Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 20 de 84
Filtrar
1.
Proc Natl Acad Sci U S A ; 119(47): e2214662119, 2022 11 22.
Artículo en Inglés | MEDLINE | ID: mdl-36375085

RESUMEN

Second harmonic generation microscopy (SHG) is generally acknowledged as a powerful tool for the label-free three-dimensional visualization of tissues and advanced materials, with one of its most popular applications being collagen imaging. Despite the great need, progress in super-resolved SHG imaging lags behind the developments reported over the past years in fluorescence-based optical nanoscopy. In this work, we demonstrate super-resolved re-scan SHG, qualitatively and quantitatively showing on collagenous tissues the available resolution advantage over the diffraction limit. We introduce as well super-resolved re-scan two-photon excited fluorescence microscopy, an imaging modality not explored to date.


Asunto(s)
Microscopía de Generación del Segundo Armónico , Microscopía de Generación del Segundo Armónico/métodos , Microscopía Fluorescente/métodos , Colágeno , Fotones , Cintigrafía
2.
Annu Rev Biomed Eng ; 25: 413-443, 2023 06 08.
Artículo en Inglés | MEDLINE | ID: mdl-37104650

RESUMEN

Over the last half century, the autofluorescence of the metabolic cofactors NADH (reduced nicotinamide adenine dinucleotide) and FAD (flavin adenine dinucleotide) has been quantified in a variety of cell types and disease states. With the spread of nonlinear optical microscopy techniques in biomedical research, NADH and FAD imaging has offered an attractive solution to noninvasively monitor cell and tissue status and elucidate dynamic changes in cell or tissue metabolism. Various tools and methods to measure the temporal, spectral, and spatial properties of NADH and FAD autofluorescence have been developed. Specifically, an optical redox ratio of cofactor fluorescence intensities and NADH fluorescence lifetime parameters have been used in numerous applications, but significant work remains to mature this technology for understanding dynamic changes in metabolism. This article describes the current understanding of our optical sensitivity to different metabolic pathways and highlights current challenges in the field. Recent progress in addressing these challenges and acquiring more quantitative information in faster and more metabolically relevant formats is also discussed.


Asunto(s)
Flavina-Adenina Dinucleótido , NAD , Humanos , NAD/metabolismo , Flavina-Adenina Dinucleótido/metabolismo , Oxidación-Reducción , Microscopía de Fluorescencia por Excitación Multifotónica/métodos , Imagen Óptica
3.
BMC Cancer ; 24(1): 652, 2024 May 29.
Artículo en Inglés | MEDLINE | ID: mdl-38811917

RESUMEN

BACKGROUND: Pancreatic ductal adenocarcinoma (PDAC) ranks among the deadliest types of cancer, and it will be meaningful to search for new biomarkers with prognostic value to help clinicians tailor therapeutic strategies. METHODS: Here we tried to use an advanced optical imaging technique, multiphoton microscopy (MPM) combining second-harmonic generation (SHG) and two-photon excited fluorescence (TPEF) imaging, for the label-free detection of PDAC tissues from a cohort of 149 patients. An automated image processing method was used to extract collagen features from SHG images and the Kaplan-Meier survival analysis and Cox proportional hazards regression were used to assess the prognostic value of collagen signatures. RESULTS: SHG images clearly show the different characteristics of collagen fibers in tumor microenvironment. We gained eight collagen morphological features, and a Feature-score was derived for each patient by the combination of these features using ridge regression. Statistical analyses reveal that Feature-score is an independent factor, and can predict the overall survival of PDAC patients as well as provide well risk stratification. CONCLUSIONS: SHG imaging technique can potentially be a tool for the accurate diagnosis of PDAC, and this optical biomarker (Feature-score) may help clinicians make more approximate treatment decisions.


Asunto(s)
Carcinoma Ductal Pancreático , Colágeno , Neoplasias Pancreáticas , Humanos , Carcinoma Ductal Pancreático/diagnóstico por imagen , Carcinoma Ductal Pancreático/patología , Carcinoma Ductal Pancreático/mortalidad , Carcinoma Ductal Pancreático/metabolismo , Pronóstico , Femenino , Masculino , Colágeno/metabolismo , Neoplasias Pancreáticas/diagnóstico por imagen , Neoplasias Pancreáticas/patología , Neoplasias Pancreáticas/metabolismo , Neoplasias Pancreáticas/mortalidad , Neoplasias Pancreáticas/diagnóstico , Persona de Mediana Edad , Anciano , Microscopía de Generación del Segundo Armónico/métodos , Biomarcadores de Tumor/metabolismo , Biomarcadores de Tumor/análisis , Estimación de Kaplan-Meier , Microscopía de Fluorescencia por Excitación Multifotónica/métodos , Adulto , Microambiente Tumoral
4.
Lab Invest ; 103(10): 100223, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37517702

RESUMEN

Nonalcoholic fatty liver disease is rapidly becoming one of the most common causes of chronic liver disease worldwide and is the leading cause of liver-related morbidity and mortality. A quantitative assessment of the degree of steatosis would be more advantageous for diagnostic evaluation and exploring the patterns of disease progression. Here, multiphoton microscopy, based on the second harmonic generation and 2-photon excited fluorescence, was used to label-free image the samples of nonalcoholic fatty liver. Imaging results confirm that multiphoton microscopy is capable of directly visualizing important pathologic features such as normal hepatocytes, hepatic steatosis, Mallory bodies, necrosis, inflammation, collagen deposition, microvessel, and so on and is a reliable auxiliary tool for the diagnosis of nonalcoholic fatty liver disease. Furthermore, we developed an image segmentation algorithm to simultaneously assess hepatic steatosis and fibrotic changes, and quantitative results reveal that there is a correlation between the degree of steatosis and collagen content. We also developed a feature extraction program to precisely display the spatial distribution of hepatocyte steatosis in tissues. These studies may be beneficial for a better clinical understanding of the process of steatosis as well as for exploring possible therapeutic targets.


Asunto(s)
Enfermedad del Hígado Graso no Alcohólico , Humanos , Enfermedad del Hígado Graso no Alcohólico/diagnóstico por imagen , Enfermedad del Hígado Graso no Alcohólico/patología , Hígado/diagnóstico por imagen , Hígado/patología , Diagnóstico por Imagen/métodos , Procesamiento de Imagen Asistido por Computador , Colágeno , Microscopía de Fluorescencia por Excitación Multifotónica/métodos
5.
Anal Bioanal Chem ; 415(25): 6257-6267, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37640827

RESUMEN

Advanced glycation end products (AGEs) form extracellular crosslinking with collagenous proteins, which contributes to the development of diabetic complications. In this study, AGEs-related pentosidine (PENT) crosslinks-induced structural and biochemical changes are studied using multimodal multiphoton imaging, Raman spectroscopy and atomic force microscopy (AFM). Decellularized equine pericardium (EP) was glycated with four ribose concentrations ranging between 5 and 200 mM and monitored for up to 30 days. Two-photon excited fluorescence (TPEF) and second harmonic generation (SHG) microscopic imaging probed elastin and collagen fibers, respectively. The glycated EP showed a decrease in the SHG intensities associated with loss of non-centrosymmetry of collagen and an increase of TPEF intensities associated with PENT crosslinks upon glycation. TPEF signals from elastin fibers were unaffected. A three-dimensional reconstruction with SHG + TPEF z-stack images visualized the distribution of collagen and elastin within the EP volume matrix. In addition, Raman spectroscopy (RS) detected changes in collagen-related bands and discriminated glycated from untreated EP. Furthermore, AFM scans showed that the roughness increases and the D-unit structure of fibers remained unchanged during glycation. The PENT crosslinked-induced changes are discussed in the context of previous studies of glutaraldehyde- and genipin-induced crosslinking and collagenase-induced digestion of collagen. We conclude that TPEF, SHG, RS, and AFM are effective, label-free, and non-destructive methods to investigate glycated tissues, differentiate crosslinking processes, and characterize general collagen-associated and disease-related changes, in particular by their RS fingerprints.

6.
Lasers Surg Med ; 55(2): 208-225, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36515355

RESUMEN

BACKGROUND: Duodenal gastrinomas (DGASTs) are neuroendocrine tumors that develop in the submucosa of the duodenum and produce the hormone gastrin. Surgical resection of DGASTs is complicated by the small size of these tumors and the tendency for them to develop diffusely in the duodenum. Endoscopic mucosal resection of DGASTs is an increasingly popular method for treating this disease due to its low complication rate but suffers from poor rates of pathologically negative margins. Multiphoton microscopy can capture high-resolution images of biological tissue with contrast generated from endogenous fluorescence (autofluorescence [AF]) through two-photon excited fluorescence (2PEF). Second harmonic generation is another popular method of generating image contrast with multiphoton microscopy (MPM) and is a light-scattering phenomenon that occurs predominantly from structures such as collagen in biological samples. Some molecules that contribute to AF change in abundance from processes related to the cancer disease process (e.g., metabolic changes, oxidative stress, and angiogenesis). STUDY DESIGN/MATERIALS AND METHODS: MPM was used to image 12 separate patient samples of formalin-fixed and paraffin-embedded duodenal gastrinoma slides with a second-harmonic generation (SHG) channel and four 2PEF channels. The excitation and emission profiles of each 2PEF channel were tuned to capture signal dominated by distinct fluorophores with well-characterized fluorescent spectra and known connections to the physiologic changes that arise in cancerous tissue. RESULTS: We found that there was a significant difference in the relative abundance of signal generated in the 2PEF channels for regions of DGASTs in comparison to the neighboring tissues of the duodenum. Data generated from texture feature extraction of the MPM images were used in linear discriminant analysis models to create classifiers for tumor versus all other tissue types before and after principal component analysis (PCA). PCA improved the classifier accuracy and reduced the number of features required to achieve maximum accuracy. The linear discriminant classifier after PCA distinguished between tumor and other tissue types with an accuracy of 90.6%-93.8%. CONCLUSIONS: These results suggest that multiphoton microscopy 2PEF and SHG imaging is a promising label-free method for discriminating between DGASTs and normal duodenal tissue which has implications for future applications of in vivo assessment of resection margins with endoscopic MPM.


Asunto(s)
Gastrinoma , Neoplasias Pancreáticas , Humanos , Gastrinoma/diagnóstico por imagen , Gastrinoma/cirugía , Microscopía , Endoscopía , Márgenes de Escisión , Neoplasias Pancreáticas/diagnóstico por imagen , Neoplasias Pancreáticas/cirugía , Microscopía de Fluorescencia por Excitación Multifotónica/métodos
7.
Angew Chem Int Ed Engl ; 62(52): e202315382, 2023 Dec 21.
Artículo en Inglés | MEDLINE | ID: mdl-37945541

RESUMEN

By synergistically employing four key strategies: (I) introducing tetraphenylethylene groups as the central core unit with aggregation-induced emission (AIE) properties, (II) optimizing the π-conjugated length by extending the building block branches, (III) incorporating flexible groups containing ethylenic bonds, and (IV) applying crystal engineering to attain dense stacking mode and highly twisty conformation, we successfully synthesized a series of hydrogen-bonded organic frameworks (HOFs) exhibiting exceptional one/two-photon excited fluorescence. Notably, when utilizing the fluorescently superior building block L2, HOF-LIFM-7 and HOF-LIFM-8 exhibiting high quantum yields (QY) of 82.1 % and 77.1 %, and ultrahigh two-photon absorption (TPA) cross-sections of 148959.5 GM and 123901.1 GM were achieved. These materials were successfully employed in one and two-photon excited lysosome-targeting cellular imaging. It is believed that this strategy, combining building block optimization and crystal engineering, holds significant potential for guiding the development of outstanding fluorescent HOF materials.

8.
Angew Chem Int Ed Engl ; 61(43): e202211356, 2022 Oct 24.
Artículo en Inglés | MEDLINE | ID: mdl-36055964

RESUMEN

By designing a tetraphenylethylene (TPE)-based AIEgen-ligand with reduced symmetry, we obtained two alkaline-earth metal-based MOFs (LIFM-102 and LIFM-103) with dense packing structures and low porosity as proved by single-crystal X-ray diffraction and CO2 sorption data. Excitingly, the desolvated MOFs with rigid environment and reduced lattice free solvent exhibit high quantum yields (QY, 64.9 % and 79.4 %) and excellent two-photon excited photoluminescence (TPA cross-sections, 2946.6 GM and 2899.0 GM), while maintaining the external-stimuli-responsive properties suitable for anticounterfeit fields. The effect of ligand conformation was validated by comparing the structure and fluorescence properties of the samples before and after desolvation and further verified by theoretical calculations. This work expands the study on TPE-cored materials to symmetry-reduced ligand and might bring forward novel structures and excellent photoluminescent properties in the future.

9.
Int J Mol Sci ; 22(6)2021 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-33804193

RESUMEN

We report here the synthesis and structural characterization of novel cationic (phenothiazinyl)vinyl-pyridinium (PVP) dyes, together with optical (absorption/emission) properties and their potential applicability as fluorescent labels. Convective heating, ultrasound irradiation and mechanochemical synthesis were considered as alternative synthetic methodologies proficient for overcoming drawbacks such as long reaction time, nonsatisfactory yields or solvent requirements in the synthesis of novel dye (E)-1-(3-chloropropyl)-4-(2-(10-methyl-10H-phenothiazin-3-yl)vinyl)pyridin-1-ium bromide 3d and its N-alkyl-2-methylpyridinium precursor 1c. The trans geometry of the newly synthesized (E)-4-(2-(7-bromo-10-ethyl-10H-phenothiazin-3-yl)vinyl)-1-methylpyridin-1-ium iodide 3b and (E)-1-methyl-4-(2-(10-methyl-10H-phenothiazin-3-yl)vinyl)pyridin-1-ium tetrafluoroborate 3a' was confirmed by single crystal X-ray diffraction. A negative solvatochromism of the dyes in polar solvents was highlighted by UV-Vis spectroscopy and explanatory insights were supported by molecular modeling which suggested a better stabilization of the lowest unoccupied molecular orbitals (LUMO). The photostability of the dye 3b was investigated by irradiation at 365 nm in different solvents, while the steady-state and time-resolved fluorescence properties of dye 3b and 3a' in solid state were evaluated under one-photon excitation at 485 nm. The in vitro cytotoxicity of the new PVP dyes on B16-F10 melanoma cells was evaluated by WST-1 assay, while their intracellular localization was assessed by epi-fluorescence conventional microscopy imaging as well as one- and two-photon excited confocal fluorescence lifetime imaging microscopy (FLIM). PVP dyes displayed low cytotoxicity, good internalization inside melanoma cells and intense fluorescence emission inside the B16-F10 murine melanoma cells, making them suitable staining agents for imaging applications.


Asunto(s)
Colorantes Fluorescentes/química , Compuestos de Piridinio/química , Coloración y Etiquetado/métodos , Animales , Colorantes Fluorescentes/síntesis química , Ratones , Microscopía Fluorescente , Fenotiazinas/química , Fotones , Compuestos de Piridinio/síntesis química , Solventes/química , Espectrometría de Fluorescencia/métodos
10.
Chemistry ; 26(61): 13842-13848, 2020 Nov 02.
Artículo en Inglés | MEDLINE | ID: mdl-32468667

RESUMEN

Two-photon excited fluorescent (TPEF) materials are highly desirable for bioimaging applications owing to their unique characteristics of deep-tissue penetration and high spatiotemporal resolution. Herein, by connecting one, two, or three electron-deficient zinc porphyrin units to an electron-rich triazatruxene core via ethynyl π-bridges, conjugated multipolar molecules TAT-(ZnP)n (n=1-3) were developed as TPEF materials for cell imaging. The three new dyes present high fluorescence quantum yields (0.40-0.47) and rationally improved two-photon absorption (TPA) properties. In particular, the peak TPA cross section of TAT-ZnP (436 GM) is significantly larger than that of the ZnP reference (59 GM). The δTPA values of TAT-(ZnP)2 and TAT-(ZnP)3 further increase to 1031 and up to 1496 GM, respectively, indicating the effect of incorporated ZnP units on the TPA properties. The substantial improvement of the TPEF properties is attributed to the formation of π-conjugated quadrapole/octupole molecules and the extension of D-π-A-D systems, which has been rationalized by density function theory (DFT) calculations. Moreover, all of the three new dyes display good biocompatibility and preferential targeting ability toward cytomembrane, thus can be superior candidates for TPEF imaging of living cells. Overall, this work demonstrated a promising strategy for the development of porphyrin-based TPEF materials by the construction and extension of D-π-A-D multipolar array.


Asunto(s)
Carbazoles , Microscopía de Fluorescencia por Excitación Multifotónica , Porfirinas , Células A549 , Carbazoles/química , Humanos , Porfirinas/química
11.
Recent Results Cancer Res ; 216: 795-812, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32594407

RESUMEN

In this chapter, we will introduce and review molecular-sensitive imaging techniques, which close the gap between ex vivo and in vivo analysis. In detail, we will introduce spontaneous Raman spectral imaging, coherent anti-Stokes Raman scattering (CARS), stimulated Raman scattering (SRS), second-harmonic generation (SHG) and third-harmonic generation (THG), two-photon excited fluorescence (TPEF), and fluorescence lifetime imaging (FLIM). After reviewing these imaging techniques, we shortly introduce chemometric methods and machine learning techniques, which are needed to use these imaging techniques in diagnostic applications.


Asunto(s)
Técnicas Histológicas , Imagen Molecular , Espectrometría Raman , Humanos
12.
BMC Cardiovasc Disord ; 20(1): 521, 2020 12 11.
Artículo en Inglés | MEDLINE | ID: mdl-33308143

RESUMEN

BACKGROUND: Calcific aortic valve disease (CAVD) pathophysiology is a complex, multistage process, usually diagnosed at advanced stages after significant anatomical and hemodynamic changes in the valve. Early detection of disease progression is thus pivotal in the development of prevention and mitigation strategies. In this study, we developed a diet-based, non-genetically modified mouse model for early CAVD progression, and explored the utility of two-photon excited fluorescence (TPEF) microscopy for early detection of CAVD progression. TPEF imaging provides label-free, non-invasive, quantitative metrics with the potential to correlate with multiple stages of CAVD pathophysiology including calcium deposition, collagen remodeling and osteogenic differentiation. METHODS: Twenty-week old C57BL/6J mice were fed either a control or pro-calcific diet for 16 weeks and monitored via echocardiography, histology, immunohistochemistry, and quantitative polarized light imaging. Additionally, TPEF imaging was used to quantify tissue autofluorescence (A) at 755 nm, 810 nm and 860 nm excitation, to calculate TPEF 755-860 ratio (A860/525/(A755/460 + A860/525)) and TPEF Collagen-Calcium ratio (A810/525/(A810/460 + A810/525)) in the murine valves. In a separate experiment, animals were fed the above diets till 28 weeks to assess for later-stage calcification. RESULTS: Pro-calcific mice showed evidence of lipid deposition at 4 weeks and calcification at 16 weeks at the valve commissures. The valves of pro-calcific mice also showed positive expression for markers of osteogenic differentiation, myofibroblast activation, proliferation, inflammatory cytokines and collagen remodeling. Pro-calcific mice exhibited lower TPEF autofluorescence ratios, at locations coincident with calcification, that correlated with increased collagen disorganization and positive expression of osteogenic markers. Additionally, locations with lower TPEF autofluorescence ratios at 4 and 16 weeks exhibited increased calcification at later 28-week timepoints. CONCLUSIONS: This study suggests the potential of TPEF autofluorescence metrics to serve as a label-free tool for early detection and monitoring of CAVD pathophysiology.


Asunto(s)
Estenosis de la Válvula Aórtica/patología , Válvula Aórtica/patología , Calcinosis/patología , Microscopía de Fluorescencia por Excitación Multifotónica , Animales , Válvula Aórtica/metabolismo , Estenosis de la Válvula Aórtica/metabolismo , Biomarcadores/metabolismo , Calcinosis/metabolismo , Modelos Animales de Enfermedad , Progresión de la Enfermedad , Diagnóstico Precoz , Masculino , Ratones Endogámicos C57BL , Valor Predictivo de las Pruebas , Factores de Tiempo
13.
Skin Res Technol ; 26(6): 794-803, 2020 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-32713074

RESUMEN

BACKGROUND: In vivo multiphoton imaging and automatic 3D image processing tools provide quantitative information on human skin constituents. These multiphoton-based tools allowed evidencing retinoids epidermal effects in the occlusive patch test protocol developed for antiaging products screening. This study aimed at investigating their relevance for non-invasive, time course assessment of retinoids cutaneous effects under real-life conditions for one year. MATERIALS AND METHODS: Thirty women, 55-65 y, applied either retinol (RO 0.3%) or retinoic acid (RA 0.025%) on one forearm dorsal side versus a control product on the other forearm once a day for 1 year. In vivo multiphoton imaging was performed every three months, and biopsies were taken after 1 year. Epidermal thickness and dermal-epidermal junction undulation were estimated in 3D with multiphoton and in 2D with histology, whereas global melanin density and its z-epidermal distribution were estimated using 3D multiphoton image processing tools. RESULTS: Main results after one year were as follows: a) epidermal thickening with RO (+30%); b) slight increase in dermal-epidermal junction undulation with RO; c) slight decrease in 3D melanin density with RA; d) limitation of the melanin ascent observed with seasonality and time within supra-basal layers with both retinoids, using multiphoton 3D-melanin z-epidermal profile. CONCLUSIONS: With a novel 3D descriptor of melanin z-epidermal distribution, in vivo multiphoton imaging allows demonstrating that daily usage of retinoids counteracts aging by acting not only on epidermal morphology, but also on melanin that is shown to accumulate in the supra-basal layers with time.


Asunto(s)
Microscopía de Fluorescencia por Excitación Multifotónica , Retinoides , Piel , Anciano , Femenino , Humanos , Imagenología Tridimensional , Melaninas , Persona de Mediana Edad , Retinoides/uso terapéutico , Piel/diagnóstico por imagen , Piel/efectos de los fármacos
14.
Ann Hepatol ; 19(3): 313-319, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-31870745

RESUMEN

INTRODUCTION AND OBJECTIVES: Hepatitis B virus (HBV) might be an etiological factor modulating fat distribution in steatotic livers. We aim to compare hepatic steatosis distribution patterns between NAFLD and FL&CHB patients with second-harmonic generation (SHG)/two-photon excited fluorescence (TPEF) method. PATIENTS AND METHODS: 42 patients with NAFLD, 46 with FL&CHB and 55 without steatosis were enrolled in the study. Overall and regional steatosis in liver sections were quantified by SHG/TPEF method. The accuracy of which was validated by pathologist evaluation and magnetic resonance spectroscopy (MRS). Difference in degree of overall and regional steatosis between NAFLD and FL&CHB groups was analyzed by Mann-Whitney U test. Multivariable linear regression analysis was used to model factors contributing to steatosis distribution. RESULTS: The hepatic steatosis measured by SHG/TPEF method was highly correlated with pathologist grading (r=0.83, p<0.001) and MRS measurement (r=0.82, p<0.001). The level of overall steatosis in FL&CHB group is significantly lower than that in NAFLD group (p<0.001). In NAFLD group, periportal region has significantly lower steatosis percentage than lobule region and overall region (p<0.001); while in FL&CHB group there is no difference among regions. The ratio of steatosis at periportal region to lobule region is significantly higher in FL&CHB group than that in NAFLD group (p<0.05). Multivariable linear regression analysis shows that HBV infection is the major contributing factor (ß=0.322, p<0.01). CONCLUSIONS: SHG/TPEF method is an accurate and objective method in hepatic steatosis quantification. By quantifying steatosis in different histological regions, we found steatosis distribution patterns are different between FL&CHB and NAFLD patients.


Asunto(s)
Hígado Graso/patología , Hepatitis B Crónica/patología , Hígado/patología , Enfermedad del Hígado Graso no Alcohólico/patología , Adulto , Estudios de Casos y Controles , Femenino , Humanos , Masculino , Microscopía de Fluorescencia por Excitación Multifotónica , Persona de Mediana Edad , Microscopía de Generación del Segundo Armónico
15.
Chemistry ; 25(57): 13164-13175, 2019 Oct 11.
Artículo en Inglés | MEDLINE | ID: mdl-31322301

RESUMEN

Two different chromophores, namely a dipolar and an octupolar system, were prepared and their linear and nonlinear optical properties as well as their bioimaging capabilities were compared. Both contain triphenylamine as the donor and a triarylborane as the acceptor, the latter modified with cationic trimethylammonio groups to provide solubility in aqueous media. The octupolar system exhibits a much higher two-photon brightness, and also better cell viability and enhanced selectivity for lysosomes compared with the dipolar chromophore. Furthermore, both dyes were applied in two-photon excited fluorescence (TPEF) live-cell imaging.


Asunto(s)
Compuestos de Anilina/química , Cationes/química , Supervivencia Celular , Estructura Molecular , Fotones , Solubilidad , Espectrometría de Fluorescencia
16.
BMC Cancer ; 19(1): 295, 2019 Apr 02.
Artículo en Inglés | MEDLINE | ID: mdl-30940105

RESUMEN

BACKGROUND: Early gastric cancer is associated with a much better prognosis than advanced disease, and strategies to improve prognosis is strictly dependent on earlier detection and accurate diagnosis. Therefore, a label-free, non-invasive imaging technique that allows the precise identification of morphologic changes in early gastric cancer would be of considerable clinical interest. METHODS: In this study, multiphoton microscopy (MPM) using two-photon excited fluorescence combined with second-harmonic generation was used for the identification of early gastric cancer. RESULTS: This microscope was able to directly reveal improved cellular detail and stromal changes during the development of early gastric cancer. Furthermore, two features were quantified from MPM images to assess the cell change in size and stromal collagen change as gastric lesion developed from normal to early cancer. CONCLUSIONS: These results clearly show that multiphoton microscopy can be used to examine early gastric cancer at the cellular level without the need for exogenous contrast agents. This study would be helpful for early diagnosis and treatment of gastric cancer, and may provide the groundwork for further exploration into the application of multiphoton microscopy in clinical practice.


Asunto(s)
Microscopía de Fluorescencia por Excitación Multifotónica/métodos , Neoplasias Gástricas/diagnóstico , Neoplasias Gástricas/patología , Detección Precoz del Cáncer , Humanos
17.
Lasers Med Sci ; 34(3): 561-569, 2019 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-30196440

RESUMEN

The development of imaging technique to visualize and quantify the structural alteration of the spinal cord injury (SCI) may lead to better understanding and treatments of the injuries. In this work, multiphoton microscopy (MPM) based on two-photon excited fluorescence (TPEF) and second-harmonic generation (SHG) was tentatively applied to quantitatively visualize the cellular microstructures of SCI to demonstrate the feasibility and superiority of MPM in SCI imaging. High-contrast MPM images of normal and injured spinal cord tissue were obtained for comparison. Moreover, the changes of injured spinal cord were characterized by the quantitative analysis of the MPM images. These results showed that MPM combined with quantitative method has the ability to identify the characteristics of spinal cord injury including the changes in the contents of nerve fibers and extracellular matrix. With the advancement of MPM, we believe that this technique has great potential to provide the histological diagnosis for the monitoring and evaluation of SCI.


Asunto(s)
Microscopía de Fluorescencia por Excitación Multifotónica/métodos , Traumatismos de la Médula Espinal/diagnóstico , Traumatismos de la Médula Espinal/patología , Animales , Matriz Extracelular/metabolismo , Fluorescencia , Ratas Sprague-Dawley , Traumatismos de la Médula Espinal/diagnóstico por imagen , Sustancia Blanca/diagnóstico por imagen , Sustancia Blanca/patología
18.
Small ; 13(42)2017 11.
Artículo en Inglés | MEDLINE | ID: mdl-28926684

RESUMEN

In multiphoton microscopy, the ongoing trend toward the use of excitation wavelengths spanning the entire near-infrared range calls for new standards in order to quantify and compare the performances of microscopes. This article describes a new method for characterizing the imaging properties of multiphoton microscopes over a broad range of excitation wavelengths in a straightforward and efficient manner. It demonstrates how second harmonic generation (SHG) nanoprobes can be used to map the spatial resolution, field curvature, and chromatic aberrations across the microscope field of view with a precision below the diffraction limit and with unique advantages over methods based on fluorescence. KTiOPO4 nanocrystals are used as SHG nanoprobes to measure and compare the performances over the 850-1100 nm wavelength range of several microscope objectives designed for multiphoton microscopy. Finally, this approach is extended to the post-acquisition correction of chromatic aberrations in multicolor multiphoton imaging. Overall, the use of SHG nanoprobes appears as a uniquely suited method to standardize the metrology of multiphoton microscopes.

19.
J Synchrotron Radiat ; 24(Pt 1): 188-195, 2017 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-28009558

RESUMEN

A sparse supervised learning approach for dynamic sampling (SLADS) is described for dose reduction in diffraction-based protein crystal positioning. Crystal centering is typically a prerequisite for macromolecular diffraction at synchrotron facilities, with X-ray diffraction mapping growing in popularity as a mechanism for localization. In X-ray raster scanning, diffraction is used to identify the crystal positions based on the detection of Bragg-like peaks in the scattering patterns; however, this additional X-ray exposure may result in detectable damage to the crystal prior to data collection. Dynamic sampling, in which preceding measurements inform the next most information-rich location to probe for image reconstruction, significantly reduced the X-ray dose experienced by protein crystals during positioning by diffraction raster scanning. The SLADS algorithm implemented herein is designed for single-pixel measurements and can select a new location to measure. In each step of SLADS, the algorithm selects the pixel, which, when measured, maximizes the expected reduction in distortion given previous measurements. Ground-truth diffraction data were obtained for a 5 µm-diameter beam and SLADS reconstructed the image sampling 31% of the total volume and only 9% of the interior of the crystal greatly reducing the X-ray dosage on the crystal. Using in situ two-photon-excited fluorescence microscopy measurements as a surrogate for diffraction imaging with a 1 µm-diameter beam, the SLADS algorithm enabled image reconstruction from a 7% sampling of the total volume and 12% sampling of the interior of the crystal. When implemented into the beamline at Argonne National Laboratory, without ground-truth images, an acceptable reconstruction was obtained with 3% of the image sampled and approximately 5% of the crystal. The incorporation of SLADS into X-ray diffraction acquisitions has the potential to significantly minimize the impact of X-ray exposure on the crystal by limiting the dose and area exposed for image reconstruction and crystal positioning using data collection hardware present in most macromolecular crystallography end-stations.


Asunto(s)
Cristalografía por Rayos X , Proteínas/química , Difracción de Rayos X , Cristalización , Sustancias Macromoleculares , Sincrotrones
20.
Osteoarthritis Cartilage ; 25(10): 1729-1737, 2017 10.
Artículo en Inglés | MEDLINE | ID: mdl-28668541

RESUMEN

OBJECTIVE: Current systems to evaluate outcomes from tissue-engineered cartilage (TEC) are sub-optimal. The main purpose of our study was to demonstrate the use of second harmonic generation (SHG) microscopy as a novel quantitative approach to assess collagen deposition in laboratory made cartilage constructs. METHODS: Scaffold-free cartilage constructs were obtained by condensation of in vitro expanded Hoffa's fat pad derived stromal cells (HFPSCs), incubated in the presence or absence of chondrogenic growth factors (GF) during a period of 21 d. Cartilage-like features in constructs were assessed by Alcian blue staining, transmission electron microscopy (TEM), SHG and two-photon excited fluorescence microscopy. A new scoring system, using second harmonic generation microscopy (SHGM) index for collagen density and distribution, was adapted to the existing "Bern score" in order to evaluate in vitro TEC. RESULTS: Spheroids with GF gave a relative high Bern score value due to appropriate cell morphology, cell density, tissue-like features and proteoglycan content, whereas spheroids without GF did not. However, both TEM and SHGM revealed striking differences between the collagen framework in the spheroids and native cartilage. Spheroids required a four-fold increase in laser power to visualize the collagen matrix by SHGM compared to native cartilage. Additionally, collagen distribution, determined as the area of tissue generating SHG signal, was higher in spheroids with GF than without GF, but lower than in native cartilage. CONCLUSION: SHG represents a reliable quantitative approach to assess collagen deposition in laboratory engineered cartilage, and may be applied to improve currently established scoring systems.


Asunto(s)
Cartílago Articular/citología , Ingeniería de Tejidos/métodos , Tejido Adiposo/citología , Cartílago Articular/metabolismo , Cartílago Articular/ultraestructura , Células Cultivadas , Condrocitos/metabolismo , Condrogénesis/fisiología , Colágeno/metabolismo , Humanos , Microscopía/métodos , Microscopía Electrónica , Persona de Mediana Edad , Proteoglicanos/metabolismo , Esferoides Celulares/citología , Esferoides Celulares/metabolismo , Células del Estroma/citología
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda