Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
1.
Proc Natl Acad Sci U S A ; 121(32): e2319091121, 2024 Aug 06.
Artículo en Inglés | MEDLINE | ID: mdl-39074279

RESUMEN

Understanding the normal function of the Huntingtin (HTT) protein is of significance in the design and implementation of therapeutic strategies for Huntington's disease (HD). Expansion of the CAG repeat in the HTT gene, encoding an expanded polyglutamine (polyQ) repeat within the HTT protein, causes HD and may compromise HTT's normal activity contributing to HD pathology. Here, we investigated the previously defined role of HTT in autophagy specifically through studying HTT's association with ubiquitin. We find that HTT interacts directly with ubiquitin in vitro. Tandem affinity purification was used to identify ubiquitinated and ubiquitin-associated proteins that copurify with a HTT N-terminal fragment under basal conditions. Copurification is enhanced by HTT polyQ expansion and reduced by mimicking HTT serine 421 phosphorylation. The identified HTT-interacting proteins include RNA-binding proteins (RBPs) involved in mRNA translation, proteins enriched in stress granules, the nuclear proteome, the defective ribosomal products (DRiPs) proteome and the brain-derived autophagosomal proteome. To determine whether the proteins interacting with HTT are autophagic targets, HTT knockout (KO) cells and immunoprecipitation of lysosomes were used to investigate autophagy in the absence of HTT. HTT KO was associated with reduced abundance of mitochondrial proteins in the lysosome, indicating a potential compromise in basal mitophagy, and increased lysosomal abundance of RBPs which may result from compensatory up-regulation of starvation-induced macroautophagy. We suggest HTT is critical for appropriate basal clearance of mitochondrial proteins and RBPs, hence reduced HTT proteostatic function with mutation may contribute to the neuropathology of HD.


Asunto(s)
Proteína Huntingtina , Lisosomas , Mitocondrias , Proteínas de Unión al ARN , Ubiquitina , Proteína Huntingtina/metabolismo , Proteína Huntingtina/genética , Lisosomas/metabolismo , Proteínas de Unión al ARN/metabolismo , Proteínas de Unión al ARN/genética , Humanos , Ubiquitina/metabolismo , Mitocondrias/metabolismo , Autofagia , Animales , Proteínas Mitocondriales/metabolismo , Proteínas Mitocondriales/genética , Ratones , Unión Proteica , Enfermedad de Huntington/metabolismo , Enfermedad de Huntington/genética , Enfermedad de Huntington/patología , Péptidos/metabolismo
2.
Mol Cell ; 66(4): 488-502.e7, 2017 May 18.
Artículo en Inglés | MEDLINE | ID: mdl-28525741

RESUMEN

Ubiquitin-binding domain (UBD) proteins regulate numerous cellular processes, but their specificities toward ubiquitin chain types in cells remain obscure. Here, we perform a quantitative proteomic analysis of ubiquitin linkage-type selectivity of 14 UBD proteins and the proteasome in yeast. We find that K48-linked chains are directed to proteasomal degradation through selectivity of the Cdc48 cofactor Npl4. Mutating Cdc48 results in decreased selectivity, and lacking Rad23/Dsk2 abolishes interactions between ubiquitylated substrates and the proteasome. Among them, only Npl4 has K48 chain specificity in vitro. Thus, the Cdc48 complex functions as a K48 linkage-specifying factor upstream of Rad23/Dsk2 for proteasomal degradation. On the other hand, K63 chains are utilized in endocytic pathways, whereas both K48 and K63 chains are found in the MVB and autophagic pathways. Collectively, our results provide an overall picture of the ubiquitin network via UBD proteins and identify the Cdc48-Rad23/Dsk2 axis as a major route to the proteasome.


Asunto(s)
Adenosina Trifosfatasas/metabolismo , Proteínas de Ciclo Celular/metabolismo , Proteínas de Unión al ADN/metabolismo , Complejo de la Endopetidasa Proteasomal/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/enzimología , Ubiquitina/metabolismo , Ubiquitinación , Ubiquitinas/metabolismo , Adenosina Trifosfatasas/genética , Proteínas Portadoras/genética , Proteínas Portadoras/metabolismo , Proteínas de Ciclo Celular/genética , Proteínas de Unión al ADN/genética , Endocitosis , Complejos de Clasificación Endosomal Requeridos para el Transporte/genética , Complejos de Clasificación Endosomal Requeridos para el Transporte/metabolismo , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Proteínas de Transporte Nucleocitoplasmático/genética , Proteínas de Transporte Nucleocitoplasmático/metabolismo , Complejo de la Endopetidasa Proteasomal/efectos de los fármacos , Complejo de la Endopetidasa Proteasomal/genética , Inhibidores de Proteasoma/farmacología , Unión Proteica , Dominios y Motivos de Interacción de Proteínas , Proteolisis , Saccharomyces cerevisiae/efectos de los fármacos , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Factores de Tiempo , Ubiquitinación/efectos de los fármacos , Ubiquitinas/genética , Proteína que Contiene Valosina
3.
Mol Cell Proteomics ; 21(1): 100175, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34763062

RESUMEN

Protein ubiquitylation is an important posttranslational modification that governs most cellular processes. Signaling functions of ubiquitylation are very diverse and involve proteolytic as well as nonproteolytic events, such as localization, regulation of protein interactions, and control of protein activity. The intricacy of ubiquitin signaling is further complicated by several different polyubiquitin chain types that are likely recognized and interpreted by different protein readers. For example, K48-linked ubiquitin chains represent the most abundant chain topology and are the canonical degradation signals, but have been implicated in degradation-independent functions as well, likely requiring a variety of protein readers. Ubiquitin binding domains that interact with polyubiquitin chains are likely at the center of ubiquitin signal recognition and transmission, but their structure and selectivity are largely unexplored. Here we report identification and characterization of the ubiquitin interacting motif-like (UIML) domain of the yeast transcription factor Met4 as a strictly K48-polyubiquitin specific binding unit using methods such as biolayer interferometry (BLI), pull-down assays, and mass spectrometry. We further used the selective binding property to develop an affinity probe for purification of proteins modified with K48-linked polyubiquitin chains. The affinity probe has a Kd = 100 nM for K48 tetra-ubiquitin and shows no detectable interaction with either monoubiquitin or any other polyubiquitin chain configuration. Our results define a short strictly K48-linkage-dependent binding motif and present a new affinity reagent for the K48-polyubiquitin-modified proteome. Our findings benefit the ubiquitin field in analyses of the role of K48-linked polyubiquitylation and increase our understanding of chain topology selective ubiquitin chain recognition.


Asunto(s)
Poliubiquitina , Proteínas de Saccharomyces cerevisiae , Factores de Transcripción con Cremalleras de Leucina de Carácter Básico/metabolismo , Poliubiquitina/química , Poliubiquitina/metabolismo , Unión Proteica , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Ubiquitina/metabolismo , Ubiquitinación
4.
Trends Biochem Sci ; 44(7): 599-615, 2019 07.
Artículo en Inglés | MEDLINE | ID: mdl-30819414

RESUMEN

Post-translational modifications (PTMs) by ubiquitin (Ub) are versatile, highly dynamic, and involved in nearly all aspects of eukaryote biological function. The reversibility and heterogeneity of Ub chains attached to protein substrates have complicated their isolation, quantification, and characterization. Strategies have emerged to isolate endogenous ubiquitylated targets, including technologies based on the use of Ub-binding peptides, such as tandem-repeated Ub-binding entities (TUBEs). TUBEs allow the identification and characterization of Ub chains, and novel substrates for deubiquitylases (DUBs) and Ub ligases (E3s). Here we review their impact on purification, analysis of pan or chain-selective polyubiquitylated proteins and underline the biological relevance of this information. Together with peptide aptamers and other Ub affinity-based approaches, TUBEs will contribute to unraveling the secrets of the Ub code.


Asunto(s)
Ubiquitina/metabolismo , Ubiquitinación , Animales , Humanos , Unión Proteica , Procesamiento Proteico-Postraduccional
5.
J Biol Chem ; 298(2): 101545, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-34971705

RESUMEN

Alkylation of DNA and RNA is a potentially toxic lesion that can result in mutations and even cell death. In response to alkylation damage, K63-linked polyubiquitin chains are assembled that localize the Alpha-ketoglutarate-dependent dioxygenase alkB homolog 3-Activating Signal Cointegrator 1 Complex Subunit (ASCC) repair complex to damage sites in the nucleus. The protein ASCC2, a subunit of the ASCC complex, selectively binds K63-linked polyubiquitin chains via its coupling of ubiquitin conjugation to ER degradation (CUE) domain. The basis for polyubiquitin-binding specificity was unclear, because CUE domains in other proteins typically bind a single ubiquitin and do not discriminate among different polyubiquitin linkage types. We report here that the ASCC2 CUE domain selectively binds K63-linked diubiquitin by contacting both the distal and proximal ubiquitin. The ASCC2 CUE domain binds the distal ubiquitin in a manner similar to that reported for other CUE domains bound to a single ubiquitin, whereas the contacts with the proximal ubiquitin are unique to ASCC2. Residues in the N-terminal portion of the ASCC2 α1 helix contribute to the binding interaction with the proximal ubiquitin of K63-linked diubiquitin. Mutation of residues within the N-terminal portion of the ASCC2 α1 helix decreases ASCC2 recruitment in response to DNA alkylation, supporting the functional significance of these interactions during the alkylation damage response. Our study reveals the versatility of CUE domains in ubiquitin recognition.


Asunto(s)
Dioxigenasa Dependiente de Alfa-Cetoglutarato, Homólogo 3 de AlkB , Reparación del ADN , Proteínas Nucleares , Poliubiquitina , Ubiquitina , Ubiquitinas , Dioxigenasa Dependiente de Alfa-Cetoglutarato, Homólogo 3 de AlkB/genética , Dioxigenasa Dependiente de Alfa-Cetoglutarato, Homólogo 3 de AlkB/metabolismo , ADN/metabolismo , Modelos Moleculares , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Poliubiquitina/genética , Poliubiquitina/metabolismo , Unión Proteica , Ubiquitina/genética , Ubiquitina/metabolismo , Ubiquitinas/genética , Ubiquitinas/metabolismo
6.
Proc Natl Acad Sci U S A ; 115(3): 525-530, 2018 01 16.
Artículo en Inglés | MEDLINE | ID: mdl-29295930

RESUMEN

ExoU is a type III-secreted cytotoxin expressing A2 phospholipase activity when injected into eukaryotic target cells by the bacterium Pseudomonas aeruginosa The enzymatic activity of ExoU is undetectable in vitro unless ubiquitin, a required cofactor, is added to the reaction. The role of ubiquitin in facilitating ExoU enzymatic activity is poorly understood but of significance for designing inhibitors to prevent tissue injury during infections with strains of P. aeruginosa producing this toxin. Most ubiquitin-binding proteins, including ExoU, demonstrate a low (micromolar) affinity for monoubiquitin (monoUb). Additionally, ExoU is a large and dynamic protein, limiting the applicability of traditional structural techniques such as NMR and X-ray crystallography to define this protein-protein interaction. Recent advancements in computational methods, however, have allowed high-resolution protein modeling using sparse data. In this study, we combine double electron-electron resonance (DEER) spectroscopy and Rosetta modeling to identify potential binding interfaces of ExoU and monoUb. The lowest-energy scoring model was tested using biochemical, biophysical, and biological techniques. To verify the binding interface, Rosetta was used to design a panel of mutations to modulate binding, including one variant with enhanced binding affinity. Our analyses show the utility of computational modeling when combined with sensitive biological assays and biophysical approaches that are exquisitely suited for large dynamic proteins.


Asunto(s)
Proteínas Bacterianas/química , Espectroscopía de Resonancia por Spin del Electrón/métodos , Pseudomonas aeruginosa/enzimología , Ubiquitina/química , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Cristalografía por Rayos X , Modelos Moleculares , Unión Proteica , Dominios Proteicos , Pseudomonas aeruginosa/genética , Pseudomonas aeruginosa/metabolismo , Ubiquitina/metabolismo
7.
EMBO Rep ; 18(3): 392-402, 2017 03.
Artículo en Inglés | MEDLINE | ID: mdl-28082312

RESUMEN

The eight different types of ubiquitin (Ub) chains that can be formed play important roles in diverse cellular processes. Linkage-selective recognition of Ub chains by Ub-binding domain (UBD)-containing proteins is central to coupling different Ub signals to specific cellular responses. The motif interacting with ubiquitin (MIU) is a small UBD that has been characterized for its binding to monoUb. The recently discovered deubiquitinase MINDY-1/FAM63A contains a tandem MIU repeat (tMIU) that is highly selective at binding to K48-linked polyUb. We here identify that this linkage-selective binding is mediated by a single MIU motif (MIU2) in MINDY-1. The crystal structure of MIU2 in complex with K48-linked polyubiquitin chains reveals that MIU2 on its own binds to all three Ub moieties in an open conformation that can only be accommodated by K48-linked triUb. The weak Ub binder MIU1 increases overall affinity of the tMIU for polyUb chains without affecting its linkage selectivity. Our analyses reveal new concepts for linkage selectivity and polyUb recognition by UBDs.


Asunto(s)
Secuencias de Aminoácidos , Poliubiquitina/metabolismo , Dominios y Motivos de Interacción de Proteínas , Ubiquitina Tiolesterasa/metabolismo , Secuencia de Aminoácidos , Secuencia Conservada , Modelos Biológicos , Modelos Moleculares , Poliubiquitina/química , Unión Proteica , Conformación Proteica , Secuencias Repetidas en Tándem , Ubiquitina Tiolesterasa/química , Ubiquitinación
8.
Cell Mol Life Sci ; 73(18): 3497-506, 2016 09.
Artículo en Inglés | MEDLINE | ID: mdl-27137187

RESUMEN

The ability of ubiquitin to form up to eight different polyubiquitin chain linkages generates complexity within the ubiquitin proteasome system, and accounts for the diverse roles of ubiquitination within the cell. Understanding how each type of ubiquitin linkage is correctly interpreted by ubiquitin binding proteins provides important insights into the link between chain recognition and cellular fate. A major function of ubiquitination is to signal degradation of intracellular proteins by the 26S proteasome. Lysine-48 (K48) linked polyubiquitin chains are well established as the canonical signal for proteasomal degradation, but recent studies show a role for other ubiquitin linked chains in facilitating degradation by the 26S proteasome. Here, we review how different types of polyubiquitin linkage bind to ubiquitin receptors on the 26S proteasome, how they signal degradation and discuss the implications of ubiquitin chain linkage in regulating protein breakdown by the proteasome.


Asunto(s)
Complejo de la Endopetidasa Proteasomal/metabolismo , Proteínas Ubiquitinadas/metabolismo , Humanos , Poliubiquitina/metabolismo , Complejo de la Endopetidasa Proteasomal/química , Unión Proteica , Ubiquitina/metabolismo , Proteínas Ubiquitinadas/química
9.
Proteomics ; 16(14): 1949-51, 2016 07.
Artículo en Inglés | MEDLINE | ID: mdl-27273999

RESUMEN

Similar to substrate-conjugated polyubiquitin, unanchored polyubiquitin chains are emerging as important regulators for diverse biological processes. The affinity purification of unanchored polyubiquitin from various organisms has been reported, however, tools able to distinguish unanchored polyubiquitin chains with different isopeptide linkages have not yet been described. Toward the goal of selectively identifying and purifying unanchored polyubiquitin chains linked through different Lysines, Scott et al. developed a novel strategy in their study [Proteomics 2016, 16, 1961-1969]. They designed a linker-optimized ubiquitin-binding domain hybrid (t-UBD) containing two UBDs, a ZnFCUBP domain, and a linkage-selective UBA domain, to specifically recognize unanchored Lys48-linked polyubiquitin chains. Subsequently, a series of assays has proved the feasibility of this novel strategy for the purification of endogenous substrate-free Lys48-linked polyubiquitin chains from mammalian cell extracts. Their research not only provides a tool for purifying unanchored polyubiquitin with different isopeptide linkages, but also paves the way for generating reagents to study the function of unanchored polyubiquitin chains of different linkages in the future. The design of UBD hybrids for defined unanchored polyubiquitin (Lys48-polyubiquitin) in this study also set an excellent example for future methodology studies regarding monitoring in vivo dynamic changes in the patterns of ubiquitination.


Asunto(s)
Lisina/metabolismo , Poliubiquitina/aislamiento & purificación , Proteínas Recombinantes de Fusión/metabolismo , Sitios de Unión , Mezclas Complejas/química , Expresión Génica , Células HEK293 , Humanos , Lisina/química , Poliubiquitina/química , Unión Proteica , Dominios Proteicos , Ingeniería de Proteínas , Proteínas Recombinantes de Fusión/genética , Ubiquitinación
10.
Proteomics ; 16(14): 1961-9, 2016 07.
Artículo en Inglés | MEDLINE | ID: mdl-27037516

RESUMEN

Unanchored polyubiquitin chains are emerging as important regulators of cellular physiology with diverse roles paralleling those of substrate-conjugated polyubiquitin. However tools able to discriminate unanchored polyubiquitin chains of different isopeptide linkages have not been reported. We describe the design of a linker-optimized ubiquitin-binding domain hybrid (t-UBD) containing two UBDs, a ZnF-UBP domain in tandem with a linkage-selective UBA domain, which exploits avidity effects to afford selective recognition of unanchored Lys48-linked polyubiquitin chains. Utilizing native MS to quantitatively probe binding affinities we confirm cooperative binding of the UBDs within the synthetic protein, and desired binding specificity for Lys48-linked ubiquitin dimers. Furthermore, MS/MS analyses indicate that the t-UBD, when applied as an affinity enrichment reagent, can be used to favor the purification of endogenous unanchored Lys48-linked polyubiquitin chains from mammalian cell extracts. Our study indicates that strategies for the rational design and engineering of polyubiquitin chain-selective binding in nonbiological polymers are possible, paving the way for the generation of reagents to probe unanchored polyubiquitin chains of different linkages and more broadly the 'ubiquitome'. All MS data have been deposited in the ProteomeXchange with identifier PXD004059 (http://proteomecentral.proteomexchange.org/dataset/PXD004059).


Asunto(s)
Bioensayo/normas , Lisina/metabolismo , Poliubiquitina/aislamiento & purificación , Proteínas Recombinantes de Fusión/metabolismo , Sitios de Unión , Mezclas Complejas/química , Expresión Génica , Células HEK293 , Humanos , Cinética , Lisina/química , Modelos Moleculares , Poliubiquitina/química , Unión Proteica , Dominios Proteicos , Ingeniería de Proteínas , Multimerización de Proteína , Proteínas Recombinantes de Fusión/genética , Sensibilidad y Especificidad , Espectrometría de Masas en Tándem , Ubiquitinación
11.
J Biol Chem ; 290(1): 296-309, 2015 Jan 02.
Artículo en Inglés | MEDLINE | ID: mdl-25411243

RESUMEN

Amplification of squamous cell carcinoma-related oncogene (SCCRO) activates its function as an oncogene in a wide range of human cancers. The oncogenic activity of SCCRO requires its potentiating neddylation domain, which regulates its E3 activity for neddylation. The contribution of the N-terminal ubiquitin-associated (UBA) domain to SCCRO function remains to be defined. We found that the UBA domain of SCCRO preferentially binds to polyubiquitin chains in a linkage-independent manner. Binding of polyubiquitin chains to the UBA domain inhibits the neddylation activity of SCCRO in vivo by inhibiting SCCRO-promoted nuclear translocation of neddylation components and results in a corresponding decrease in cullin-RING-ligase-promoted ubiquitination. The results of colony formation and xenograft assays showed a mutation in the UBA domain of SCCRO that reduces binding to polyubiquitin chains, significantly enhancing its oncogenic activity. Analysis of 47 lung and head and neck squamous cell carcinomas identified a case with a frameshift mutation in SCCRO that putatively codes for a protein that lacks a UBA domain. Analysis of data from The Cancer Genome Atlas showed that recurrent mutations cluster in the UBA domains of SCCRO, lose the ability to bind to polyubiquitinated proteins, and have increased neddylation and transformation activities. Combined, these data suggest that the UBA domain functions as a negative regulator of SCCRO function. Mutations in the UBA domain lead to loss of inhibitory control, which results in increased biochemical and oncogenic activity. The clustering of mutations in the UBA domain of SCCRO suggests that mutations may be a mechanism of oncogene activation in human cancers.


Asunto(s)
Carcinoma de Células Escamosas/genética , Retroalimentación Fisiológica , Regulación Neoplásica de la Expresión Génica , Neoplasias de Cabeza y Cuello/genética , Proteínas Proto-Oncogénicas/genética , Ubiquitina/genética , Secuencia de Aminoácidos , Animales , Carcinoma de Células Escamosas/metabolismo , Carcinoma de Células Escamosas/patología , Transformación Celular Neoplásica/genética , Transformación Celular Neoplásica/metabolismo , Transformación Celular Neoplásica/patología , Escherichia coli/genética , Escherichia coli/metabolismo , Células HeLa , Neoplasias de Cabeza y Cuello/metabolismo , Neoplasias de Cabeza y Cuello/patología , Humanos , Péptidos y Proteínas de Señalización Intracelular , Ratones , Ratones SCID , Datos de Secuencia Molecular , Proteína NEDD8 , Células 3T3 NIH , Estructura Terciaria de Proteína , Proteínas , Proteínas Proto-Oncogénicas/química , Proteínas Proto-Oncogénicas/metabolismo , Proteínas Recombinantes de Fusión/genética , Proteínas Recombinantes de Fusión/metabolismo , Alineación de Secuencia , Transducción de Señal , Transfección , Ubiquitina/metabolismo , Ubiquitinación , Ubiquitinas/genética , Ubiquitinas/metabolismo
12.
Proteomics ; 15(5-6): 844-61, 2015 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-25327553

RESUMEN

Ubiquitin-binding domains (UBDs) are modular units found within ubiquitin-binding proteins that mediate the non-covalent recognition of (poly)ubiquitin modifications. A variety of mechanisms are employed in vivo to achieve polyubiquitin linkage and chain length selectivity by UBDs, the structural basis of which have in some instances been determined. Here, we review current knowledge related to ubiquitin recognition mechanisms at the molecular level and explore how such information has been exploited in the design and application of UBDs in isolation or artificially arranged in tandem as tools to investigate ubiquitin-modified proteomes. Specifically, we focus on the use of UBDs to directly purify or detect (poly)ubiquitin-modified proteins and more broadly for the targeted manipulation of ubiquitin-mediated processes, highlighting insights into ubiquitin signalling that have been provided.


Asunto(s)
Sitios de Unión , Proteómica , Biología Sintética , Ubiquitina , Animales , Línea Celular , Humanos , Ratones , Estructura Terciaria de Proteína
13.
Biochem Biophys Res Commun ; 466(1): 1-14, 2015 Oct 09.
Artículo en Inglés | MEDLINE | ID: mdl-26325464

RESUMEN

Immunoblotting is a powerful technique for the semi-quantitative analysis of ubiquitylation events, and remains the most commonly used method to study this process due to its high specificity, speed, sensitivity and relatively low cost. However, the ubiquitylation of proteins is complex and, when the analysis is performed in an inappropriate manner, it can lead to the misinterpretation of results and to erroneous conclusions being reached. Here we discuss the advantages and disadvantages of the methods currently in use to analyse ubiquitin chains and protein ubiquitylation, and describe the procedures that we have found to be most useful for optimising the quality and reliability of the data that we have generated. We also highlight commonly encountered problems and the pitfalls inherent in some of these methods. Finally, we introduce a set of recommendations to help researchers obtain high quality data, especially those new to the field of ubiquitin signalling. The specific topics addressed in this article include sample preparation, the separation, detection and identification of particular ubiquitin chains by immunoblotting, and the analysis of ubiquitin chain topology through the combined use of ubiquitin-binding proteins and ubiquitin linkage-specific deubiquitylases.


Asunto(s)
Immunoblotting/métodos , Ubiquitina/análisis , Proteínas Ubiquitinadas/análisis , Animales , Electroforesis en Gel de Poliacrilamida/métodos , Humanos , Inmunoprecipitación/métodos , Ubiquitina/genética , Ubiquitina/metabolismo , Proteasas Ubiquitina-Específicas/metabolismo , Proteínas Ubiquitinadas/metabolismo , Ubiquitinación , Regulación hacia Arriba
14.
Cell Rep ; 43(8): 114545, 2024 Jul 23.
Artículo en Inglés | MEDLINE | ID: mdl-39052481

RESUMEN

Small ubiquitin-binding domains (UBDs) recognize small surface patches on ubiquitin with weak affinity, and it remains a conundrum how specific cellular responses may be achieved. Npl4-type zinc-finger (NZF) domains are ∼30 amino acid, compact UBDs that can provide two ubiquitin-binding interfaces, imposing linkage specificity to explain signaling outcomes. We here comprehensively characterize the linkage preference of human NZF domains. TAB2 prefers Lys6 and Lys63 linkages phosphorylated on Ser65, explaining why TAB2 recognizes depolarized mitochondria. Surprisingly, most NZF domains do not display chain linkage preference, despite conserved, secondary interaction surfaces. This suggests that some NZF domains may specifically bind ubiquitinated substrates by simultaneously recognizing substrate and an attached ubiquitin. We show biochemically and structurally that the NZF1 domain of the E3 ligase HOIPbinds preferentially to site-specifically ubiquitinated forms of NEMO and optineurin. Thus, despite their small size, UBDs may impose signaling specificity via multivalent interactions with ubiquitinated substrates.

15.
J Biochem ; 172(1): 1-7, 2022 Jun 28.
Artículo en Inglés | MEDLINE | ID: mdl-35394523

RESUMEN

Ubiquitination is a post-translational modification system essential for regulating a wide variety of biological processes in eukaryotes. Ubiquitin (Ub) itself undergoes post-translational modifications, including ubiquitination. All seven lysine residues and one N-terminal amino group of Ub can act as acceptors for further ubiquitination, producing eight types of Ub chains. Ub chains of different linkage types have different cellular functions and are referred to as the 'ubiquitin code'. Decoder molecules that contain linkage-specific Ub-binding domains (UBDs) recognize the Ub chains to regulate different cellular functions. On the other hand, deubiquitinases (DUBs) cleave Ub chains to reverse ubiquitin signals. This review discusses the molecular mechanisms of linkage-specific recognitions of Ub chains by UBDs and DUBs, which have been revealed by structural studies.


Asunto(s)
Ubiquitina , Ubiquitinas , Enzimas Desubicuitinizantes/metabolismo , Unión Proteica , Ubiquitina/metabolismo , Ubiquitinación
16.
ACS Sens ; 4(11): 2908-2914, 2019 11 22.
Artículo en Inglés | MEDLINE | ID: mdl-31599572

RESUMEN

In all eukaryotic cells, modifications of proteins by polymers of ubiquitin (polyUb) are signals used in diverse biological processes. To better understand how polyUb signals are read and promote their different functions, quantitative measurements of their interactions with receptor proteins are needed. However, affinities and selectivities of different forms of polyUb with various receptors have been difficult to determine because the availability of well-defined polyUb chains can be limiting and there is a lack of general, sensitive methods to assay their interactions. We have addressed this challenge by developing a series of fluorescent protein sensors for polyUb; by competition of the sensors against receptor proteins in vitro for limiting amounts of polyUb, receptor·polyUb affinities can be quantified. Due to the high affinities of the polyUb sensors (Kd ∼ 10-9 M), binding assays using this competition format require much less polyUb (<0.1%) than would be needed in direct titrations of the polyUb ligands. Furthermore, the high sensitivity and large dynamic range of the sensor fluorescence readout allow for precise measurements even for very tight interactions (i.e., nanomolar Kd). Importantly, as demonstrated here with Ub2 and Ub3 ligands, the assay does not require labeling of either the receptor protein or the polyUb, and it can be used with polyUb ligands composed of virtually any Ub-Ub linkage type.


Asunto(s)
Técnicas Biosensibles , Proteínas Luminiscentes/análisis , Poliubiquitina/química , Técnicas Biosensibles/instrumentación , Diseño de Equipo , Ligandos , Espectrometría de Fluorescencia/instrumentación
17.
Structure ; 27(8): 1316-1325.e6, 2019 08 06.
Artículo en Inglés | MEDLINE | ID: mdl-31204252

RESUMEN

Ubiquitylation, the posttranslational linkage of ubiquitin moieties to lysines in target proteins, helps regulate a myriad of biological processes. Ubiquitin, and sometimes ubiquitin-homology domains, are recognized by ubiquitin-binding domains, including CUE domains. CUE domains are thus generally thought to function by mediating interactions with ubiquitylated proteins. The chromatin remodeler, SMARCAD1, interacts with KAP1, a transcriptional corepressor. The SMARCAD1-KAP1 interaction is direct and involves the first SMARCAD1 CUE domain (CUE1) and the RBCC domain of KAP1. Here, we present a structural model of the KAP1 RBCC-SMARCAD1 CUE1 complex based on X-ray crystallography. Remarkably, CUE1, a canonical CUE domain, recognizes a cluster of exposed hydrophobic and surrounding charged/amphipathic residues on KAP1, which are presented in the context of a coiled-coil domain, not in a structure resembling ubiquitin. Together, these data suggest that CUE domains may have a wider function than simply recognizing ubiquitin and the ubiquitin-fold.


Asunto(s)
ADN Helicasas/química , ADN Helicasas/metabolismo , Proteína 28 que Contiene Motivos Tripartito/química , Proteína 28 que Contiene Motivos Tripartito/metabolismo , Sitios de Unión , Cristalografía por Rayos X , Células HEK293 , Humanos , Modelos Moleculares , Unión Proteica , Dominios Proteicos , Ubiquitina/metabolismo
18.
FEBS J ; 285(15): 2746-2761, 2018 08.
Artículo en Inglés | MEDLINE | ID: mdl-29679476

RESUMEN

Ubiquitin modification (ubiquitination) of target proteins can vary with respect to chain lengths, linkage type, and chain forms, such as homologous, mixed, and branched ubiquitin chains. Thus, ubiquitination can generate multiple unique surfaces on a target protein substrate. Ubiquitin-binding domains (UBDs) recognize ubiquitinated substrates, by specifically binding to these unique surfaces, modulate the formation of cellular signaling complexes and regulate downstream signaling cascades. Among the eight different homotypic chain types, Met1-linked (also termed linear) chains are the only chains in which linkage occurs on a non-Lys residue of ubiquitin. Linear ubiquitin chains have been implicated in immune responses, cell death and autophagy, and several UBDs - specific for linear ubiquitin chains - have been identified. In this review, we describe the main principles of ubiquitin recognition by UBDs, focusing on linear ubiquitin chains and their roles in biology.


Asunto(s)
Proteínas/química , Proteínas/metabolismo , Ubiquitina/metabolismo , Animales , Sitios de Unión , Dominio Catalítico , Displasia Ectodérmica/genética , Displasia Ectodérmica/inmunología , Humanos , Quinasa I-kappa B/genética , Quinasa I-kappa B/metabolismo , Mutación , Unión Proteica , Dominios Proteicos , Proteínas/genética , Ubiquitinación , Dedos de Zinc
19.
Structure ; 25(1): 66-78, 2017 01 03.
Artículo en Inglés | MEDLINE | ID: mdl-27916521

RESUMEN

Recognition of linear polyubiquitin by specific ubiquitin-binding proteins plays an important role in mediating nuclear factor-κB (NF-κB) signaling. A20 binding proteins, ABINs, recognize linear polyubiquitin and A20 through UBAN and AHD1, respectively, for the inhibition of NF-κB activation. Here we report the crystal structure of the AHD1-UBAN fragment of ABIN2 in complex with linear tri-ubiquitin, which reveals a 2:1 stoichiometry of the complex. Structural analyses together with mutagenesis, pull-down, and isothermal titration calorimetry assays show that the hABIN2:tri-ubiquitin interaction is mainly through the primary ubiquitin-binding site, and also through the secondary ubiquitin-binding site under a high local protein concentration. Surprisingly, three ubiquitin units could form a right-handed helical trimer to bridge two ABIN2 dimers. The residues around the M1-linkage are crucial for ABIN2 to recognize tri-ubiquitin. The tri-ubiquitin bridging two ABIN2 dimers model suggests a possible higher-order signaling complex assembled between M1-linked polyubiquitinated proteins, ubiquitin-binding proteins, and effector signaling proteins in signal transduction.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/química , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Poliubiquitina/metabolismo , Sitios de Unión , Cristalografía por Rayos X , Humanos , Modelos Moleculares , Unión Proteica , Estructura Secundaria de Proteína , Transducción de Señal , Proteína 3 Inducida por el Factor de Necrosis Tumoral alfa/metabolismo
20.
Microbiol Res ; 192: 11-20, 2016 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-27664719

RESUMEN

Penicillium digitatum is the causative agent of green mold decay on citrus fruit. The cAMP-mediated signaling pathway plays an important role in the transduction of extracellular signals and has been shown to regulate a wide range of developmental processes and pathogenicity in fungal pathogens. We cloned and characterized a Pdac1 gene of P. digitatum, which encodes a polypeptide similar to fungal adenylyl cyclases. Using a loss-of-function mutation in the Pdac1 gene we demonstrated a critical requirement for hyphal growth and conidial germination. Deletion of Pdac1 resulted in decreased accumulation of cAMP and down-regulation of genes encoding a G protein α subunit, both catalytic and regulatory subunits of PKA, and two transcriptional regulators StuA and Som1. Fungal mutants lacking Pdac1 produced abundant conidia, which failed to germinate effectively and displayed an elevated sensitivity to heat treatment. Pdac1 mutant failed to utilize carbohydrates effectively and thus displayed severe growth retardation on rich and synthetic media. Slow growth seen in the Pdac1 mutants could be due to a defect in nutrient sensing and acquisition. Quantitative RT-PCR analysis revealed that Pdac1 was primarily expressed at the early stage of infection. Fungal pathogenicity assayed on citrus fruit revealed that P. digitatum strains impaired for Pdac1 delayed lesion formation. Our results highlight important regulatory roles of adenylyl cyclase-mediated cAMP production in P. digitatum and provide insights into the critical role of cAMP in fungal growth, development and virulence.


Asunto(s)
Adenilil Ciclasas/metabolismo , Citrus/crecimiento & desarrollo , Citrus/microbiología , AMP Cíclico/metabolismo , Germinación , Penicillium/fisiología , Enfermedades de las Plantas/microbiología , Adenilil Ciclasas/genética , Clonación Molecular , Marcación de Gen , Genes Bacterianos , Homeostasis , Fenotipo , Análisis de Secuencia de ADN , Virulencia/genética
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda