell leukemia virus type 1 (HTLV-1). HTLV-1 is capable of immortalizing lymphocytes and producing malignancy. Some ATL cases caused by HTLV-1 infection overexpress CD30. However, the molecular mechanism-based relationship between CD30 expression and HTLV-1 infection or ATL progression is unclear. Recent findings have revealed super-enhancer-mediated overexpression at the CD30 locus, CD30 signaling via trogocytosis, and CD30 signaling-induced lymphomagenesis in vivo. Successful anti-CD30 antibody-drug conjugate (ADC) therapy for HL, ALCL, and PTCL supports the biological significance of CD30 in these lymphomas. In this review, we discuss the roles of CD30 overexpression and its functions during ATL progression.


Asunto(s)
Infecciones por HTLV-I , Enfermedad de Hodgkin , Virus Linfotrópico T Tipo 1 Humano , Leucemia-Linfoma de Células T del Adulto , Linfoma de Células B Grandes Difuso , Linfoma Anaplásico de Células Grandes , Adulto , Humanos , Leucemia-Linfoma de Células T del Adulto/genética , Antígeno Ki-1/genética , Antígeno Ki-1/metabolismo , Linfoma Anaplásico de Células Grandes/patología , Enfermedad de Hodgkin/patología , Linfoma de Células B Grandes Difuso/patología , Virus Linfotrópico T Tipo 1 Humano/metabolismo , Progresión de la Enfermedad
14.
Mol Med ; 28(1): 91, 2022 08 08.
Artículo en Inglés | MEDLINE | ID: mdl-35941574

RESUMEN

BACKGROUND: Neutrophils are the most abundant innate immune cells in the circulating blood, and they act as the first responder against bacterial and fungal infection. However, accumulation of activated neutrophils can cause severe inflammation and tissue damage. Recently, neutrophil trogocytosis or membrane transfer with neighboring cells was reported to modulate immune responses. Extracellular cold-inducible RNA binding protein (eCIRP) is a newly identified damage-associated molecular pattern (DAMP). eCIRP can activate neutrophils to be more pro-inflammatory. This study aimed to identify the role of eCIRP in neutrophil trogocytosis during their trans-endothelial migration. METHODS: A trans-endothelial migration (TEM) assay using bone marrow neutrophils and mouse primary lung vascular endothelial cells was conducted using transwell chambers and neutrophil trogocytosis was assessed in vitro. In an in vivo mouse model of acute lung injury, neutrophil trogocytosis was assessed from bronchoalveolar lavage fluid. RESULTS: In TEM assay, the trogocytosis of neutrophils occurred during trans-endothelial migration and eCIRP significantly increased the percentage of these neutrophils. The trogocytosed neutrophils acquired the endothelial membrane containing junctional adhesion molecule-C (JAM-C) and VE-cadherin, and these membrane patches were polarized by Mac-1 binding. Furthermore, eCIRP-induced JAM-C positive trogocytosed neutrophils are more pro-inflammatory than the JAM-C negative counterpart. JAM-C positive trogocytosed neutrophils were also observed in the bronchoalveolar lavage fluid of a mouse model of acute lung injury. CONCLUSION: These data suggest that during the paracellular trans-endothelial migration of neutrophils in response to inflammation, eCIRP induces trogocytosis of neutrophils, and the trogocytosed neutrophils exhibit an exaggerated pro-inflammatory phenotype promoting acute lung injury.


Asunto(s)
Lesión Pulmonar Aguda , Neutrófilos , Animales , Células Endoteliales/metabolismo , Inflamación/metabolismo , Ratones , Trogocitosis
15.
Cancer Immunol Immunother ; 71(11): 2583-2596, 2022 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-35299256

RESUMEN

Non-keratinizing nasopharyngeal carcinoma (NPC) is a malignancy with a poor prognosis for relapsing patients and those with metastatic disease. Here, we identify a novel disease mechanism of NPC which may be its Achilles' heel that makes it susceptible to immunotherapy. CD137 is a potent costimulatory receptor on activated T cells, and CD137 agonists strongly enhance anti-tumor immune responses. A negative feedback mechanism prevents overstimulation by transferring CD137 from T cells to CD137 ligand (CD137L)-expressing antigen presenting cells (APC) during cognate interaction, upon which the CD137-CD137L complex is internalized and degraded. We found ectopic expression of CD137 on 42 of 122 (34.4%) NPC cases, and that CD137 is induced by the Epstein-Barr virus latent membrane protein (LMP) 1. CD137 expression enables NPC to hijack the inbuilt negative feedback mechanism to downregulate the costimulatory CD137L on APC, facilitating its escape from immune surveillance. Further, the ectopically expressed CD137 signals into NPC cells via the p38-MAPK pathway, and induces the expression of IL-6, IL-8 and Laminin γ2. As much as ectopic CD137 expression may support the growth and spread of NPC, it may be a target for its immunotherapeutic elimination. Natural killer cells that express a CD137-specific chimeric antigen receptor induce death in CD137+ NPC cells, in vitro, and in vivo in a murine xenograft model. These data identify a novel immune escape mechanism of NPC, and lay the foundation for an urgently needed immunotherapeutic approach for NPC.


Asunto(s)
Infecciones por Virus de Epstein-Barr , Neoplasias Nasofaríngeas , Receptores Quiméricos de Antígenos , Ligando 4-1BB , Animales , Herpesvirus Humano 4 , Humanos , Interleucina-6 , Interleucina-8 , Laminina , Ratones , Carcinoma Nasofaríngeo , Recurrencia Local de Neoplasia , Miembro 9 de la Superfamilia de Receptores de Factores de Necrosis Tumoral
16.
J Virol ; 95(24): e0162521, 2021 11 23.
Artículo en Inglés | MEDLINE | ID: mdl-34586863

RESUMEN

People living with HIV (PLWH) develop both anti-envelope-specific antibodies, which bind the closed trimeric HIV envelope present on infected cells, and anti-gp120-specific antibodies, which bind gp120 monomers shed by infected cells and taken up by CD4 on uninfected bystander cells. Both antibodies have an Fc portion that binds to Fc receptors on several types of innate immune cells and stimulates them to develop antiviral functions. Among these Fc-dependent functions (FcDFs) are antibody-dependent (AD) cellular cytotoxicity (ADCC), AD cellular trogocytosis (ADCT), and AD phagocytosis (ADCP). In this study, we assessed the evolution of total immunoglobulin G (IgG), anti-gp120, and anti-envelope IgG antibodies and their FcDFs in plasma samples from antiretroviral therapy (ART)-naive subjects during early HIV infection (28 to 194 days postinfection [DPI]). We found that both the concentrations and FcDFs of anti-gp120 and anti-envelope antibodies increased with time in ART-naive PLWH. Although generated concurrently, anti-gp120-specific antibodies were 20.7-fold more abundant than anti-envelope-specific antibodies, both specificities being strongly correlated with each other and FcDFs. Among the FcDFs, only ADCP activity was inversely correlated with concurrent viral load. PLWH who started ART at >90 DPI showed higher anti-envelope-specific antibody levels and ADCT and ADCP activities than those starting ART at<90 DPI. However, in longitudinally collected samples, ART initiation at >90 DPI was accompanied by a faster decline in anti-envelope-specific antibody levels, which did not translate to a faster decline in FcDFs than for those starting ART at <90 DPI. IMPORTANCE Closed-conformation envelope is expressed on the surface of HIV-infected cells. Antibodies targeting this conformation and that support FcDFs have the potential to control HIV. This study tracked the timing of the appearance and evolution of antibodies to closed-conformation envelope, whose concentration increased over the first 6 months of infection. Antiretroviral therapy (ART) initiation blunts further increases in the concentration of these antibodies and their and FcDFs. However, antibodies to open-conformation envelope also increased with DPI until ART initiation. These antibodies target uninfected bystander cells, which may contribute to loss of uninfected CD4 cells and pathogenicity. This report presents, for the first time, the evolution of antibodies to closed-conformation envelope and their fate on ART. This information may be useful in making decisions on the timing of ART initiation in early HIV infection.


Asunto(s)
Anticuerpos Anti-VIH/inmunología , Infecciones por VIH/inmunología , Receptores Fc/metabolismo , Anticuerpos Neutralizantes/inmunología , Citotoxicidad Celular Dependiente de Anticuerpos/inmunología , Línea Celular , VIH-1/inmunología , Humanos , Inmunoglobulina G/inmunología , Fagocitosis/inmunología , Receptores Fc/inmunología , Trogocitosis/inmunología , Carga Viral
17.
Cell Microbiol ; 23(1): e13267, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-32975360

RESUMEN

Rab small GTPases regulate membrane traffic between distinct cellular compartments of all eukaryotes in a tempo-spatially specific fashion. Rab small GTPases are also involved in the regulation of cytoskeleton and signalling. Membrane traffic and cytoskeletal regulation play pivotal role in the pathogenesis of Entamoeba histolytica, which is a protozoan parasite responsible for human amebiasis. E. histolytica is unique in that its genome encodes over 100 Rab proteins, containing multiple isotypes of conserved members (e.g., Rab7) and Entamoeba-specific subgroups (e.g., RabA, B, and X). Among them, E. histolytica Rab7 is the most diversified group consisting of nine isotypes. While it was previously demonstrated that EhRab7A and EhRab7B are involved in lysosome and phagosome biogenesis, the individual roles of other Rab7 members and their coordination remain elusive. In this study, we characterised the third member of Rab7, Rab7D, to better understand the significance of the multiplicity of Rab7 isotypes in E. histolytica. Overexpression of EhRab7D caused reduction in phagocytosis of erythrocytes, trogocytosis (meaning nibbling or chewing of a portion) of live mammalian cells, and phagosome acidification and maturation. Conversely, transcriptional gene silencing of EhRab7D gene caused opposite phenotypes in phago/trogocytosis and phagosome maturation. Furthermore, EhRab7D gene silencing caused reduction in the attachment to and the motility on the collagen-coated surface. Image analysis showed that EhRab7D was occasionally associated with lysosomes and prephagosomal vacuoles, but not with mature phagosomes and trogosomes. Finally, in silico prediction of structural organisation of EhRab7 isotypes identified unique amino acid changes on the effector binding surface of EhRab7D. Taken together, our data suggest that EhRab7D plays coordinated counteracting roles: a inhibitory role in phago/trogocytosis and lyso/phago/trogosome biogenesis, and an stimulatory role in adherence and motility, presumably via interaction with unique effectors. Finally, we propose the model in which three EhRab7 isotypes are sequentially involved in phago/trogocytosis.


Asunto(s)
Entamoeba histolytica/genética , Entamoeba histolytica/metabolismo , GTP Fosfohidrolasas/genética , GTP Fosfohidrolasas/metabolismo , Fagocitosis , Proteínas Protozoarias/genética , Proteínas Protozoarias/metabolismo , Secuencia de Aminoácidos , Animales , Células CHO , Cricetulus , Citoesqueleto/metabolismo , Entamoeba histolytica/patogenicidad , Entamebiasis/parasitología , Silenciador del Gen , Humanos , Lisosomas/metabolismo , Membranas/metabolismo , Fagosomas/metabolismo , Transcriptoma , Vacuolas/metabolismo , Virulencia , Proteínas de Unión al GTP rab/genética , Proteínas de Unión al GTP rab/metabolismo , Proteínas de Unión a GTP rab7
18.
Cell Microbiol ; 22(3): e13144, 2020 03.
Artículo en Inglés | MEDLINE | ID: mdl-31713312

RESUMEN

Phosphatidylinositol phosphates (PIPs) function as important second messengers in many cellular events. In the human intestinal protist Entamoeba histolytica, where phagocytosis/trogocytosis plays an indispensable role in proliferation and pathophysiology during infection, various PIPs are involved in multiple steps of phago/trogocytosis. PI3-phosphate (PI3P) plays a pivotal role in the biogenesis of phagosome/trogosomes via recruitment of PI3P effectors. Because no known PI3P downstream effectors are conserved in E. histolytica, we exploited a unique method to identify the proteins PI3P dependently recruited to phagosomes. We rationalised that overexpression of PI3P-binding GFP-HrsFYVE competes for PI3P on phagosomal membranes and results in dissociation of PI3P effectors from phagosomes. EhVps26 and EhVps35, but not sorting nexins (SNXs), of the retromer complex were detected from phagosomes only without GFP-HrsFYVE overexpression. Two potential SNXs, EhSNX1 and EhSNX2, identified in the genome, possess only phox homology domain and specifically bound to PI3P, but retromer components, EhVps26 and EhVps35, did not bind to PI3P. Live and immunofluorescence imaging showed that EhSNX1 was recruited to the trogocytic cup and tunnel-like structures, and subsequently, EhSNX2 was recruited to trogosomes. Furthermore, EhSNX1, but not EhSNX2, specifically bound to Arp2/3 and EhVps26, which were localised to the tunnel-like structures and the trogosomes, respectively. EhSNX2 gene silencing increased trogocytosis, suggesting that EhSNX2 plays an inhibitory role in trogocytosis.


Asunto(s)
Entamoeba histolytica/fisiología , Fagocitosis , Fosfatos de Fosfatidilinositol/fisiología , Nexinas de Clasificación/fisiología , Animales , Células CHO , Línea Celular , Cricetulus , Entamoeba histolytica/genética , Entamebiasis/parasitología , Genes Protozoarios , Interacciones Huésped-Patógeno , Humanos , Fagosomas/metabolismo , Proteínas Protozoarias/genética , Proteínas Protozoarias/metabolismo , Sistemas de Mensajero Secundario
19.
Int J Mol Sci ; 22(5)2021 Feb 24.
Artículo en Inglés | MEDLINE | ID: mdl-33668117

RESUMEN

The term trogocytosis refers to a rapid bidirectional and active transfer of surface membrane fragment and associated proteins between cells. The trogocytosis requires cell-cell contact, and exhibits fast kinetics and the limited lifetime of the transferred molecules on the surface of the acceptor cells. The biological actions of trogocytosis include information exchange, cell clearance of unwanted tissues in embryonic development, immunoregulation, cancer surveillance/evasion, allogeneic cell survival and infectious pathogen killing or intercellular transmission. In the present review, we will extensively review all these aspects. In addition to its biological significance, aberrant trogocytosis in the immune system leading to autoimmunity and immune-mediated inflammatory diseases will also be discussed. Finally, the prospective investigations for further understanding the molecular basis of trogocytosis and its clinical applications will also be proposed.


Asunto(s)
Autoinmunidad/inmunología , Membrana Celular/inmunología , Sistema Inmunológico/inmunología , Activación de Linfocitos/inmunología , Linfocitos/inmunología , Animales , Presentación de Antígeno , Comunicación Celular , Humanos
20.
Int J Mol Sci ; 22(6)2021 Mar 18.
Artículo en Inglés | MEDLINE | ID: mdl-33803773

RESUMEN

Polymorphonuclear neutrophils (PMNs) are traditionally regarded as professional phagocytic and acute inflammatory cells that engulf the microbial pathogens. However, accumulating data have suggested that PMNs are multi-potential cells exhibiting many important biological functions in addition to phagocytosis. These newly found novel activities of PMN include production of different kinds of cytokines/chemokines/growth factors, release of neutrophil extracellular traps (NET)/ectosomes/exosomes and trogocytosis (membrane exchange) with neighboring cells for modulating innate, and adaptive immune responses. Besides, PMNs exhibit potential heterogeneity and plasticity in involving antibody-dependent cellular cytotoxicity (ADCC), cancer immunity, autoimmunity, inflammatory rheumatic diseases, and cardiovascular diseases. Interestingly, PMNs may also play a role in ameliorating inflammatory reaction and wound healing by a subset of PMN myeloid-derived suppressor cells (PMN-MDSC). Furthermore, PMNs can interact with other non-immune cells including platelets, epithelial and endothelial cells to link hemostasis, mucosal inflammation, and atherogenesis. The release of low-density granulocytes (LDG) from bone marrow initiates systemic autoimmune reaction in systemic lupus erythematosus (SLE). In clinical application, identification of certain PMN phenotypes may become prognostic factors for severe traumatic patients. In the present review, we will discuss these newly discovered biological and pathobiological functions of the PMNs.


Asunto(s)
Citocinas/metabolismo , Trampas Extracelulares/metabolismo , Neutrófilos/metabolismo , Neutrófilos/patología , Animales , Comunicación Celular , Micropartículas Derivadas de Células/metabolismo , Citotoxicidad Inmunológica , Humanos
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda