Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 20 de 23
Filtrar
1.
Crit Care ; 26(1): 48, 2022 02 21.
Artículo en Inglés | MEDLINE | ID: mdl-35189925

RESUMEN

BACKGROUND: Severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2)-induced acute respiratory distress syndrome (ARDS) causes high mortality. Umbilical cord-derived mesenchymal stromal cells (UC-MSCs) have potentially relevant immune-modulatory properties, whose place in ARDS treatment is not established. This phase 2b trial was undertaken to assess the efficacy of UC-MSCs in patients with SARS-CoV-2-induced ARDS. METHODS: This multicentre, double-blind, randomized, placebo-controlled trial (STROMA-CoV-2) recruited adults (≥ 18 years) with SARS-CoV-2-induced early (< 96 h) mild-to-severe ARDS in 10 French centres. Patients were randomly assigned to receive three intravenous infusions of 106 UC-MSCs/kg or placebo (0.9% NaCl) over 5 days after recruitment. For the modified intention-to-treat population, the primary endpoint was the partial pressure of oxygen to fractional inspired oxygen (PaO2/FiO2)-ratio change between baseline (day (D) 0) and D7. RESULTS: Among the 107 patients screened for eligibility from April 6, 2020, to October 29, 2020, 45 were enrolled, randomized and analyzed. PaO2/FiO2 changes between D0 and D7 did not differ significantly between the UC-MSCs and placebo groups (medians [IQR] 54.3 [- 15.5 to 93.3] vs 25.3 [- 33.3 to 104.6], respectively; ANCOVA estimated treatment effect 7.4, 95% CI - 44.7 to 59.7; P = 0.77). Six (28.6%) of the 21 UC-MSCs recipients and six of 24 (25%) placebo-group patients experienced serious adverse events, none of which were related to UC-MSCs treatment. CONCLUSIONS: D0-to-D7 PaO2/FiO2 changes for intravenous UC-MSCs-versus placebo-treated adults with SARS-CoV-2-induced ARDS did not differ significantly. Repeated UC-MSCs infusions were not associated with any serious adverse events during treatment or thereafter (until D28). Larger trials enrolling patients earlier during the course of their ARDS are needed to further assess UC-MSCs efficacy in this context. TRIAL REGISTRATION: NCT04333368. Registered 01 April 2020, https://clinicaltrials.gov/ct2/history/NCT04333368 .


Asunto(s)
COVID-19 , Células Madre Mesenquimatosas , Síndrome de Dificultad Respiratoria , Método Doble Ciego , Humanos , Síndrome de Dificultad Respiratoria/terapia , SARS-CoV-2 , Resultado del Tratamiento
2.
Cryobiology ; 99: 131-139, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-33248051

RESUMEN

The effective long-term cryopreservation of human mesenchymal stem cells is an essential prerequisite step and represents a critical approach for their sustained supply in basic research, regenerative medicine, and tissue engineering applications. Off-the-shelf availability of human umbilical cord-derived mesenchymal stromal cells (UC-MSCs) for regenerative medicine application requires the development of nontoxic, safe, and efficient protocols for cryopreservation. In the long-term low-temperature storage process of cells, traditional manual storage has a great impact on cell activity, recovery, and function due to repeated exposure of cells to room temperature. To minimize the effect of fluctuation in ambient temperature on stored cells, we designed an automatic cryopreservation system that handles cells under controlled temperatures. In this work, UC-MSCs were utilized to investigate and compare the influence of manual and automatic cryopreservation approaches. To simulate the manual process, the UC-MSCs were transferred back and forth repeatedly (up to 400 times) between the liquid nitrogen (LN2) tank (-150 °C) and room temperature by a robotic arm. Similarly, the UC-MSCs from the same batch were collected and transferred repeatedly between two storage units by the automatic cryopreservation system, where the cells were maintained below-150 °C throughout the cold chain process. Viability, percent recovery, adherence capability, cell proliferation, and multilineage differentiation ability were assessed for UC-MSCs. Compared to the manual approach, UC-MSCs handled by the automatic system demonstrated higher viability, percent recovery, and cell proliferation, as well as improved adherence to culture plate with greater potential in multilineage differentiation after 400 temperature cycles. The described entire cold chain system may provide a powerful tool to develop safe, reliable and efficient protocols for manufacturing and banking of UC-MSCs, improving their off-the-shelf availability for regenerative medicine applications.


Asunto(s)
Células Madre Mesenquimatosas , Diferenciación Celular , Proliferación Celular , Células Cultivadas , Criopreservación/métodos , Humanos , Refrigeración , Temperatura , Cordón Umbilical
3.
Cytotherapy ; 19(5): 586-602, 2017 05.
Artículo en Inglés | MEDLINE | ID: mdl-28314668

RESUMEN

BACKGROUND AIMS: Pulmonary fibrosis induced by irradiation is a significant problem of radiotherapy in cancer patients. Extracellular superoxide dismutase (SOD3) is found to be predominantly and highly expressed in the extracellular matrix of lung and plays a pivotal role against oxidative damage. Early administration of mesenchymal stromal cells (MSCs) has been demonstrated to reduce fibrosis of damaged lung. However, injection of MSCs at a later stage would be involved in fibrosis development. The present study aimed to determine whether injection of human umbilical cord-derived MSCs (UC-MSCs) over-expressing SOD3 at the established fibrosis stage would have beneficial effects in a mice model of radiation pulmonary fibrosis. METHODS: Herein, pulmonary fibrosis in mice was induced using Cobalt-60 (60Co) irradiator with 20 Gy, followed by intravenous injection of UC-MSCs, transduced or not to express SOD3 at 2 h (early delivery) and 60 day (late delivery) post-irradiation, respectively. RESULTS: Our results demonstrated that the early administration of UC-MSCs could attenuate the microscopic damage, reduce collagen deposition, inhibit (myo)fibroblast proliferation, reduce inflammatory cell infiltration, protect alveolar type II (AE2) cell injury, prevent oxidative stress and increase antioxidant status, and reduce pro-fibrotic cytokine level in serum. Furthermore, the early treatment with SOD3-infected UC-MSCs resulted in better improvement. However, we failed to observe the therapeutic effects of UC-MSCs, transduced to express SOD3, during established fibrosis. CONCLUSION: Altogether, our results demonstrated that the early treatment with UC-MSCs alone significantly reduced radiation pulmonary fibrosis in mice through paracrine effects, with further improvement by administration of SOD3-infected UC-MSCs, suggesting that SOD3-infected UC-MSCs may be a potential cell-based gene therapy to treat clinical radiation pulmonary fibrosis.


Asunto(s)
Trasplante de Células Madre Mesenquimatosas , Células Madre Mesenquimatosas/citología , Fibrosis Pulmonar/terapia , Traumatismos por Radiación/terapia , Superóxido Dismutasa/metabolismo , Células Epiteliales Alveolares/patología , Animales , Proliferación Celular , Supervivencia Celular , Colágeno/metabolismo , Citocinas/metabolismo , Modelos Animales de Enfermedad , Femenino , Homeostasis , Humanos , Inflamación/patología , Pulmón/patología , Células Madre Mesenquimatosas/metabolismo , Ratones Endogámicos C57BL , Miofibroblastos/patología , Oxidación-Reducción , Fibrosis Pulmonar/patología , Traumatismos por Radiación/patología , Suero , Cordón Umbilical/citología
4.
Cytotherapy ; 18(3): 402-12, 2016 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-26857230

RESUMEN

BACKGROUND AIMS: Specific and effective therapy for prevention or reversal of bronchiolitis obliterans (BO) is lacking. In this study, we evaluated the therapeutic effect of hepatocyte growth factor (HGF) gene modified mesenchymal stromal cells (MSCs) on BO. METHODS: A mouse model of experimental BO was established by subcutaneously transplanting the tracheas from C57BL/6 mice into Balb/C recipients, which were then administered saline, Ad-HGF-modified human umbilical cord-MSCs (MSCs-HGF) or Ad-Null-modified MSCs (MSCs-Null). The therapeutic effects of MSCs-Null and MSCs-HGF were evaluated by using fluorescence-activated cell sorting (FACS) for lymphocyte immunophenotype of spleen, enzyme-linked immunosorbent assay (ELISA) and real-time polymerase chain reaction (rt-PCR) for cytokine expression, and histopathological analysis for the transplanted trachea. RESULTS: The histopathologic recovery of allograft tracheas was improved significantly after MSCs-Null and MSCs-HGF treatment and the beneficial effects were particularly observed in MSCs-HGF-treated mice. Furthermore, the allo-transplantation-induced immunophenotype disorders of the spleen, including regulatory T (Treg), T helper (Th)1, Th2 and Th17, were attenuated in both cell-treated groups. MSCs-HGF treatment reduced expression and secretion of inflammation cytokines interferon-gamma (IFN-γ), and increased expression of anti-inflammatory cytokine interleukin (IL)-4 and IL-10. It also decreased the expression level of the profibrosis factor transforming growth factor (TGF)-ß. CONCLUSION: Treatment of BO with HGF gene modified MSCs results in reduction of local inflammation and promotion in recovery of allograft trachea histopathology. These findings might provide an effective therapeutic strategy for BO.


Asunto(s)
Bronquiolitis Obliterante/terapia , Terapia Genética/métodos , Factor de Crecimiento de Hepatocito/genética , Inflamación/prevención & control , Trasplante de Células Madre Mesenquimatosas , Cordón Umbilical/citología , Animales , Bronquiolitis Obliterante/genética , Bronquiolitis Obliterante/patología , Células Cultivadas , Modelos Animales de Enfermedad , Femenino , Factor de Crecimiento de Hepatocito/metabolismo , Humanos , Inmunomodulación/genética , Inflamación/genética , Inflamación/patología , Masculino , Células Madre Mesenquimatosas/metabolismo , Ratones , Ratones Endogámicos BALB C , Ratones Endogámicos C57BL , Linfocitos T Reguladores/inmunología
5.
Cytotherapy ; 18(5): 630-41, 2016 May.
Artículo en Inglés | MEDLINE | ID: mdl-27059200

RESUMEN

BACKGROUND AIMS: Immunomodulatory properties of human umbilical cord-derived mesenchymal stromal cells (UCMSCs) can be differentially modulated by toll-like receptors (TLR) agonists. Here, the therapeutic efficacy of short TLR3 and TLR4 pre-conditioning of UCMSCs was evaluated in a dextran sulfate sodium (DSS)-induced colitis in mice. The novelty of this study is that although modulation of human MSCs activity by TLRs is not a new concept, this is the first time that short TLR pre-conditioning has been carried out in a murine inflammatory model of acute colitis. METHODS: C57BL/6 mice were exposed to 2.5% dextran sulfate sodium (DSS) in drinking water ad libitum for 7 days. At days 1 and 3, mice were injected intraperitoneally with 1 × 10(6) UCMSCs untreated or TLR3 and TLR4 pre-conditioned UCMSCs. UCMSCs were pre-conditioned with poly(I:C) for TLR3 and LPS for TLR4 for 1 h at 37°C and 5% CO2. We evaluated clinical signs of disease and body weights daily. At the end of the experiment, colon length and histological changes were assessed. RESULTS: poly(I:C) pre-conditioned UCMSCs significantly ameliorated the clinical and histopathological severity of DSS-induced colitis compared with UCMSCs or LPS pre-conditioned UCMSCs. In contrast, infusion of LPS pre-conditioned UCMSCs significantly increased clinical signs of disease, colon shortening and histological disease index in DSS-induced colitis. CONCLUSIONS: These results show that short in vitro TLR3 pre-conditioning with poly(I:C) enhances the therapeutic efficacy of UCMSCs, which is a major breakthrough for developing improved treatments to patients with inflammatory bowel disease.


Asunto(s)
Tratamiento Basado en Trasplante de Células y Tejidos/métodos , Colitis/terapia , Trasplante de Células Madre Mesenquimatosas , Poli I-C/farmacología , Receptor Toll-Like 3/metabolismo , Receptor Toll-Like 4/metabolismo , Animales , Células Cultivadas , Colitis/inducido químicamente , Sulfato de Dextran , Modelos Animales de Enfermedad , Femenino , Humanos , Lipopolisacáridos , Prueba de Cultivo Mixto de Linfocitos , Masculino , Células Madre Mesenquimatosas/fisiología , Ratones , Ratones Endogámicos C57BL , Cordón Umbilical/citología
6.
Osteoarthritis Cartilage ; 23(1): 122-33, 2015 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-25219668

RESUMEN

OBJECTIVE: The anti-inflammatory and anti-catabolic effects of neonatal Mesenchymal Stromal Cell (MSC) were investigated in a xenogeneic model of mild osteoarthritis (OA). The paracrine properties of MSC on synoviocytes were further investigated in vitro. STUDY DESIGN: OA was induced by medial meniscal release (MMR) in 30 rabbit knees. A single early (day 3) or delayed (day 15) intra-articular (IA) injection of MSC isolated from equine Umbilical Cord Wharton's jelly (UC-MSC) was performed. Rabbits were euthanized on days 15 or 56. OA grading was performed and gene expression of inflammatory cytokines and metalloproteinases was measured in synovial tissue. Paracrine effects of UC-MSC were investigated using UC-conditioned vs control medium on rabbit primary synoviocytes stimulated with interleukin 1 beta in vitro. RESULTS: No adverse local or systemic responses were observed clinically after xenogeneic UC-MSC injection. At study end point, cartilage fibrillation was lower in early treatment than in delayed treatment group. Cellular infiltrate was observed in the synovium of both UC-MSC groups. OA synovium exhibited a reduced expression of metalloproteinases-1, -3, -13 in the early cell-treated group at d56. In vitro, UC-conditioned medium exerted anti-inflammatory and anti-catabolic effects on synoviocytes exposed to pro-inflammatory stimulus. CONCLUSIONS: Early IA injection of equine UC-MSC was effective in preventing OA signs in rabbit knees following MMR. UC-MSC target the synovium and modulate the gene expression pattern of synoviocytes to promote an anti-catabolic environment. This confirms the synovium is a major target and mediator of MSC therapy, modulating the expression of matrix-degrading enzymes.


Asunto(s)
Cartílago Articular/metabolismo , Regulación hacia Abajo/genética , Regulación de la Expresión Génica , Meniscos Tibiales/metabolismo , Trasplante de Células Madre Mesenquimatosas , Metaloproteasas/genética , Osteoartritis/enzimología , Osteoartritis/prevención & control , Membrana Sinovial/enzimología , Lesiones de Menisco Tibial , Animales , Animales Recién Nacidos , Cartílago Articular/patología , Femenino , Inyecciones Intraarticulares , Trasplante de Células Madre Mesenquimatosas/métodos , Conejos , Factores de Tiempo
7.
Cytotherapy ; 17(7): 874-84, 2015 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-25800776

RESUMEN

BACKGROUND AIMS: Multipotent mesenchymal stromal cells (MSCs) are promising candidates for innovative cell therapeutic applications. Before their use, however, they usually need to be expanded in vitro with serum-supplemented media. MSCs can undergo replicative senescence during in vitro expansion, but it is not yet clear how serum supplements influence this process. METHODS: In the present study, we compared how media supplemented with fetal bovine serum (FBS) or calf serum (CS) affected morphology, proliferation, differentiation, senescence and other functional characteristics of human umbilical cord-derived MSCs (UC-MSCs). RESULTS: UC-MSCs cultured in both FBS- and CS-containing media were able to differentiate along osteogenic and adipogenic lineages but ultimately reached proliferation arrest. However, senescence-associated characteristics, such as ß-galactosidase activity, reactive oxygen species levels, proliferation rate and gene expression, demonstrate that UC-MSCs grown with FBS have better proliferation potential and differentiation capacity. In contrast, UC-MSCs grown with CS have a higher proportion of apoptotic cells and senescent characteristics. Possible mechanisms for the observed phenotypes include changes in gene expression (Bax, p16, p21 and p53) and cytokine production (interleukin-6 and interleukin-8). CONCLUSIONS: This study demonstrates that FBS-supplemented media provides a better microenvironment for the expansion of UC-MSCs in vitro than CS-supplemented media. This work provides insight into MSCs generation practices for use in basic research and clinical therapies.


Asunto(s)
Técnicas de Cultivo de Célula/métodos , Senescencia Celular/efectos de los fármacos , Medios de Cultivo/farmacología , Células Madre Mesenquimatosas/efectos de los fármacos , Animales , Apoptosis/efectos de los fármacos , Bovinos , Diferenciación Celular/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Células Cultivadas , Humanos , Interleucina-6/biosíntesis , Interleucina-8/biosíntesis , Células Madre Mesenquimatosas/citología , Especies Reactivas de Oxígeno/metabolismo , Suero , Cordón Umbilical/citología , beta-Galactosidasa/metabolismo
8.
Cytotherapy ; 17(2): 224-31, 2015 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-25593078

RESUMEN

BACKGROUND AIMS: The objective of this study was to compare the impact of umbilical cord-derived mesenchymal stromal cell (UCMSC) transplantation on the motor functions of identical twins with cerebral palsy (CP) and to analyze the correlation between the efficacy and hereditary factors. METHODS: Eight pairs (16 individuals) of identical twins with CP were recruited and received allogenic UCMSC transplantation by means of subarachnoid injection. The gross motor function measure (GMFM) and the fine motor function measure (FMFM) were performed before and 1 and 6 months after the treatment to analyze the results of individuals before and after the therapy, between two individuals of an identical twin and among twin pairs. Repeated-measured data variance was used to analyze the GMFM and FMFM scores of patients before and 1 and 6 months after the therapy. RESULTS: Eight pairs (16 individuals) of children with CP had significant improvement in the GMFM at the end of the 1st and 6th months after the therapy compared with that before the therapy, whereas the amelioration of the FMFM was not statistically significant. The improvements in motor functions between two individuals of an identical twin but not among twin pairs were correlated. CONCLUSIONS: UCMSC transplantation significantly improves GMFM in children with CP; motor function improvements in the GMFM between two individuals of an identical twin were closely correlated, but improvements among twin pairs were not correlated. We hypothesize that hereditary factors contribute to the mechanisms of UCMSC transplantation in motor function improvement in children with CP.


Asunto(s)
Tratamiento Basado en Trasplante de Células y Tejidos/métodos , Parálisis Cerebral/terapia , Trasplante de Células Madre Mesenquimatosas , Células Madre Mesenquimatosas/fisiología , Destreza Motora/fisiología , Parálisis Cerebral/fisiopatología , Niño , Preescolar , Femenino , Humanos , Masculino , Proyectos Piloto , Gemelos Monocigóticos , Cordón Umbilical/citología
9.
Stem Cells Transl Med ; 13(3): 193-203, 2024 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-38366909

RESUMEN

Osteoarthritis (OA) is the most common degenerative joint disease. Mesenchymal stromal cells (MSC) are promising cell-based therapy for OA. However, there is still a need for additional randomized, dose-dependent studies to determine the optimal dose and tissue source of MSC for improved clinical outcomes. Here, we performed a dose-dependant evaluation of umbilical cord (UC)-derived MSC (Celllistem) in a murine model and in knee OA patients. For the preclinical study, a classical dose (200.000 cells) and a lower dose (50.000 cells) of Cellistem were intra-articularly injected into the mice knee joints. The results showed a dose efficacy response effect of Cellistem associated with a decreased inflammatory and degenerative response according to the Pritzker OARSI score. Following the same approach, the dose-escalation phase I clinical trial design included 3 sequential cohorts: low-dose group (2 × 106 cells), medium-dose group (20 × 106), and high-dose group (80 × 106). All the doses were safe, and no serious adverse events were reported. Nonetheless, 100% of the patients injected with the high-dose experienced injection-related swelling in the knee joint. According to WOMAC total outcomes, patients treated with all doses reported significant improvements in pain and function compared with baseline after 3 and 6 months. However, the improvements were higher in patients treated with both medium and low dose as compared to high dose. Therefore, our data demonstrate that the intra-articular injection of different doses of Cellistem is both safe and efficient, making it an interesting therapeutic alternative to treat mild and symptomatic knee OA patients. Trial registration ClinicalTrials.gov NCT03810521.


Asunto(s)
Trasplante de Células Madre Mesenquimatosas , Células Madre Mesenquimatosas , Osteoartritis de la Rodilla , Animales , Humanos , Ratones , Inyecciones Intraarticulares , Trasplante de Células Madre Mesenquimatosas/efectos adversos , Trasplante de Células Madre Mesenquimatosas/métodos , Osteoartritis de la Rodilla/terapia , Resultado del Tratamiento , Cordón Umbilical
10.
Stem Cell Res Ther ; 15(1): 109, 2024 Apr 19.
Artículo en Inglés | MEDLINE | ID: mdl-38637891

RESUMEN

BACKGROUND: The STROMA-CoV-2 study was a French phase 2b, multicenter, double-blind, randomized, placebo-controlled clinical trial that did not identify a significant efficacy of umbilical cord-derived mesenchymal stromal cells in patients with SARS-CoV-2-induced acute respiratory distress syndrome. Safety on day 28 was found to be good. The aim of our extended study was to assess the 6- and 12-month safety of UC-MSCs administration in the STROMA-CoV-2 cohort. METHODS: A detailed multi-domain assessment was conducted at 6 and 12 months following hospital discharge focusing on adverse events, lung computed tomography-scan, pulmonary and muscular functional status, and quality of life in the STROMA-CoV-2 cohort including SARS-CoV-2-related early (< 96 h) mild-to-severe acute respiratory distress syndrome. RESULTS: Between April 2020 and October 2020, 47 patients were enrolled, of whom 19 completed a 1-year follow-up. There were no significant differences in any endpoints or adverse effects between the UC-MSCs and placebo groups at the 6- and 12-month assessments. Ground-glass opacities persisted at 1 year in 5 patients (26.3%). Furthermore, diffusing capacity for carbon monoxide remained altered over 1 year, although no patient required oxygen or non-invasive ventilatory support. Quality of life revealed declines in mental, emotional and physical health throughout the follow-up period, and the six-minute walking distance remained slightly impaired at the 1-year patient assessment. CONCLUSIONS: This study suggests a favorable safety profile for the use of intravenous UC-MSCs in the context of the first French wave of SARS-CoV-2-related moderate-to-severe acute respiratory distress syndrome, with no adverse effects observed at 1 year.


Asunto(s)
COVID-19 , Células Madre Mesenquimatosas , Síndrome de Dificultad Respiratoria , Humanos , COVID-19/terapia , Método Doble Ciego , Calidad de Vida , Síndrome de Dificultad Respiratoria/tratamiento farmacológico , SARS-CoV-2 , Resultado del Tratamiento , Cordón Umbilical
11.
Cytotherapy ; 15(10): 1208-17, 2013 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-23850421

RESUMEN

BACKGROUND AIMS: Human umbilical cord-derived mesenchymal stromal cells (UC-MSCs) possess broad and potent immunomodulatory activities and have shown great potential in anti-inflammatory therapies. However, a biomarker that can be used to assess quickly and efficiently the immunomodulatory function of UC-MSCs has not been identified. Several studies have revealed that galectin-3 (Gal-3), a member of the human galectin family, is involved in the immunosuppressive function of MSCs. METHODS: Gal-3 gene expression in UC-MSCs was analyzed using quantitative reverse transcriptase polymerase chain reaction and Western blotting. Blocking of Gal-3 expression in UC-MSCs with small interfering RNA was employed to analyze whether the immunosuppressive function of UC-MSCs was affected. RESULTS: We found that UC-MSCs expressed Gal-3 both on the cell surface and in secreted form, and the expression levels of Gal-3 did not show significant variation after cell passaging. We further showed that Gal-3 expression correlated with the immunosuppressive function of UC-MSCs because knock-down of Gal-3 expression with small interfering RNA significantly abrogated the inhibitory effects of UC-MSCs on mitogen-stimulated and alloantigen-stimulated proliferation of human peripheral blood mononuclear cells; meanwhile, the inhibitory effect of UC-MSCs was reversed by adding back recombinant Gal-3 to the co-culture systems. The inhibitory activities of human UC-MSCs were not reduced even when they were separated from human peripheral blood mononuclear cells in a transwell co-culture system, indicating that the soluble form of Gal-3 was the major effector. CONCLUSIONS: The Gal-3 protein secreted by UC-MSCs shows good correlation with immunosuppressive potential and may serve as a possible biomarker for the potency test of UC-MSCs.


Asunto(s)
Biomarcadores/metabolismo , Galectina 3/metabolismo , Leucocitos Mononucleares/inmunología , Células Madre Mesenquimatosas/inmunología , Proliferación Celular , Células Cultivadas , Técnicas de Cocultivo , Galectina 3/genética , Regulación de la Expresión Génica/genética , Humanos , Inmunomodulación/efectos de los fármacos , Inmunomodulación/genética , Células Madre Mesenquimatosas/efectos de los fármacos , ARN Interferente Pequeño/genética , Proteínas Recombinantes/farmacología , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Cordón Umbilical/citología
12.
Int Immunopharmacol ; 123: 110456, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37494836

RESUMEN

BACKGROUND: Few effective anti-fibrotic therapies are currently available for liver cirrhosis. Mesenchymal stromal cells (MSCs) ameliorate liver fibrosis and contribute to liver regeneration after cirrhosis, attracting much attention as a potential therapeutic strategy for the disease. However, the underlying molecular mechanism of their therapeutic effect is still unclear. Here, we investigated the effect of human umbilical cord-derived mesenchymal stromal cells (hUC-MSCs) in treating liver cirrhosis and their underlying mechanisms. METHODS: We used carbon tetrachloride (CCl4)-induced mice as liver cirrhosis models and treated them with hUC-MSCs via tail vein injection. We assessed the changes in liver function, inflammation, and fibrosis by histopathology and serum biochemistry and explored the mechanism of hUC-MSCs by RNA sequencing (RNA-seq) using liver tissues. In addition, we investigated the effects of hUC-MSCs on hepatic stellate cells (HSC) and macrophages by in vitro co-culture experiments. RESULTS: We found that hUC-MSCs considerably improved liver function and attenuated liver inflammation and fibrosis in CCl4-injured mice. We also showed that these cells exerted therapeutic effects by regulating the Hippo/YAP/Id1 axis in vivo. Our in vitro experiments demonstrated that hUC-MSCs inhibit HSC activation by regulating the Hippo/YAP signaling pathway and targeting Id1. Moreover, hUC-MSCs also alleviated liver inflammation by promoting the transformation of macrophages to an anti-inflammatory phenotype. CONCLUSIONS: Our study reveals that hUC-MSCs relieve liver cirrhosis in mice through the Hippo/YAP/Id1 pathway and macrophage-dependent mechanisms, providing a theoretical basis for the future use of these cells as a potential therapeutic strategy for patients with liver cirrhosis.


Asunto(s)
Trasplante de Células Madre Mesenquimatosas , Células Madre Mesenquimatosas , Animales , Humanos , Ratones , Fibrosis , Inflamación/metabolismo , Cirrosis Hepática/inducido químicamente , Cirrosis Hepática/terapia , Cirrosis Hepática/metabolismo , Macrófagos/metabolismo , Células Madre Mesenquimatosas/metabolismo , Cordón Umbilical , Vía de Señalización Hippo , Proteínas Señalizadoras YAP/metabolismo , Proteína 1 Inhibidora de la Diferenciación/metabolismo
13.
Hum Cell ; 36(1): 163-177, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-36224488

RESUMEN

It has been proven that intra-articular injection of mesenchymal stromal cells (MSCs) can alleviate cartilage damage in osteoarthritis (OA) by differentiating into chondrocytes and protecting inherent cartilage. However, the mechanism by which the OA articular microenvironment affects MSCs' therapeutic efficiency is yet to be fully elucidated. The aryl hydrocarbon receptor (AHR) is a ligand-activated transcription factor involved in various cellular processes, such as osteogenesis and immune regulation. Tryptophan (Trp) metabolites, most of which are endogenous ligand for AHR, are abnormally increased in synovial fluid (SF) of OA and rheumatoid arthritis (RA) patients. In this study, the effects of kynurenine (KYN), one of the most important metabolites of Trp, were evaluated on the chondrogenic and chondroprotective effects of human umbilical cord-derived mesenchymal stromal cells (hUC-MSCs). hUC-MSCs were cultured in conditioned medium containing different proportions of OA/RA SF, or stimulated with KYN directly, and then, AHR activation, proliferation, and chondrogenesis of hUC-MSCs were measured. Moreover, the chondroprotective efficiency of short hairpin-AHR-UC-MSC (shAHR-UC-MSC) was determined in a rat surgical OA model (right hind joint). OA SF could activate AHR signaling in hUC-MSCs in a concentration-dependent manner and inhibit the chondrogenic differentiation and proliferation ability of hUC-MSCs. Similar results were observed in hUC-MSCs stimulated with KYN in vitro. Notably, shAHR-UC-MSC exhibited superior therapeutic efficiency in OA rat upon intra-articular injection. Taken together, this study indicates that OA articular microenvironment is not conducive to the therapeutic effect of hUC-MSCs, which is related to the activation of the AHR pathway by tryptophan metabolites, and thus impairs the chondrogenic and chondroprotective effects of hUC-MSCs. AHR might be a promising modification target for further improving the therapeutic efficacy of hUC-MSCs on treatment of cartilage-related diseases such as OA.


Asunto(s)
Artritis Reumatoide , Células Madre Mesenquimatosas , Osteoartritis , Receptores de Hidrocarburo de Aril , Animales , Humanos , Ratas , Artritis Reumatoide/metabolismo , Diferenciación Celular , Condrogénesis , Quinurenina/metabolismo , Quinurenina/farmacología , Ligandos , Trasplante de Células Madre Mesenquimatosas , Células Madre Mesenquimatosas/metabolismo , Osteoartritis/metabolismo , Osteoartritis/terapia , Receptores de Hidrocarburo de Aril/agonistas , Receptores de Hidrocarburo de Aril/metabolismo , Triptófano/metabolismo , Triptófano/farmacología , Cordón Umbilical/citología
14.
Cureus ; 15(11): e49645, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-38033439

RESUMEN

Evidence from preclinical and clinical studies suggests that human umbilical cord-derived mesenchymal stromal cells (HUC-MSCs) may be useful in treating heart failure and acute myocardial infarction (MI). However, the effects of stem cell therapy on patients with heart failure remain the subject of ongoing controversy, and the safety and effectiveness of HUC-MSCs therapy have not yet been proven. To date, there has been no systematic overview and meta-analysis of clinical studies using HUC-MSCs therapy for heart failure and MI. The purpose of this study is to assess the safety and efficacy of HUC-MSC therapy versus a placebo in patients with heart failure and MI. While preparing this systematic review and meta-analysis, we adhered to the Preferred Reporting Items for Systematic Reviews and Meta-Analyses guidelines. A computer literature search of PubMed was performed. We considered randomized controlled trials (RCTs) that reported data on the safety and efficacy of HUC-MSC transplantation in patients with heart failure and MI. Two investigators independently searched the literature, extracted data, and rated the quality of the included research. Pooled data were analyzed using the fixed-effect model or the random-effect model in Review Manager 5.3. The Cochrane risk of bias tool was used to assess the bias of included studies. The primary outcome was ejection fraction (EF), whereas the secondary outcomes were readmission and mortality rates. Three RCTs (201 patients) were included in this meta-analysis. The overall effect did not favor either of the two groups in terms of risk of readmission (risk ratio = 0.5, 95% confidence interval (CI) = 0.22-1.15, p = 0.10) as well as mortality rate (risk ratio = 0.44, 95% CI = 0.14-1.44, p = 0.18). However, there was an improvement in EF in patients who received HUC-MSCs compared to placebo after 12 months of transplantation (mean difference (MD) = 3.21, 95% CI = 2.91-3.51, p < 0.00001). At the six-month follow-up period, there was no significant improvement in EF (MD = 1.30, 95% CI = -1.94-4.54), p = 0.43), indicating that the duration of follow-up can shape the response to therapy. Our findings indicate that HUC-MSC transplantation can improve EF but has no meaningful effect on readmission or mortality rates. Existing evidence is insufficient to confirm the efficacy of HUC-MSCs for broader therapeutic applications. Therefore, additional double-blind RCTs with larger sample sizes are required.

15.
Cells ; 12(12)2023 06 19.
Artículo en Inglés | MEDLINE | ID: mdl-37371134

RESUMEN

Coronavirus disease 2019 (COVID-19), the pandemic caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), which counts more than 650 million cases and more than 6.6 million of deaths worldwide, affects the respiratory system with typical symptoms such as fever, cough, sore throat, acute respiratory distress syndrome (ARDS), and fatigue. Other nonpulmonary manifestations are related with abnormal inflammatory response, the "cytokine storm", that could lead to a multiorgan disease and to death. Evolution of effective vaccines against SARS-CoV-2 provided multiple options to prevent the infection, but the treatment of the severe forms remains difficult to manage. The cytokine storm is usually counteracted with standard medical care and anti-inflammatory drugs, but researchers moved forward their studies on new strategies based on cell therapy approaches. The perinatal tissues, such as placental membranes, amniotic fluid, and umbilical cord derivatives, are enriched in mesenchymal stromal cells (MSCs) that exert a well-known anti-inflammatory role, immune response modulation, and tissue repair. In this review, we focused on umbilical-cord-derived MSCs (UC-MSCs) used in in vitro and in vivo studies in order to evaluate the weakening of the severe symptoms, and on recent clinical trials from different databases, supporting the favorable potential of UC-MSCs as therapeutic strategy.


Asunto(s)
COVID-19 , Células Madre Mesenquimatosas , Embarazo , Femenino , Humanos , COVID-19/metabolismo , Pandemias , SARS-CoV-2/metabolismo , Vacunas contra la COVID-19 , Placenta/metabolismo , Cordón Umbilical , Citocinas/metabolismo , Células Madre Mesenquimatosas/metabolismo
16.
Int J Hematol ; 116(5): 754-769, 2022 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-35908021

RESUMEN

This study investigated the safety, efficacy, and immunological influence of allogeneic umbilical cord-derived mesenchymal stromal cells (IMSUT-CORD) processed in serum-free medium and cryoprotectant, for treating steroid-resistant acute graft-versus-host disease (aGVHD). In a phase I dose-escalation trial, IMSUT-CORD were infused intravenously twice weekly over two cycles with up to two additional cycles. Four patients received a dose of 1 × 106 cells/kg, while three received 2 × 106/kg. Of 76 total adverse events, fourteen associated or possibly associated adverse events included 2 cases of a hot flash, headache, and peripheral neuropathy, 1 each of upper abdominal pain, hypoxia, increased γ-GTP, somnolence, peripheral vascular pain at the injection site, thrombocytopenia, hypertension, and decreased fibrinogen. At 16 weeks after the initial IMSUT-CORD infusion, three patients showed complete response (CR), two partial response (PR), one mixed response, and one no response. The overall response rate was 71.4%, and the continuous CR/PR rate was 100% for over 28 days after CR/PR. NK cell count significantly increased and correlated with treatment response, whereas IL-12, IL-17, and IL-33 levels decreased, but did not correlate with treatment response. CCL2 and CCL11 levels increased during IMSUT-CORD therapy. IMSUT-CORD are usable in patients with steroid-resistant aGVHD (UMIN000032819: https://www.umin.ac.jp/ctr ).


Asunto(s)
Enfermedad Injerto contra Huésped , Trasplante de Células Madre Mesenquimatosas , Células Madre Mesenquimatosas , Humanos , Fibrinógeno/uso terapéutico , Enfermedad Injerto contra Huésped/terapia , Enfermedad Injerto contra Huésped/tratamiento farmacológico , Guanosina Trifosfato/uso terapéutico , Interleucina-12/uso terapéutico , Interleucina-17/uso terapéutico , Interleucina-33/uso terapéutico , Trasplante de Células Madre Mesenquimatosas/efectos adversos , Esteroides/uso terapéutico , Cordón Umbilical
17.
Stem Cell Res Ther ; 12(1): 230, 2021 04 12.
Artículo en Inglés | MEDLINE | ID: mdl-33845892

RESUMEN

BACKGROUND: Pulmonary fibrosis (PF), the end point of interstitial lung diseases, is characterized by myofibroblast over differentiation and excessive extracellular matrix accumulation, leading to progressive organ dysfunction and usually a terminal outcome. Studies have shown that umbilical cord-derived mesenchymal stromal cells (uMSCs) could alleviate PF; however, the underlying mechanism remains to be elucidated. METHODS: The therapeutic effects of uMSC-derived extracellular vesicles (uMSC-EVs) on PF were evaluated using bleomycin (BLM)-induced mouse models. Then, the role and mechanism of uMSC-EVs in inhibiting myofibroblast differentiation were investigated in vivo and in vitro. RESULTS: Treatment with uMSC-EVs alleviated the PF and enhanced the proliferation of alveolar epithelial cells in BLM-induced mice, thus improved the life quality, including the survival rate, body weight, fibrosis degree, and myofibroblast over differentiation of lung tissue. Moreover, these effects of uMSC-EVs on PF are likely achieved by inhibiting the transforming growth factor-ß (TGF-ß) signaling pathway, evidenced by decreased expression levels of TGF-ß2 and TGF-ßR2. Using mimics of uMSC-EV-specific miRNAs, we found that miR-21 and miR-23, which are highly enriched in uMSC-EVs, played a critical role in inhibiting TGF-ß2 and TGF-ßR2, respectively. CONCLUSION: The effects of uMSCs on PF alleviation are likely achieved via EVs, which reveals a new role of uMSC-EV-derived miRNAs, opening a novel strategy for PF treatment in the clinical setting.


Asunto(s)
Vesículas Extracelulares , Células Madre Mesenquimatosas , Fibrosis Pulmonar , Animales , Bleomicina/toxicidad , Ratones , Fibrosis Pulmonar/inducido químicamente , Fibrosis Pulmonar/genética , Fibrosis Pulmonar/terapia , Transducción de Señal , Factor de Crecimiento Transformador beta/genética , Factores de Crecimiento Transformadores , Cordón Umbilical
18.
J Extracell Vesicles ; 10(8): e12094, 2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-34136108

RESUMEN

Extracellular vesicles (EVs) derived from the secretome of human mesenchymal stromal cells (MSC) contain numerous factors that are known to exert anti-inflammatory effects. MSC-EVs may serve as promising cell-based therapeutics for the inner ear to attenuate inflammation-based side effects from cochlear implantation which represents an unmet clinical need. In an individual treatment performed on a 'named patient basis', we intraoperatively applied allogeneic umbilical cord-derived MSC-EVs (UC-MSC-EVs) produced according to good manufacturing practice. A 55-year-old patient suffering from Menière's disease was treated with intracochlear delivery of EVs prior to the insertion of a cochlear implant. This first-in-human use of UC-MSC-EVs demonstrates the feasibility of this novel adjuvant therapeutic approach. The safety and efficacy of intracochlear EV-application to attenuate side effects of cochlea implants have to be determined in controlled clinical trials.


Asunto(s)
Implantación Coclear/métodos , Vesículas Extracelulares/trasplante , Trasplante de Células Madre Mesenquimatosas/métodos , Diferenciación Celular , Implantes Cocleares/efectos adversos , Citocinas/metabolismo , Oído Interno/citología , Vesículas Extracelulares/metabolismo , Humanos , Masculino , Células Madre Mesenquimatosas/fisiología , Persona de Mediana Edad , Proyectos Piloto , Cordón Umbilical/metabolismo
19.
Theranostics ; 10(5): 2293-2308, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32089743

RESUMEN

Osteoporosis and osteoporotic fractures severely compromise quality of life in elderly people and lead to early death. Human umbilical cord mesenchymal stromal cell (MSC)-derived extracellular vesicles (hucMSC-EVs) possess considerable therapeutic effects in tissue repair and regeneration. Thus, in the present study, we investigated the effects of hucMSC-EVs on primary and secondary osteoporosis and explored the underlying mechanisms. Methods: hucMSCs were isolated and cultured. EVs were obtained from the conditioned medium of hucMSCs and determined by using transmission electron microscopy, dynamic light scattering and Western Blot analyses. The effects of hucMSC-EVs on ovariectomy-induced postmenopausal osteoporosis and tail suspension-induced hindlimb disuse osteoporosis in mouse models were assessed by using microcomputed tomography, biomechanical, histochemical and immunohistochemical, as well as histomorphometric analyses. Proteomic analysis was applied between hucMSC-EVs and hucMSCs to screen the candidate proteins that mediate hucMSC-EVs function. The effects of hucMSC-EVs on osteogenic and adipogenic differentiation of bone marrow mesenchymal stromal cells (BMSCs), and osteoclastogenesis of the macrophage cell line RAW264.7 in vitro were determined by using cytochemical staining and quantitative real-time PCR analysis. Subsequently, the roles of the key protein in hucMSC-EVs-induced regulation on BMSCs and RAW264.7 cells were evaluated. Results: hucMSCs were able to differentiate into osteoblasts, adipocytes or chondrocytes and positively expressed CD29, CD44, CD73 and CD90, but negatively expressed CD34 and CD45. The morphological assessment revealed the typical cup- or sphere-shaped morphology of hucMSC-EVs with diameters predominantly ranging from 60 nm to 150 nm and expressed CD9, CD63, CD81 and TSG101. The systemic administration of hucMSC-EVs prevented bone loss and maintained bone strength in osteoporotic mice by enhancing bone formation, reducing marrow fat accumulation and decreasing bone resorption. Proteomic analysis showed that the potently pro-osteogenic protein, CLEC11A (C-type lectin domain family 11, member A) was very highly enriched in hucMSC-EVs. In addition, hucMSC-EVs enhanced the shift from adipogenic to osteogenic differentiation of BMSCs via delivering CLEC11A in vitro. Moreover, CLEC11A was required for the inhibitory effects of hucMSC-EVs on osteoclast formation. Conclusion: Our results suggest that hucMSC-EVs serve as a critical regulator of bone metabolism by transferring CLEC11A and may represent a potential agent for prevention and treatment of osteoporosis.


Asunto(s)
Huesos/metabolismo , Vesículas Extracelulares/metabolismo , Factores de Crecimiento de Célula Hematopoyética/metabolismo , Lectinas Tipo C/metabolismo , Células Madre Mesenquimatosas/metabolismo , Osteoporosis/metabolismo , Cordón Umbilical/metabolismo , Adipocitos/metabolismo , Adipogénesis , Animales , Médula Ósea/metabolismo , Diferenciación Celular , Condrocitos/metabolismo , Modelos Animales de Enfermedad , Humanos , Ratones , Osteoblastos/metabolismo , Osteogénesis , Osteoporosis/patología , Proteómica , Células RAW 264.7 , Cordón Umbilical/citología , Microtomografía por Rayos X
20.
Acta Histochem ; 122(6): 151578, 2020 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-32778240

RESUMEN

OBJECTIVE: Human umbilical cord-derived mesenchymal stromal cells (hUC-MSCs) gained importance in acute/chronic ischemic cardiomyopathy because of their outstanding regenerative potential in various pathologic conditions. The present study was designed to determine to what extent hUC-MSCs contribute to myocardial regeneration in acute experimental myocardial infarction (MI) in rats. METHODS: Animals were assigned into two groups; the control group received intramyocardial PBS injections, while the hUC-MSC group received calcein-AM-labeled 8.8 × 106/kg hUC-MSCs. Three weeks following the acute MI induction, rats were sacrificed after assessing the left ventricular (LV) function using echocardiography. For the assessment of infarct size, the triphenyl tetrazolium chloride (TTC) test was used in isolated hearts. Collagen-rich scar tissue was demonstrated using Masson's trichrome staining, followed by the detection of cardiac troponin I (cTnI), α-sarcomeric actin (α-SA), von Willebrand factor (vWF), CD68 and CD206 expressions in control and cell-injected sections. RESULTS: Echocardiography revealed a significant difference (P = 0.037) in the LV ejection fraction between groups. TTC assays demonstrated a significant difference (P = 0.006) between the groups regarding the ratio of the infarcted LV area. Calcein-AM-loaded cells were identified mostly in ischemic myocardium. Transplanted cells also expressed human-specific cTnI, providing concrete proof of transdifferentiation into cardiomyocytes, and α-SA. vWF+ cells verified the neovascularization in the ischemic myocardium. Finally, a slight shift from pro-inflammatory to anti-inflammatory macrophages (CD68+/CD206+) was noted in both groups. CONCLUSIONS: We found that the intramyocardial transplanted hUC-MSCs engrafted and partially transdifferentiated into cardiomyocytes, reduced scar formation, and induced angiogenesis through the association of pro/anti-inflammatory macrophages.


Asunto(s)
Células Madre Mesenquimatosas/citología , Isquemia Miocárdica/metabolismo , Isquemia Miocárdica/patología , Miocitos Cardíacos/citología , Cordón Umbilical/citología , Animales , Células Cultivadas , Ecocardiografía , Femenino , Humanos , Inmunohistoquímica , Masculino , Células Madre Mesenquimatosas/metabolismo , Miocitos Cardíacos/metabolismo , Neovascularización Fisiológica/fisiología , Embarazo , Ratas , Ratas Wistar
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda