Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 20 de 25
Filtrar
1.
Cell ; 185(16): 2899-2917.e31, 2022 08 04.
Artículo en Inglés | MEDLINE | ID: mdl-35914528

RESUMEN

Glioblastomas are incurable tumors infiltrating the brain. A subpopulation of glioblastoma cells forms a functional and therapy-resistant tumor cell network interconnected by tumor microtubes (TMs). Other subpopulations appear unconnected, and their biological role remains unclear. Here, we demonstrate that whole-brain colonization is fueled by glioblastoma cells that lack connections with other tumor cells and astrocytes yet receive synaptic input from neurons. This subpopulation corresponds to neuronal and neural-progenitor-like tumor cell states, as defined by single-cell transcriptomics, both in mouse models and in the human disease. Tumor cell invasion resembled neuronal migration mechanisms and adopted a Lévy-like movement pattern of probing the environment. Neuronal activity induced complex calcium signals in glioblastoma cells followed by the de novo formation of TMs and increased invasion speed. Collectively, superimposing molecular and functional single-cell data revealed that neuronal mechanisms govern glioblastoma cell invasion on multiple levels. This explains how glioblastoma's dissemination and cellular heterogeneity are closely interlinked.


Asunto(s)
Neoplasias Encefálicas , Glioblastoma , Animales , Astrocitos/patología , Encéfalo/patología , Neoplasias Encefálicas/patología , Glioblastoma/genética , Glioblastoma/patología , Humanos , Ratones , Invasividad Neoplásica , Neuronas/fisiología
2.
FASEB J ; 38(5): e23514, 2024 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-38466151

RESUMEN

In the past decade, there has been a steady rise in interest in studying novel cellular extensions and their potential roles in facilitating human diseases, including neurologic diseases, viral infectious diseases, cancer, and others. One of the exciting new aspects of this field is improved characterization and understanding of the functions and potential mechanisms of tunneling nanotubes (TNTs), which are actin-based filamentous protrusions that are structurally distinct from filopodia. TNTs form and connect cells at long distance and serve as direct conduits for intercellular communication in a wide range of cell types in vitro and in vivo. More researchers are entering this field and investigating the role of TNTs in mediating cancer cell invasion and drug resistance, cellular transfer of proteins, RNA or organelles, and intercellular spread of infectious agents, such as viruses, bacteria, and prions. Even further, the elucidation of highly functional membrane tubes called "tumor microtubes" (TMs) in incurable gliomas has further paved a new path for understanding how and why the tumor type is highly invasive at the cellular level and also resistant to standard therapies. Due to the wide-ranging and rapidly growing applicability of TNTs and TMs in pathophysiology across the spectrum of biology, it has become vital to bring researchers in the field together to discuss advances and the future of research in this important niche of protrusion biology.


Asunto(s)
Estructuras de la Membrana Celular , Glioma , Nanotubos , Humanos , Comunicación Celular , Citoesqueleto de Actina
3.
J Math Biol ; 88(1): 4, 2023 Nov 28.
Artículo en Inglés | MEDLINE | ID: mdl-38015257

RESUMEN

Malignant gliomas are notoriously invasive, a major impediment against their successful treatment. This invasive growth has motivated the use of predictive partial differential equation models, formulated at varying levels of detail, and including (i) "proliferation-infiltration" models, (ii) "go-or-grow" models, and (iii) anisotropic diffusion models. Often, these models use macroscopic observations of a diffuse tumour interface to motivate a phenomenological description of invasion, rather than performing a detailed and mechanistic modelling of glioma cell invasion processes. Here we close this gap. Based on experiments that support an important role played by long cellular protrusions, termed tumour microtubes, we formulate a new model for microtube-driven glioma invasion. In particular, we model a population of tumour cells that extend tissue-infiltrating microtubes. Mitosis leads to new nuclei that migrate along the microtubes and settle elsewhere. A combination of steady state analysis and numerical simulation is employed to show that the model can predict an expanding tumour, with travelling wave solutions led by microtube dynamics. A sequence of scaling arguments allows us reduce the detailed model into simpler formulations, including models falling into each of the general classes (i), (ii), and (iii) above. This analysis allows us to clearly identify the assumptions under which these various models can be a posteriori justified in the context of microtube-driven glioma invasion. Numerical simulations are used to compare the various model classes and we discuss their advantages and disadvantages.


Asunto(s)
Glioma , Humanos , Anisotropía , Simulación por Computador , Difusión , Viaje
4.
Biochem J ; 478(6): 1283-1286, 2021 03 26.
Artículo en Inglés | MEDLINE | ID: mdl-33755120

RESUMEN

Glioblastoma is a particularly challenging disease characterized by the connection of tumor cells to functional multicellular networks that effectively resist therapies. In this issue of Biochemical Journal, Pinto et al. report the discovery of two distinct classes of intercellular membrane tube connections, tunneling nanotubes and tumor microtubes, in the same state-of-the-art culture model of patient-derived glioblastoma material. These findings contribute to our understanding of the heterogeneity of intercellular membrane tubes in health and disease, and pave the way for future functional studies on their various roles for disease progression and tumor resistance.


Asunto(s)
Neoplasias Encefálicas , Glioblastoma , Nanotubos , Comunicación Celular , Comunicación , Humanos
5.
Int J Cancer ; 147(12): 3281-3291, 2020 12 15.
Artículo en Inglés | MEDLINE | ID: mdl-32510582

RESUMEN

Despite advances in the treatment of solid tumors, the prognosis of patients with many cancers remains poor, particularly of those with primary and metastatic brain tumors. In the last years, "Cancer Neuroscience" emerged as novel field of research at the crossroads of oncology and classical neuroscience. In primary brain tumors, including glioblastoma (GB), communicating networks that render tumor cells resistant against cytotoxic therapies were identified. To build these networks, GB cells extend neurite-like protrusions called tumor microtubes (TMs). Synapses on TMs allow tumor cells to retrieve neuronal input that fosters growth. Single cell sequencing further revealed that primary brain tumors recapitulate many steps of neurodevelopment. Interestingly, neuronal characteristics, including the ability to extend neurite-like protrusions, neuronal gene expression signatures and interactions with neurons, have now been found not only in brain and neuroendocrine tumors but also in some cancers of epithelial origin. In this review, we will provide an overview about neurite-like protrusions as well as neurodevelopmental origins, hierarchies and gene expression signatures in cancer. We will also discuss how "Cancer Neuroscience" might provide a framework for the development of novel therapies.


Asunto(s)
Neoplasias Encefálicas/patología , Redes Reguladoras de Genes , Glioblastoma/patología , Neuronas/química , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/secundario , Resistencia a Antineoplásicos , Glioblastoma/genética , Glioblastoma/secundario , Humanos , Pronóstico , Análisis de Secuencia de ADN , Análisis de la Célula Individual
6.
J Neurosci ; 37(29): 6837-6850, 2017 07 19.
Artículo en Inglés | MEDLINE | ID: mdl-28607172

RESUMEN

Early and progressive colonization of the healthy brain is one hallmark of diffuse gliomas, including glioblastomas. We recently discovered ultralong (>10 to hundreds of microns) membrane protrusions [tumor microtubes (TMs)] extended by glioma cells. TMs have been associated with the capacity of glioma cells to effectively invade the brain and proliferate. Moreover, TMs are also used by some tumor cells to interconnect to one large, resistant multicellular network. Here, we performed a correlative gene-expression microarray and in vivo imaging analysis, and identified novel molecular candidates for TM formation and function. Interestingly, these genes were previously linked to normal CNS development. One of the genes scoring highest in tests related to the outgrowth of TMs was tweety-homolog 1 (TTYH1), which was highly expressed in a fraction of TMs in mice and patients. Ttyh1 was confirmed to be a potent regulator of normal TM morphology and of TM-mediated tumor-cell invasion and proliferation. Glioma cells with one or two TMs were mainly responsible for effective brain colonization, and Ttyh1 downregulation particularly affected this cellular subtype, resulting in reduced tumor progression and prolonged survival of mice. The remaining Ttyh1-deficient tumor cells, however, had more interconnecting TMs, which were associated with increased radioresistance in those small tumors. These findings imply a cellular and molecular heterogeneity in gliomas regarding formation and function of distinct TM subtypes, with multiple parallels to neuronal development, and suggest that Ttyh1 might be a promising target to specifically reduce TM-associated brain colonization by glioma cells in patients.SIGNIFICANCE STATEMENT In this report, we identify tweety-homolog 1 (Ttyh1), a membrane protein linked to neuronal development, as a potent driver of tumor microtube (TM)-mediated brain colonization by glioma cells. Targeting of Ttyh1 effectively inhibited the formation of invasive TMs and glioma growth, but increased network formation by intercellular TMs, suggesting a functional and molecular heterogeneity of the recently discovered TMs with potential implications for future TM-targeting strategies.


Asunto(s)
Neoplasias Encefálicas/metabolismo , Neoplasias Encefálicas/patología , Glioblastoma/metabolismo , Glioblastoma/patología , Proteínas de la Membrana/metabolismo , Animales , Línea Celular Tumoral , Proliferación Celular , Humanos , Masculino , Ratones , Ratones Desnudos , Invasividad Neoplásica
7.
Int J Mol Sci ; 19(5)2018 04 24.
Artículo en Inglés | MEDLINE | ID: mdl-29695070

RESUMEN

Neoplastic growth and cellular differentiation are critical hallmarks of tumor development. It is well established that cell-to-cell communication between tumor cells and "normal" surrounding cells regulates tumor differentiation and proliferation, aggressiveness, and resistance to treatment. Nevertheless, the mechanisms that result in tumor growth and spread as well as the adaptation of healthy surrounding cells to the tumor environment are poorly understood. A major component of these communication systems is composed of connexin (Cx)-containing channels including gap junctions (GJs), tunneling nanotubes (TNTs), and hemichannels (HCs). There are hundreds of reports about the role of Cx-containing channels in the pathogenesis of cancer, and most of them demonstrate a downregulation of these proteins. Nonetheless, new data demonstrate that a localized communication via Cx-containing GJs, HCs, and TNTs plays a key role in tumor growth, differentiation, and resistance to therapies. Moreover, the type and downstream effects of signals communicated between the different populations of tumor cells are still unknown. However, new approaches such as artificial intelligence (AI) and machine learning (ML) could provide new insights into these signals communicated between connected cells. We propose that the identification and characterization of these new communication systems and their associated signaling could provide new targets to prevent or reduce the devastating consequences of cancer.


Asunto(s)
Transformación Celular Neoplásica/genética , Transformación Celular Neoplásica/metabolismo , Conexinas/genética , Conexinas/metabolismo , Microtúbulos/metabolismo , Neoplasias/genética , Neoplasias/metabolismo , Animales , Inteligencia Artificial , Comunicación Celular/efectos de los fármacos , Progresión de la Enfermedad , Susceptibilidad a Enfermedades , Descubrimiento de Drogas , Metabolismo Energético , Uniones Comunicantes/efectos de los fármacos , Uniones Comunicantes/metabolismo , Humanos , Aprendizaje Automático , Neoplasias/tratamiento farmacológico , Neoplasias/patología , Transducción de Señal/efectos de los fármacos
8.
Neuro Oncol ; 25(12): 2150-2162, 2023 12 08.
Artículo en Inglés | MEDLINE | ID: mdl-37335907

RESUMEN

BACKGROUND: Glioblastomas are characterized by aggressive and infiltrative growth, and by striking heterogeneity. The aim of this study was to investigate whether tumor cell proliferation and invasion are interrelated, or rather distinct features of different cell populations. METHODS: Tumor cell invasion and proliferation were longitudinally determined in real-time using 3D in vivo 2-photon laser scanning microscopy over weeks. Glioblastoma cells expressed fluorescent markers that permitted the identification of their mitotic history or their cycling versus non-cycling cell state. RESULTS: Live reporter systems were established that allowed us to dynamically determine the invasive behavior, and previous or actual proliferation of distinct glioblastoma cells, in different tumor regions and disease stages over time. Particularly invasive tumor cells that migrated far away from the main tumor mass, when followed over weeks, had a history of marked proliferation and maintained their proliferative capacity during brain colonization. Infiltrating cells showed fewer connections to the multicellular tumor cell network, a typical feature of gliomas. Once tumor cells colonized a new brain region, their phenotype progressively transitioned into tumor microtube-rich, interconnected, slower-cycling glioblastoma cells. Analysis of resected human glioblastomas confirmed a higher proliferative potential of tumor cells from the invasion zone. CONCLUSIONS: The detection of glioblastoma cells that harbor both particularly high proliferative and invasive capabilities during brain tumor progression provides valuable insights into the interrelatedness of proliferation and migration-2 central traits of malignancy in glioma. This contributes to our understanding of how the brain is efficiently colonized in this disease.


Asunto(s)
Neoplasias Encefálicas , Glioblastoma , Glioma , Humanos , Glioblastoma/patología , Invasividad Neoplásica/genética , Neoplasias Encefálicas/patología , Proliferación Celular , Movimiento Celular , Línea Celular Tumoral
9.
Pathol Oncol Res ; 28: 1610268, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35706996

RESUMEN

Purpose: The overall benefit of surgical treatments for patients with glioma is undisputed. We have shown preclinically that brain tumor cells form a network that is capable of detecting damage to the tumor, and repair itself. The aim of this study was to determine whether a similar mechanism might contribute to local recurrence in the clinical setting. Methods: We evaluated tumor progression patterns of 24 initially non-contrast-enhancing gliomas that were partially resected or biopsied. We measured the distance between the new contrast enhancement developing over time, and prior surgical lesioning, and evaluated tumor network changes in response to sequential resections by quantifying tumor cells and tumor networks with specific stainings against IDH1-R132H. Results: We found that new contrast enhancement appeared within the residual, non-enhancing tumor mass in 21/24 patients (87.5%). The location of new contrast enhancement within the residual tumor region was non-random; it occurred adjacent to the wall of the resection cavity in 12/21 patients (57.1%). Interestingly, the density of the glioma cell network increased in all patient tumors between initial resection or biopsy and recurrence. In line with the histological and radiological malignization, Ki67 expression increased from initial to final resections in 14/17 cases. Conclusion: The non-random distribution of glioma malignization in patients and unidirectional increase of anatomical tumor networks after surgical procedures provides evidence that surgical lesions, in the presence of residual tumor cells, can stimulate local tumor progression and tumor cell network formation. This argues for the development of intraoperative treatments increasing the benefits from surgical resection by specifically disrupting the mechanisms of local recurrence, particularly tumor cell network functionality.


Asunto(s)
Neoplasias Encefálicas , Glioma , Encéfalo/patología , Neoplasias Encefálicas/patología , Progresión de la Enfermedad , Glioma/metabolismo , Glioma/cirugía , Humanos , Imagen por Resonancia Magnética/métodos , Neoplasia Residual/patología
10.
Front Oncol ; 12: 921975, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35847909

RESUMEN

Gliomas are known as an incurable brain tumor for the poor prognosis and robust recurrence. In recent years, a cellular subpopulation with tumor microtubes (TMs) was identified in brain tumors, which may provide a new angle to explain the invasion, resistance, recurrence, and heterogeneity of gliomas. Recently, it was demonstrated that the cell subpopulation also expresses neural stem cell markers and shares a lot of features with both immature neurons and cancer stem cells and may be seen as an improperly reactivated neural cell network with a stemness feature at later time points of life. TMs may also provide a new angle to understand the resistance and recurrence mechanisms of glioma stem cells. In this review, we innovatively focus on the common features between TMs and sprouting axons in morphology, formation, and function. Additionally, we summarized the recent progress in the resistance and recurrence mechanisms of gliomas with TMs and explained the incurability and heterogeneity in gliomas with TMs. Moreover, we discussed the recently discovered overlap between cancer stem cells and TM-positive glioma cells, which may contribute to the understanding of resistant glioma cell subpopulation and the exploration of the new potential therapeutic target for gliomas.

11.
Neurooncol Adv ; 3(1): vdaa165, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33506204

RESUMEN

BACKGROUND: Glioma is sensitive to microtubule-targeting agents (MTAs), but most MTAs do not cross the blood brain barrier (BBB). To address this limitation, we developed the new chemical entity, ST-401, a brain-penetrant MTA. METHODS: Synthesis of ST-401. Measures of MT assembly and dynamics. Cell proliferation and viability of patient-derived (PD) glioma in culture. Measure of tumor microtube (TM) parameters using immunofluorescence analysis and machine learning-based workflow. Pharmacokinetics (PK) and experimental toxicity in mice. In vivo antitumor activity in the RCAS/tv-a PDGFB-driven glioma (PDGFB-glioma) mouse model. RESULTS: We discovered that ST-401 disrupts microtubule (MT) function through gentle and reverisible reduction in MT assembly that triggers mitotic delay and cell death in interphase. ST-401 inhibits the formation of TMs, MT-rich structures that connect glioma to a network that promotes resistance to DNA damage. PK analysis of ST-401 in mice shows brain penetration reaching antitumor concentrations, and in vivo testing of ST-401 in a xenograft flank tumor mouse model demonstrates significant antitumor activity and no over toxicity in mice. In the PDGFB-glioma mouse model, ST-401 enhances the therapeutic efficacies of temozolomide (TMZ) and radiation therapy (RT). CONCLUSION: Our study identifies hallmarks of glioma tumorigenesis that are sensitive to MTAs and reports ST-401 as a promising chemical scaffold to develop brain-penetrant MTAs.

12.
Neuro Oncol ; 23(5): 757-769, 2021 05 05.
Artículo en Inglés | MEDLINE | ID: mdl-33320195

RESUMEN

BACKGROUND: Malignant gliomas including glioblastomas are characterized by a striking cellular heterogeneity, which includes a subpopulation of glioma cells that becomes highly resistant by integration into tumor microtube (TM)-connected multicellular networks. METHODS: A novel functional approach to detect, isolate, and characterize glioma cell subpopulations with respect to in vivo network integration is established, combining a dye staining method with intravital two-photon microscopy, Fluorescence-Activated Cell Sorting (FACS), molecular profiling, and gene reporter studies. RESULTS: Glioblastoma cells that are part of the TM-connected tumor network show activated neurodevelopmental and glioma progression gene expression pathways. Importantly, many of them revealed profiles indicative of increased cellular stemness, including high expression of nestin. TM-connected glioblastoma cells also had a higher potential for reinitiation of brain tumor growth. Long-term tracking of tumor cell nestin expression in vivo revealed a stronger TM network integration and higher radioresistance of the nestin-high subpopulation. Glioblastoma cells that were both nestin-high and network-integrated were particularly able to adapt to radiotherapy with increased TM formation. CONCLUSION: Multiple stem-like features are strongly enriched in a fraction of network-integrated glioma cells, explaining their particular resilience.


Asunto(s)
Neoplasias Encefálicas , Glioblastoma , Glioma , Encéfalo , Neoplasias Encefálicas/genética , Línea Celular Tumoral , Glioblastoma/genética , Glioma/genética , Humanos , Células Madre Neoplásicas , Nestina/genética
13.
Neuro Oncol ; 23(11): 1885-1897, 2021 11 02.
Artículo en Inglés | MEDLINE | ID: mdl-33864086

RESUMEN

BACKGROUND: Glioblastoma cells assemble to a syncytial communicating network based on tumor microtubes (TMs) as ultra-long membrane protrusions. The relationship between network architecture and transcriptional profile remains poorly investigated. Drugs that interfere with this syncytial connectivity such as meclofenamate (MFA) may be highly attractive for glioblastoma therapy. METHODS: In a human neocortical slice model using glioblastoma cell populations of different transcriptional signatures, three-dimensional tumor networks were reconstructed, and TM-based intercellular connectivity was mapped on the basis of two-photon imaging data. MFA was used to modulate morphological and functional connectivity; downstream effects of MFA treatment were investigated by RNA sequencing and fluorescence-activated cell sorting (FACS) analysis. RESULTS: TM-based network morphology strongly differed between the transcriptional cellular subtypes of glioblastoma and was dependent on axon guidance molecule expression. MFA revealed both a functional and morphological demolishment of glioblastoma network architectures which was reflected by a reduction of TM-mediated intercellular cytosolic traffic as well as a breakdown of TM length. RNA sequencing confirmed a downregulation of NCAM and axon guidance molecule signaling upon MFA treatment. Loss of glioblastoma communicating networks was accompanied by a failure in the upregulation of genes that are required for DNA repair in response to temozolomide (TMZ) treatment and culminated in profound treatment response to TMZ-mediated toxicity. CONCLUSION: The capacity of TM formation reflects transcriptional cellular heterogeneity. MFA effectively demolishes functional and morphological TM-based syncytial network architectures. These findings might pave the way to a clinical implementation of MFA as a TM-targeted therapeutic approach.


Asunto(s)
Neoplasias Encefálicas , Glioblastoma , Ácido Meclofenámico/farmacología , Neoplasias Encefálicas/tratamiento farmacológico , Línea Celular Tumoral , Proliferación Celular , Glioblastoma/tratamiento farmacológico , Humanos , Técnicas In Vitro
14.
Int Rev Cell Mol Biol ; 360: 33-64, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33962750

RESUMEN

Malignant gliomas including Glioblastoma (GBM) are characterized by extensive diffuse tumor cell infiltration throughout the brain, which represents a major challenge in clinical disease management. While surgical resection is beneficial for patient outcome, it is well recognized that tumor cells at the invasive front or beyond stay behind and constitute a major source of tumor recurrence. Invasive glioma cells also represent a difficult therapeutic target since they are localized within normal functional brain areas with an intact blood brain barrier (BBB), thereby excluding most systemic drug treatments. Cell movement is mediated via the actin cytoskeleton where corresponding membrane protrusions play essential roles. This review provides an overview of the various paths of glioma cell invasion and underlines the specific aspects of the brain microenvironment. We highlight recent insight into tumor microtubes, neuro-glioma synapses and tumor metabolism which can regulate collective invasion processes. We also focus on the deregulation of actin cytoskeleton-related components in the context of glioma invasion, a deregulation that may be controlled by genomic alterations in tumor cells as well as by various external factors, including extracellular matrix (ECM) components and non-malignant stromal cells. Finally we critically assess the challenges and opportunities for therapeutically targeting glioma cell invasion.


Asunto(s)
Glioma/patología , Citoesqueleto de Actina/metabolismo , Animales , Extensiones de la Superficie Celular/metabolismo , Matriz Extracelular/metabolismo , Glioma/metabolismo , Humanos , Invasividad Neoplásica , Microambiente Tumoral
15.
Neurosci Insights ; 15: 2633105520923076, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32548582

RESUMEN

Gliomas are brain tumors originated from glial cells. The most frequent form of glioma is the glioblastoma (GB). This lethal tumor is frequently originated from genetic alterations in epidermal growth factor receptor (EGFR) and PI3K pathways. Recent results suggest that signaling pathways, other than primary founder mutations, play a central role in GB progression. Some of these signals are depleted by GB cells from healthy neurons via specialized filopodia known as tumor microtubes (TMs). Here, we discuss the contribution of TMs to vampirize wingless/WNT ligand from neurons. In consequence, wingless/WNT pathway is upregulated in GB to promote tumor progression, and the reduction of these signals in neurons causes the reduction of synapse number and neurodegeneration. These processes contribute to neurological defects and premature death.

16.
Cancers (Basel) ; 12(10)2020 Sep 29.
Artículo en Inglés | MEDLINE | ID: mdl-33003486

RESUMEN

Connexin 43 (Cx43) forms gap junctions that mediate the direct intercellular diffusion of ions and small molecules between adjacent cells. Cx43 displays both pro- and anti-tumorigenic properties, but the mechanisms underlying these characteristics are not fully understood. Tunneling nanotubes (TNTs) are long and thin membrane projections that connect cells, facilitating the exchange of not only small molecules, but also larger proteins, organelles, bacteria, and viruses. Typically, TNTs exhibit increased formation under conditions of cellular stress and are more prominent in cancer cells, where they are generally thought to be pro-metastatic and to provide growth and survival advantages. Cx43 has been described in TNTs, where it is thought to regulate small molecule diffusion through gap junctions. Here, we developed a high-fidelity CRISPR/Cas9 system to knockout (KO) Cx43. We found that the loss of Cx43 expression was associated with significantly reduced TNT length and number in breast cancer cell lines. Notably, secreted factors present in conditioned medium stimulated TNTs more potently when derived from Cx43-expressing cells than from KO cells. Moreover, TNT formation was significantly induced by the inhibition of several key cancer signaling pathways that both regulate Cx43 and are regulated by Cx43, including RhoA kinase (ROCK), protein kinase A (PKA), focal adhesion kinase (FAK), and p38. Intriguingly, the drug-induced stimulation of TNTs was more potent in Cx43 KO cells than in wild-type (WT) cells. In conclusion, this work describes a novel non-canonical role for Cx43 in regulating TNTs, identifies key cancer signaling pathways that regulate TNTs in this setting, and provides mechanistic insight into a pro-tumorigenic role of Cx43 in cancer.

17.
Front Oncol ; 10: 559548, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33324545

RESUMEN

It is well established that the role of the tumor microenvironment (TME) in cancer progression and therapeutic resistance is crucial, but many of the underlying mechanisms are still being elucidated. Even with better understanding of molecular oncology and identification of genomic drivers of these processes, there has been a relative lag in identifying and appreciating the cellular drivers of both invasion and resistance. Intercellular communication is a vital process that unifies and synchronizes the diverse components of the tumoral infrastructure. Elucidation of the role of extracellular vesicles (EVs) over the past decade has cast a brighter light on this field. And yet even with this advance, in addition to diffusible soluble factor-mediated paracrine and endocrine cell communication as well as EVs, additional niches of intratumoral communication are filled by other modes of intercellular transfer. Tunneling nanotubes (TNTs), tumor microtubes (TMs), and other similar intercellular channels are long filamentous actin-based cellular conduits (in most epithelial cancer cell types, ~15-500 µm in length; 50-1000+ nm in width). They extend and form direct connections between distant cells, serving as conduits for direct intercellular transfer of cell cargo, such as mitochondria, exosomes, and microRNAs; however, many of their functional roles in mediating tumor growth remain unknown. These conduits literally create a physical bridge to create a syncytial network of dispersed cells amidst the intercellular stroma-rich matrix. Emerging evidence suggests that they provide a cellular mechanism for induction and emergence of drug resistance and contribute to increased invasive and metastatic potential. They have been imaged in vitro and also in vivo and ex vivo in tumors from human patients as well as animal models, thus not only proving their existence in the TME, but opening further speculation about their exact role in the dynamic niche of tumor ecosystems. TNT cellular networks are upregulated between cancer and stromal cells under hypoxic and other conditions of physiologic and metabolic stress. Furthermore, they can connect malignant cells to benign cells, including vascular endothelial cells. The field of investigation of TNT-mediated tumor-stromal, and tumor-tumor, cell-cell communication is gaining momentum. The mixture of conditions in the microenvironment exemplified by hypoxia-induced ovarian cancer TNTs playing a crucial role in tumor growth, as just one example, is a potential avenue of investigation that will uncover their role in relation to other known factors, including EVs. If the role of cancer heterocellular signaling via TNTs in the TME is proven to be crucial, then disrupting formation and maintenance of TNTs represents a novel therapeutic approach for ovarian and other similarly invasive peritoneal cancers.

18.
Cancers (Basel) ; 12(4)2020 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-32244839

RESUMEN

Intercellular communication among cancer cells and their microenvironment is crucial to disease progression. The mechanisms by which communication occurs between distant cells in a tumor matrix remain poorly understood. In the last two decades, experimental evidence from different groups proved the existence of thin membranous tubes that interconnect cells, named tunneling nanotubes, tumor microtubes, cytonemes or membrane bridges. These highly dynamic membrane protrusions are conduits for direct cell-to-cell communication, particularly for intercellular signaling and transport of cellular cargo over long distances. Tunneling nanotubes and tumor microtubes may play an important role in the pathogenesis of cancer. They may contribute to the resistance of tumor cells against treatments such as surgery, radio- and chemotherapy. In this review, we present the current knowledge about the structure and function of tunneling nanotubes and tumor microtubes in cancer and discuss the therapeutic potential of membrane tubes in cancer treatment.

19.
Cancers (Basel) ; 11(3)2019 Mar 20.
Artículo en Inglés | MEDLINE | ID: mdl-30897774

RESUMEN

High-grade glioma (HGG, WHO Grade III⁻IV) accounts for the majority of adult primary malignant brain tumors. Failure of current therapies to target invasive glioma cells partly explains the minimal survival advantages: invasive tumors lack easily-defined surgical margins, and are inherently more chemo- and radioresistant. Much work centers upon Rho GTPase-mediated glioma invasion, yet downstream Rho effector roles are poorly understood and represent potential therapeutic targets. The roles for the mammalian Diaphanous (mDia)-related formin family of Rho effectors have emerged in invasive/metastatic disease. mDias assemble linear F-actin to promote protrusive cytoskeletal structures underlying tumor cell invasion. Small molecule mDia intramimic (IMM) agonists induced mDia functional activities including F-actin polymerization. mDia agonism inhibited polarized migration in Glioblastoma (WHO Grade IV) cells in three-dimensional (3D) in vitro and rat brain slice models. Here, we evaluate whether clinically-relevant high-grade glioma patient-derived neuro-sphere invasion is sensitive to formin agonism. Surgical HGG samples were dissociated, briefly grown as monolayers, and spontaneously formed non-adherent neuro-spheres. IMM treatment dramatically inhibited HGG patient neuro-sphere invasion, both at neuro-sphere embedding and mid-invasion assay, inducing an amoeboid morphology in neuro-sphere edge cells, while inhibiting actin- and tubulin-enriched tumor microtube formation. Thus, mDia agonism effectively disrupts multiple aspects of patient-derived HGG neuro-sphere invasion.

20.
Cell Rep ; 26(12): 3203-3211.e5, 2019 03 19.
Artículo en Inglés | MEDLINE | ID: mdl-30893594

RESUMEN

The prognosis of patients with glioblastoma (GBM) remains dismal, with a median survival of approximately 15 months. Current preclinical GBM models are limited by the lack of a "normal" human microenvironment and the inability of many tumor cell lines to accurately reproduce GBM biology. To address these limitations, we have established a model system whereby we can retro-engineer patient-specific GBMs using patient-derived glioma stem cells (GSCs) and human embryonic stem cell (hESC)-derived cerebral organoids. Our cerebral organoid glioma (GLICO) model shows that GSCs home toward the human cerebral organoid and deeply invade and proliferate within the host tissue, forming tumors that closely phenocopy patient GBMs. Furthermore, cerebral organoid tumors form rapidly and are supported by an interconnected network of tumor microtubes that aids in the invasion of normal host tissue. Our GLICO model provides a system for modeling primary human GBM ex vivo and for high-throughput drug screening.


Asunto(s)
Neoplasias Encefálicas/metabolismo , Glioblastoma/metabolismo , Modelos Biológicos , Células Madre Neoplásicas/metabolismo , Organoides/metabolismo , Neoplasias Encefálicas/patología , Glioblastoma/patología , Humanos , Invasividad Neoplásica , Células Madre Neoplásicas/patología , Organoides/patología
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda