Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 20 de 25
Filtrar
1.
Small ; 20(28): e2309476, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38348999

RESUMEN

Complex wound repair due to tumor recurrence and infection following tumor resection presents significant clinical challenges. In this study, a bifunctional nanocomposite immune hydrogel dressing, SerMA-LJC, is developed to address the issues associated with repairing infected damaged tissues and preventing tumor recurrence. Specifically, the immune dressing is composed of methacrylic anhydride-modified sericin (SerMA) and self-assembled nanoparticles (LJC) containing lonidamine (Lon), JQ1, and chlorine e6 (Ce6). In vitro and in vivo experiments demonstrate that the nanocomposite hydrogel dressing can trigger immunogenic cell death (ICD) and has a potent anti-tumor effect. Moreover, this dressing can mitigate the acidic microenvironment of tumor cells and suppress the overexpression of PD-L1 on the tumor cell surface, thereby altering the immunosuppressive tumor microenvironment and augmenting the anti-tumor immune response. Further, the RNA sequencing analysis revealed that the hydrogel dressing significantly impacts pathways associated with positive regulation of immune response, apoptotic process, and other relevant pathways, thus triggering a potent anti-tumor immune response. More importantly, the dressing generates a substantial amount of reactive oxygen species (ROS), which can effectively kill Staphylococcus aureus and promote infectious wound healing. In conclusion, this dual-function nanocomposite immune hydrogel dressing exhibits promise in preventing tumor recurrence and promoting infectious wound healing.


Asunto(s)
Nanocompuestos , Nanocompuestos/química , Animales , Recurrencia Local de Neoplasia/prevención & control , Ratones , Hidrogeles/química , Vendajes , Melanoma/patología , Línea Celular Tumoral , Staphylococcus aureus/efectos de los fármacos , Humanos , Inyecciones , Microambiente Tumoral/efectos de los fármacos , Especies Reactivas de Oxígeno/metabolismo
2.
Small ; 19(11): e2204238, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36494177

RESUMEN

Over half of cancer patients are subjected to radiotherapy, but owing to the deficient amount of reactive oxygen radicals (ROS) and DNA double-strand breaks (DSBs), a fair number of them suffer from radiotherapy resistance and the subsequent short-term survival opportunity. To overcome it, many successes have been achieved in radiosensitizer discovery using physical strategy and/or biological strategy, but significant challenges remain regarding developing clinically translational radiosensitizers. Herein, a peptide-Au(I) infinite coordination supermolecule termed PAICS is developed that combined both physical and biological radiosensitization and possessed pharmaceutical characteristics including adequate circulatory stability, controllable drug release, tumor-prioritized accumulation, and the favorable body eliminability. As expected, monovalent gold ion endowed this supermolecule with high X-ray absorption and the subsequent radiosensitization. Furthermore, a peptide targeting CRM1, is assembled into the supermolecule, which successfully activates p53 and apoptosis pathway, thereby further sensitizing radiotherapy. As a result, PAICS showed superior ability for radiotherapy sensitization in vivo and maintained a favorable safety profile. Thus, the PAICS reported here will offer a feasible solution to simultaneously overcome both the pharmaceutical obstacles of physical and biological radiosensitizers and will enable the development of a class of nanomedicines for tumor radiotherapy sensitization.


Asunto(s)
Nanopartículas del Metal , Neoplasias , Fármacos Sensibilizantes a Radiaciones , Humanos , Fármacos Sensibilizantes a Radiaciones/farmacología , Fármacos Sensibilizantes a Radiaciones/uso terapéutico , Fármacos Sensibilizantes a Radiaciones/química , Neoplasias/radioterapia , Neoplasias/tratamiento farmacológico , Péptidos , Preparaciones Farmacéuticas , Oro/química , Nanopartículas del Metal/uso terapéutico
3.
Small ; 19(35): e2301670, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37098629

RESUMEN

As an alternative to traditional oral and intravenous injections with limited efficacy, transdermal drug delivery (TDD) has shown great promise in tumor treatment. Over the past decade, natural polymers have been designed into various nanocarriers due to their excellent biocompatibility, biodegradability, and easy availability, providing more options for TDD. In addition, surface functionalization modification of the rich functional groups of natural polymers, which in turn are developed into targeted and stimulus-responsive functional materials, allows precise delivery of drugs to tumor sites and release of drugs in response to specific stimuli. It not only improves the treatment efficiency of tumor but also reduces the toxic and side effects to normal tissues. Therefore, the development of natural polymer-based TDD (NPTDD) systems has great potential in tumor therapy. In this review, the mechanism of NPTDD systems such as penetration enhancers, nanoparticles, microneedles, hydrogels and nanofibers prepared from hyaluronic acid, chitosan, sodium alginate, cellulose, heparin and protein, and their applications in tumor therapy are overviewed. This review also outlines the future prospects and current challenges of NPTDD systems for local treatment tumors.


Asunto(s)
Sistemas de Liberación de Medicamentos , Polímeros , Administración Cutánea , Portadores de Fármacos , Alginatos
4.
Small ; 18(15): e2200116, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-35212462

RESUMEN

Hypoxia is a hallmark of the tumor microenvironment (TME) that promotes tumor development and metastasis. Photodynamic therapy (PDT) is a promising strategy in the treatment of tumors, but it is limited by the lack of oxygen in TME. In this work, an O2 self-supply PDT system is constructed by co-encapsulation of chlorin e6 (Ce6) and a MnO2 core in an engineered ferritin (Ftn), generating a nanozyme promoted PDT nanoformula (Ce6/Ftn@MnO2 ) for tumor therapy. Ce6/Ftn@MnO2 exhibits a uniform small size (15.5 nm) and high stability due to the inherent structure of Ftn. The fluorescence imaging and immunofluorescence analysis demonstrate the pronounced accumulation of Ce6/Ftn@MnO2 in the tumors of mice, and the treatment significantly decreases the expression of hypoxia-inducible factor (HIF)-1α. The Ce6/Ftn@MnO2 nanoplatform exerts a more potent anti-tumor efficacy with negligible damage to normal tissues compared to the treatment with free Ce6. Moreover, the weak acidity and the presence of H2 O2 in TME significantly enhances the r1 relativity of Ce6/Ftn@MnO2 , resulting in a prominent enhancement of MRI imaging in the tumor. This bio-mimic Ftn strategy not only improves the in vivo distribution and retention of Ce6, but also enhances the effectiveness and precision of PDT by TME modulation.


Asunto(s)
Neoplasias , Fotoquimioterapia , Porfirinas , Animales , Línea Celular Tumoral , Ferritinas , Peróxido de Hidrógeno/química , Hipoxia/tratamiento farmacológico , Compuestos de Manganeso/química , Ratones , Neoplasias/tratamiento farmacológico , Óxidos/química , Oxígeno/química , Fotoquimioterapia/métodos , Fármacos Fotosensibilizantes/química , Porfirinas/química , Porfirinas/uso terapéutico , Microambiente Tumoral
5.
Small ; 16(11): e1904960, 2020 03.
Artículo en Inglés | MEDLINE | ID: mdl-32077633

RESUMEN

Progress of thermal tumor therapies and their translation into clinical practice are limited by insufficient nanoparticle concentration to release therapeutic heating at the tumor site after systemic administration. Herein, the use of Janus magneto-plasmonic nanoparticles, made of gold nanostars and iron oxide nanospheres, as efficient therapeutic nanoheaters whose on-site delivery can be improved by magnetic targeting, is proposed. Single and combined magneto- and photo-thermal heating properties of Janus nanoparticles render them as compelling heating elements, depending on the nanoparticle dose, magnetic lobe size, and milieu conditions. In cancer cells, a much more effective effect is observed for photothermia compared to magnetic hyperthermia, while combination of the two modalities into a magneto-photothermal treatment results in a synergistic cytotoxic effect in vitro. The high potential of the Janus nanoparticles for magnetic guiding confirms them to be excellent nanostructures for in vivo magnetically enhanced photothermal therapy, leading to efficient tumor growth inhibition.


Asunto(s)
Hipertermia Inducida , Nanopartículas Multifuncionales , Nanopartículas , Neoplasias , Línea Celular Tumoral , Oro , Campos Magnéticos , Magnetismo , Neoplasias/terapia , Fototerapia
6.
AAPS PharmSciTech ; 21(7): 259, 2020 Sep 10.
Artículo en Inglés | MEDLINE | ID: mdl-32914285

RESUMEN

Nanomedicines such as liposomes have been widely exploited in the treatment of tumors, and are also involved in combination therapies to enhance anti-tumor efficacy and reduce side effects. However, few studies have systematically discussed the significance and optimized regimens for nanomedicine-based combination therapy. In this study, we used anti-inflammatory and anti-tumor liposomes for co-administration, and compared three regimens: intermittent, metronomic, or sequential administration (IA, MA, and SA). The anti-inflammatory liposome HA/TN-CCLP was constructed in our previous research, which co-loaded curcumin (CUR) and celecoxib (CXB), modified with TAT-NBD peptide (TN) and finally coated with hyaluronic acid (HA), thereby inhibiting NF-κB and STAT3 pathways in the treatment of metastatic breast cancer. Furthermore, doxorubicin liposomes with and without TN modification (namely TN-DOXLP and DOXLP) were constructed and administrated with HA/TN-CCLP. The anti-tumor and anti-metastasis efficacy of different regimens was investigated. Results showed that in vitro cytotoxicity of DOXLP and TN-DOXLP was significantly enhanced when combined with HA/TN-CCLP. In vivo experiments also revealed the superiority of three combination therapies in inhibiting tumor growth, prolonging the survival of tumor-bearing mice, inducing apoptosis, and reducing lung metastases. In particular, the combination therapy could reduce MDSCs (Gr-1+/CD11b+) and CSCs (CD44+/CD24+) infiltration, which are two important factors in tumor metastasis and recurrence. Among three regimens, sequential administration (SA) showed the best therapeutic outcome and was especially effective for the inhibition of CSCs. In general, the results demonstrated that combination therapy, particularly the sequential administration of anti-inflammatory and anti-tumor liposome, was superior to monotherapy in inhibiting the development and metastasis of inflammation-related tumors.


Asunto(s)
Antiinflamatorios/uso terapéutico , Antineoplásicos/uso terapéutico , Neoplasias de la Mama/tratamiento farmacológico , Liposomas/uso terapéutico , Animales , Apoptosis/efectos de los fármacos , Neoplasias de la Mama/patología , Celecoxib/farmacología , Curcumina/farmacología , Doxorrubicina/análogos & derivados , Femenino , Humanos , Receptores de Hialuranos , Ácido Hialurónico/farmacología , Ratones , Nanomedicina , Metástasis de la Neoplasia , Polietilenglicoles
7.
Small ; 14(13): e1703711, 2018 03.
Artículo en Inglés | MEDLINE | ID: mdl-29457340

RESUMEN

Transcription factor EB (TFEB) is a master regulator of autophagy and lysosomal biogenesis. Here, silver nanoparticles (Ag NPs)-induced cytoprotective autophagy required TFEB is shown. Ag NPs-induced nucleus translocation of TFEB through a well-established mechanism involving dephosphorylation of TFEB at serine-142 and serine-211 but independent of both the mTORC1 and ERK1/2 pathways. TFEB nucleus translocation precedes autophagy induced by Ag NPs and leads to enhanced expression of autophagy-essential genes. Knocking down the expression of TFEB attenuates the autophagy induction is demonstrated, and in the meantime, enhanced cell killing in HeLa cells treats with Ag NPs, indicating that TFEB is the key mediator for Ag NPs-induced cytoprotective autophagy. The results pinpoint TFEB as a potential target for developing more effective Ag NPs-based cancer therapeutics.


Asunto(s)
Autofagia/efectos de los fármacos , Factores de Transcripción Básicos con Cremalleras de Leucinas y Motivos Hélice-Asa-Hélice/metabolismo , Núcleo Celular/metabolismo , Nanopartículas del Metal/química , Plata/química , Plata/farmacología , Células HeLa , Humanos , Transporte de Proteínas/efectos de los fármacos , Reacción en Cadena en Tiempo Real de la Polimerasa
8.
Cell Mol Life Sci ; 73(13): 2411-24, 2016 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-26956893

RESUMEN

Myeloid cells infiltrating the tumor microenvironment, especially tumor-associated macrophages (TAMs), are essential providers of cancer-related inflammation, a condition known to accelerate tumor progression and limit the response to anti-tumor therapies. As a matter of fact, TAMs may have a dual role while interfering with cancer treatments, as they can either promote or impair their functionality. Here we review the connection between macrophages and anticancer therapies; moreover, we provide an overview of the different strategies to target or re-program TAMs for therapeutic purposes.


Asunto(s)
Inflamación/complicaciones , Macrófagos/patología , Neoplasias/complicaciones , Neoplasias/terapia , Animales , Técnicas de Reprogramación Celular/métodos , Humanos , Inmunoterapia/métodos , Inflamación/inmunología , Inflamación/patología , Inflamación/terapia , Macrófagos/inmunología , Neoplasias/inmunología , Neoplasias/patología , Neovascularización Patológica/complicaciones , Neovascularización Patológica/inmunología , Neovascularización Patológica/patología , Neovascularización Patológica/terapia , Microambiente Tumoral
9.
Biomark Res ; 12(1): 41, 2024 Apr 22.
Artículo en Inglés | MEDLINE | ID: mdl-38644503

RESUMEN

Regulatory T cells (Tregs) are essential to the negative regulation of the immune system, as they avoid excessive inflammation and mediate tumor development. The abundance of Tregs in tumor tissues suggests that Tregs may be eliminated or functionally inhibited to stimulate antitumor immunity. However, immunotherapy targeting Tregs has been severely hampered by autoimmune diseases due to the systemic elimination of Tregs. Recently, emerging studies have shown that metabolic regulation can specifically target tumor-infiltrating immune cells, and lipid accumulation in TME is associated with immunosuppression. Nevertheless, how Tregs actively regulate metabolic reprogramming to outcompete effector T cells (Teffs), and how lipid metabolic reprogramming contributes to the immunomodulatory capacity of Tregs have not been fully discussed. This review will discuss the physiological processes by which lipid accumulation confers a metabolic advantage to tumor-infiltrating Tregs (TI-Tregs) and amplifies their immunosuppressive functions. Furthermore, we will provide a summary of the driving effects of various metabolic regulators on the metabolic reprogramming of Tregs. Finally, we propose that targeting the lipid metabolism of TI-Tregs could be efficacious either alone or in conjunction with immune checkpoint therapy.

10.
Front Oncol ; 13: 1287808, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38213838

RESUMEN

Disulfidptosis is a novel mechanism underlying actin-cytoskeleton-associated cell death, but its function in colorectal cancer (CRC) is still elusive. In this study, we investigated the potential role of Disulfidptosis-Related Long Non-Coding RNAs (DRLs) as prognostic indicators in CRC. Through transcriptome data from TCGA CRC cases, we identified 44 prognosis-correlated DRLs by Univariate Cox Regression Analysis and observed a differential expression pattern of these DRLs between CRC and normal tissues. Consensus clustering analysis based on DRL expression led to subgroup classification of CRC patients with distinct molecular fingerprints, accompanied by a superior survival outcome in cluster 2. We are encouraged to develop a score model incorporating 12 key DRLs to predict patient outcomes. Notably, this model displayed more reliable accuracy than other predictive indicators since DRLs are intimately related to tumor immune cell infiltration, suggesting a considerable potential of our DRL-score model for tumor therapy. Our data offered a valuable insight into the prognostic significance of DRLs in CRC and broke a new avenue for tumor prognosis prediction.

11.
Carbohydr Polym ; 295: 119878, 2022 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-35989018

RESUMEN

At present, the tumor's poor oxygen perfusion and limited tumor drug permeation are the major bottlenecks that limit the therapeutic effectiveness of the oxygen-sensitive antitumor therapies, like doxorubicin (Dox)-mediated chemotherapy and photodynamic therapy (PDT). To our best knowledge, the abnormal tumor mitochondria oxidative phosphorylation (OXPHOS) was the vital cause of such phenomenon, which induced the hypoxia tumor microenvironment and enhanced drug efflux from tumor cells via enhanced multidrug resistance protein 1 (MDR-1) expression. In this study, it was newly revealed that biguanide-modified chitosan (Bi-Ch) possessed ideal mitochondria depression capacity, leading to the following decreased dosage needed to disrupt mitochondrial function to reverse tumor hypoxia and depress MDR-1 expression. By doing this, Bi-Ch effectively enhanced Dox accumulation in tumor cells and amplified its cytotoxicity owing to the amplified ROS generation by Dox. Therefore, Bi-Ch could be used to improve the efficacy of oxygen-sensitive tumor therapies in vitro.


Asunto(s)
Quitosano , Miembro 1 de la Subfamilia B de Casetes de Unión a ATP/metabolismo , Biguanidas/farmacología , Biguanidas/uso terapéutico , Línea Celular Tumoral , Quitosano/metabolismo , Quitosano/farmacología , Doxorrubicina/farmacología , Doxorrubicina/uso terapéutico , Resistencia a Antineoplásicos , Mitocondrias/metabolismo , Oxígeno
12.
Eur J Med Chem ; 226: 113816, 2021 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-34520956

RESUMEN

Kirsten rat sarcoma virus oncogene (KRAS) mutation accounts for approximately 85% of RAS-driven cancers, and participates in multiple signaling pathways and mediates cell proliferation, differentiation and metabolism. KRAS has been considered as an "undruggable" target due to the lack of effective direct inhibitors, although high frequency of KRAS mutations have been identified in multiple carcinomas in the past decades. Encouragingly, the KRASG12C inhibitor AMG510 (sotorasib), which has been approved for treating NSCLC and CRC recently, makes directly targeting KRAS the most promising strategy for cancer therapy. To better understand the current state of KRAS inhibitors, this review summarizes the biological functions of KRAS, the structure-activity relationship studies of the small-molecule inhibitors that directly target KRAS, and highlights the therapeutic agents with improved selectivity, bioavailability and physicochemical properties. Furthermore, the combined medication that can enhance efficacy and overcome drug resistance of KRAS covalent inhibitors is also reviewed.


Asunto(s)
Antineoplásicos/farmacología , Inhibidores Enzimáticos/farmacología , Neoplasias/tratamiento farmacológico , Proteínas Proto-Oncogénicas p21(ras)/antagonistas & inhibidores , Bibliotecas de Moléculas Pequeñas/farmacología , Antineoplásicos/química , Inhibidores Enzimáticos/química , Humanos , Estructura Molecular , Neoplasias/metabolismo , Proteínas Proto-Oncogénicas p21(ras)/metabolismo , Bibliotecas de Moléculas Pequeñas/química
13.
Adv Healthc Mater ; 10(21): e2101190, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34382378

RESUMEN

Brachytherapy, as an effective setting for precise cancer therapy in clinic, can lead to serious DNA damage. However, its therapeutic efficacy is always limited by the DNA self-repair property, tumor hypoxia-associated radiation resistance as well as inhomogeneous distribution of the radioactive material. Herein, a multifunctional hybrid hydrogel (131 I-hydrogel/DOX/GNPs aggregates) is developed by loading gold nanoparticle aggregates (GNPs aggregates) and DOX into a radionuclide iodine-131 (131 I) labelled polymeric hydrogels (131 I-PEG-P(Tyr)8 ) for tumor destruction by completely damaging DNA self-repair functions. This hybrid hydrogel exhibits excellent photothermal/radiolabel stability, biocompatibility, and fluorescence/photothermal /SPECT imaging properties. After local injection, the sustained releasing DOX within tumor greatly inhibits the DNA replication. Meanwhile, GNPs aggregates as a radiosensitizer and photosensitizer show a significant improvement of brachytherapeutic efficacy and cause serious DNA damage. Simultaneously, GNPs aggregates induce mild photothermal therapy under 808 nm laser irradiation, which not only inhibits self-repair of the damaged DNA but also effectively relieves tumor hypoxic condition to enhance the therapeutic effects of brachytherapy, leading to a triple-synergistic destruction of DNA functions. Therefore, this study provides a highly efficient tumor synergistic therapy platform and insight into the synergistic antitumor mechanism in DNA level.


Asunto(s)
Hidrogeles , Nanopartículas del Metal , Línea Celular Tumoral , ADN , Doxorrubicina/farmacología , Oro , Fototerapia
14.
Adv Healthc Mater ; 10(24): e2101036, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34414687

RESUMEN

In the field of tumor imaging and therapy, the aggregation-caused quenching (ACQ) effect of fluorescent dyes at high concentration is a great challenge. In this regard, the aggregation-induced emission luminogens (AIEgens) show great potential, since AIEgens effectively overcome the ACQ effect and have better fluorescence quantum yield, photobleaching resistance, and photosensitivity. Polyethylene glycol (PEG)-polymer is the most commonly used carrier to prepare nanoparticles (NPs). The advantage of PEGylation is that it can greatly prolong the metabolic half-life and reduce immunogenicity and toxicity. Considering that the hydrophobicity of most AIEgens hinders their application in organisms, the use of PEG-polymer encapsulation is an effective strategy to overcome this obstacle. Importantly, bioactive functional groups can be modified on PEG-polymers to enhance the biological effect of NPs. The combination of powerful AIEgens and PEG-polymers provides a new strategy for tumor imaging and therapy, which is promising for clinical application.


Asunto(s)
Nanopartículas , Neoplasias , Colorantes Fluorescentes , Humanos , Neoplasias/diagnóstico por imagen , Neoplasias/tratamiento farmacológico , Polietilenglicoles , Polímeros , Medicina de Precisión
15.
ACS Appl Mater Interfaces ; 13(35): 41485-41497, 2021 Sep 08.
Artículo en Inglés | MEDLINE | ID: mdl-34455796

RESUMEN

Porphyrin-based nanozymes (Porzymes) have shown promising application potential to fight against tumors using catalytically generated reactive oxygen species from the excessively produced H2O2 in the tumor microenvironment. However, the low coordination porphyrin (CP) loading ratio, difficult controllable nanostructure, low bioavailability, and low biocatalytic activities of current established Porzymes have severely limited their antitumor applications. Here, a novel malignant melanoma cell membrane-coated Pd-based CP nanoplatform (Trojan Porzymes) has been synthesized for biocatalytic and homologous tumor therapies. The Trojan Porzymes exhibit a high CP loading ratio, uniform nanoscale size, single-atom nanostructure, homologous targeted ability, and high-efficiency photo/sono-augmented biocatalytic activities. The enzyme-like biocatalytic experiments display that the Trojan Porzymes can generate abundant •OH via chemodynamic path and 1O2 via visible light or ultrasound excitation. Then we demonstrate that the Trojan Porzymes show homologous targeting ability to tumor cells and can achieve efficient accumulation and long-term retention in cancer tissues. Our in vivo data further disclose that the photo/sono-assisted chemodynamic therapies can significantly augment the treatment efficiency of malignant melanoma. We believe that our work will afford a new biocatalytic and homologous strategy for future clinical malignant melanoma treatments, which may inspire and guide more future studies to develop individualized biomedicine in precise tumor therapies.


Asunto(s)
Antineoplásicos/uso terapéutico , Nanopartículas/uso terapéutico , Neoplasias/tratamiento farmacológico , Porfirinas/uso terapéutico , Fármacos Sensibilizantes a Radiaciones/uso terapéutico , Animales , Antineoplásicos/química , Antineoplásicos/efectos de la radiación , Catálisis , Membrana Celular/química , Complejos de Coordinación/química , Complejos de Coordinación/efectos de la radiación , Complejos de Coordinación/uso terapéutico , Células Endoteliales de la Vena Umbilical Humana , Humanos , Radical Hidroxilo/metabolismo , Luz , Ratones , Nanopartículas/química , Nanopartículas/efectos de la radiación , Porfirinas/química , Porfirinas/efectos de la radiación , Fármacos Sensibilizantes a Radiaciones/química , Fármacos Sensibilizantes a Radiaciones/efectos de la radiación , Ondas Ultrasónicas
16.
Adv Mater Interfaces ; 7(20)2020 Oct 22.
Artículo en Inglés | MEDLINE | ID: mdl-34660174

RESUMEN

Despite ongoing advancements in the field of medicine, glioblastoma multiforme (GBM) is presently incurable, making this advanced brain tumor the deadliest tumor type in the central nervous system. The primary treatment strategies for GBM (i.e. surgical resection, radiation therapy, chemotherapy, and newly incorporated targeted therapies) fail to overcome the challenging characteristics of highly aggressive GBM tumors and are presently given with the goal of increasing the quality of life for patients. With the aim of creating effective treatment solutions, research has shifted toward utilizing injectable biomaterial adjuncts to minimize invasiveness of treatment, provide spatiotemporal control of therapeutic delivery, and engage with cells through material-cell interfaces. This review aims to summarize the limitations of the current standard of care for GBM, discuss how these limitations can be addressed by local employment of injectable biomaterial systems, and highlight developments in the field of biomaterials for these applications.

17.
ACS Appl Mater Interfaces ; 12(40): 44541-44553, 2020 Oct 07.
Artículo en Inglés | MEDLINE | ID: mdl-32935973

RESUMEN

Biomineralization of biomaterials has shown extraordinary potential in cancer treatment, but the exploration of their in vivo applications is still insufficient. Here, we report a biohybrid microalgae system using a biomineralization approach to improve their biocompatibility, while keeping their living activities for radiation and photodynamic synergistic therapy in breast cancer. The biohybrid algae (Algae@SiO2) synthesized by a one-step biomimetic silicification method could significantly enhance their cytotoxicity and tolerance, improving the living activity in the tumor area. The innate chlorophyll and unique optical property make Algae@SiO2 possess dual imaging ability, namely, photoacoustic imaging and fluorescence imaging. Algae@SiO2 accumulated in tumor sites could generate oxygen in situ by external light-mediated photosynthesis, relieve tumor hypoxia, and then enhance the efficiency of radiation therapy. As a natural photosensitizer, the released chlorophyll from Algae@SiO2 could provide reactive oxygen species to kill the cancer cells for the cascaded photodynamic therapy. The significant suppression of tumor growth in the mice bearing 4T1 tumor successfully demonstrates the promising anti-tumor effect of the Algae@SiO2-mediated synergistic therapy. Our results show that biohybrid algae, integrated with PAI/FI dual imaging, radiosensitization, and cascaded photothermal therapy, is a promising multifunctional efficient biosystem for cancer treatment.


Asunto(s)
Antineoplásicos/farmacología , Materiales Biomiméticos/farmacología , Neoplasias de la Mama/terapia , Fotoquimioterapia , Dióxido de Silicio/farmacología , Hipoxia Tumoral/efectos de los fármacos , Animales , Antineoplásicos/síntesis química , Antineoplásicos/química , Materiales Biomiméticos/síntesis química , Materiales Biomiméticos/química , Neoplasias de la Mama/metabolismo , Neoplasias de la Mama/patología , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Ensayos de Selección de Medicamentos Antitumorales , Femenino , Neoplasias Mamarias Experimentales/metabolismo , Neoplasias Mamarias Experimentales/patología , Neoplasias Mamarias Experimentales/terapia , Ratones , Ratones Endogámicos BALB C , Ratones Desnudos , Tamaño de la Partícula , Dióxido de Silicio/química , Propiedades de Superficie
18.
Cancers (Basel) ; 12(5)2020 Apr 27.
Artículo en Inglés | MEDLINE | ID: mdl-32349284

RESUMEN

The treatment of breast cancer by radiotherapy can be complemented by hyperthermia. Little is known about how the immune phenotype of tumor cells is changed thereby, also in terms of a dependence on the heating method. We developed a sterile closed-loop system, using either a warm-water bath or a microwave at 2.45 GHz to examine the impact of ex vivo hyperthermia on cell death, the release of HSP70, and the expression of immune checkpoint molecules (ICMs) on MCF-7 and MDA-MB-231 breast cancer cells by multicolor flow cytometry and ELISA. Heating was performed between 39 and 44 °C. Numerical process simulations identified temperature distributions. Additionally, irradiation with 2 × 5 Gy or 5 × 2 Gy was applied. We observed a release of HSP70 after hyperthermia at all examined temperatures and independently of the heating method, but microwave heating was more effective in cell killing, and microwave heating with and without radiotherapy increased subsequent HSP70 concentrations. Adding hyperthermia to radiotherapy, dynamically or individually, affected the expression of the ICM PD-L1, PD-L2, HVEM, ICOS-L, CD137-L, OX40-L, CD27-L, and EGFR on breast cancer cells. Well-characterized pre-clinical heating systems are mandatory to screen the immune phenotype of tumor cells in clinically relevant settings to define immune matrices for therapy adaption.

19.
Int Immunopharmacol ; 62: 299-308, 2018 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-30048860

RESUMEN

B-cell lymphoma remains one of the most refractory tumors, and as such the development of novel treatment approaches, such as antibody-drug conjugates (ADCs), is required. To improve the stability and homogeneity of the ADCs, a humanized anti-CD19 monoclonal antibody (RC58) was developed in the present study. RC58 was based on the CD19 antigen as a potential molecular target of human B-cell lymphomas. RC58 has high CD19-binding affinity and can be internalized in CD19-positive cells through endocytosis. Furthermore, three types of RC58-based ADCs (ADC-1, ADC-2, and ADC-3) were generated using three kinds of Maleimide-PEG-based linkers with two different cytotoxins. The anti-tumor activities of the ADCs were confirmed by in vitro and in vivo experiments. The stability of the ADCs was also evaluated by incubation in human plasma for 10 days. In vitro experiments showed that the three ADCs had distinct inhibitory effects on several B-lymphoma cell lines. Meanwhile, a close correlation between efficacy and drug concentration was found in a nude mouse xenograft model of human B-cell lymphoma, after treatment with RC58-based ADCs. Our results suggest that ADC-1, with high efficiency, could be used as a potential therapeutic agent for human B-cell malignancies.


Asunto(s)
Anticuerpos Monoclonales Humanizados/uso terapéutico , Antígenos CD19/inmunología , Antineoplásicos Inmunológicos/uso terapéutico , Diseño de Fármacos , Inmunoconjugados/uso terapéutico , Linfoma de Células B/tratamiento farmacológico , Animales , Anticuerpos Monoclonales Humanizados/química , Antineoplásicos Inmunológicos/química , Células CHO , Línea Celular Tumoral , Supervivencia Celular/efectos de los fármacos , Cricetulus , Estabilidad de Medicamentos , Femenino , Células HEK293 , Humanos , Inmunoconjugados/química , Linfoma de Células B/inmunología , Linfoma de Células B/patología , Ratones Endogámicos BALB C , Ratones Desnudos , Unión Proteica , Ensayos Antitumor por Modelo de Xenoinjerto
20.
An. R. Acad. Nac. Farm. (Internet) ; 89(3): 287-296, Juli-Sep. 2023. ilus, graf
Artículo en Español | IBECS (España) | ID: ibc-226786

RESUMEN

Los MicroARNs (miARNs) son moléculas reguladoras de la expresión de genes y como tales colaboran para determinar cuántas proteínas se producen en las células de un determinador gen. Como su nombre indican son moléculas funcionales pese a su pequeño tamaño (micro) y están constituidas por ácido ribonucleico (ARN), en contraste con los reguladores de la expresión génica más extensamente estudiados, que son de naturaleza proteica. Debido a su pequeño tamaño y su naturaleza peculiar, la presencia de los genes que codifican a los microARNs fue descubierta en el genoma humano en etapas posteriores a la de su secuenciación, ya en el siglo XXI. Los microARNs juegan un papel fundamental en el establecimiento de la identidad y el funcionamiento celular. Por lo que componentes de la maquinaria de síntesis de microARNs o microARNs per se, han sido asociados con diversas patologías humanas, incluyendo el cáncer. Se ha descubierto que los microARNs juegan un papel importante en muchos procesos celulares que están alterados en cáncer como: diferenciación, proliferación y apoptosis. Los genes que codifican para los microARNs se han encontrado en regiones cromosómicas frecuentemente ganadas o perdidas en cáncer. Algunos microARNs presentan niveles de expresión alterados en cáncer y han demostrado su capacidad para afectar la transformación celular, carcinogénesis y metástasis actuando como oncogenes o genes supresores de tumores. Así, la presencia de determinados microARNs se ha visto con utilidad clínica diagnóstica y pronóstica y se están intentando validar terapias basadas en la actividad de microARNs relevantes en cáncer. La familia de microARNs let-7 fue la primera descubierta en humanos. Muchos de sus miembros están en regiones cromosómicas frecuentemente delecionadas en tumores de cáncer de pulmón. Además, se ha correlacionado una expresión reducida de estos genes con un peor pronóstico cáncer de pulmón.(AU)


MicroRNAs (miRNAs) are molecules that regulate gene expression and as such they collaborate to determine how many proteins are produced in the cells of a given gene. As their name indicates, they are functional molecules despite their small size (micro) and are made up of ribonucleic acid (RNA), in contrast to the most extensively studied regulators of gene expression, which are protein in nature. Due to its small size and peculiar nature, the presence of the genes that encode microRNAs was discovered in the human genome in stages after its sequencing, already in the 21st century.MicroRNAs play a fundamental role in establishing cellular identity and function. Therefore, components of the microRNA synthesis machinery, or microRNAs per se, have been associated with various human pathologies, including cancer.It has been discovered that microRNAs play an important role in many cellular processes that are altered in cancer such as: differentiation, proliferation, and apoptosis. The genes that code for microRNAs have been found in chromosomal regions frequently gained or lost in cancer. Some microRNAs have altered expression levels in cancer and have demonstrated their ability to affect cellular transformation, carcinogenesis, and metastasis by acting as oncogenes or tumor suppressor genes. Thus, the presence of certain microRNAs has been seen to have clinical diagnostic and prognostic utility and attempts are being made to validate therapies based on the activity of relevant microRNAs in cancer.The let-7 family of microRNAs was the first discovered in humans. Many of its members are in chromosomal regions frequently deleted in lung cancer tumors.(AU)


Asunto(s)
Ratones , MicroARNs/genética , MicroARNs/farmacocinética , Neoplasias Pulmonares/tratamiento farmacológico , Investigación en Farmacia , Antineoplásicos , Neoplasias Pulmonares/genética , MicroARNs/uso terapéutico
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda