Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 20 de 933
Filtrar
Más filtros

Publication year range
1.
Annu Rev Immunol ; 39: 449-479, 2021 04 26.
Artículo en Inglés | MEDLINE | ID: mdl-33902310

RESUMEN

The immune system has coevolved with extensive microbial communities living on barrier sites that are collectively known as the microbiota. It is increasingly clear that microbial antigens and metabolites engage in a constant dialogue with the immune system, leading to microbiota-specific immune responses that occur in the absence of inflammation. This form of homeostatic immunity encompasses many arms of immunity, including B cell responses, innate-like T cells, and conventional T helper and T regulatory responses. In this review we summarize known examples of innate-like T cell and adaptive immunity to the microbiota, focusing on fundamental aspects of commensal immune recognition across different barrier sites. Furthermore, we explore how this cross talk is established during development, emphasizing critical temporal windows that establish long-term immune function. Finally, we highlight how dysregulation of immunity to the microbiota can lead to inflammation and disease, and we pinpoint outstanding questions and controversies regarding immune system-microbiota interactions.


Asunto(s)
Microbiota , Inmunidad Adaptativa , Animales , Linfocitos B , Humanos , Inmunidad Innata , Linfocitos T
2.
Annu Rev Immunol ; 38: 203-228, 2020 04 26.
Artículo en Inglés | MEDLINE | ID: mdl-31986071

RESUMEN

Mucosal-associated invariant T (MAIT) cells have been attracting increasing attention over the last few years as a potent unconventional T cell subset. Three factors largely account for this emerging interest. Firstly, these cells are abundant in humans, both in circulation and especially in some tissues such as the liver. Secondly is the discovery of a ligand that has uncovered their microbial targets, and also allowed for the development of tools to accurately track the cells in both humans and mice. Finally, it appears that the cells not only have a diverse range of functions but also are sensitive to a range of inflammatory triggers that can enhance or even bypass T cell receptor-mediated signals-substantially broadening their likely impact in health and disease. In this review we discuss how MAIT cells display antimicrobial, homeostatic, and amplifier roles in vivo, and how this may lead to protection and potentially pathology.


Asunto(s)
Susceptibilidad a Enfermedades , Homeostasis , Células T Invariantes Asociadas a Mucosa/inmunología , Células T Invariantes Asociadas a Mucosa/metabolismo , Animales , Biomarcadores , Interacciones Huésped-Patógeno , Humanos , Inmunidad Mucosa , Membrana Mucosa/inmunología , Membrana Mucosa/metabolismo , Membrana Mucosa/microbiología , Transducción de Señal , Subgrupos de Linfocitos T/inmunología , Subgrupos de Linfocitos T/metabolismo
3.
Cell ; 181(3): 637-652.e15, 2020 04 30.
Artículo en Inglés | MEDLINE | ID: mdl-32272059

RESUMEN

Many cytosolic proteins lacking a signal peptide, called leaderless cargoes, are secreted through unconventional secretion. Vesicle trafficking is a major pathway involved. It is unclear how leaderless cargoes enter into the vesicle. Here, we find a translocation pathway regulating vesicle entry and secretion of leaderless cargoes. We identify TMED10 as a protein channel for the vesicle entry and secretion of many leaderless cargoes. The interaction of TMED10 C-terminal region with a motif in the cargo accounts for the selective release of the cargoes. In an in vitro reconstitution assay, TMED10 directly mediates the membrane translocation of leaderless cargoes into the liposome, which is dependent on protein unfolding and enhanced by HSP90s. In the cell, TMED10 localizes on the endoplasmic reticulum (ER)-Golgi intermediate compartment and directs the entry of cargoes into this compartment. Furthermore, cargo induces the formation of TMED10 homo-oligomers which may act as a protein channel for cargo translocation.


Asunto(s)
Sistemas de Translocación de Proteínas/metabolismo , Proteínas de Transporte Vesicular/metabolismo , Animales , Transporte Biológico , Línea Celular , Línea Celular Tumoral , Membrana Celular/metabolismo , Citosol/metabolismo , Retículo Endoplásmico/metabolismo , Aparato de Golgi/metabolismo , Humanos , Ratones , Ratones Endogámicos C57BL , Señales de Clasificación de Proteína , Sistemas de Translocación de Proteínas/fisiología , Transporte de Proteínas/fisiología , Proteínas/metabolismo , Vías Secretoras , Proteínas de Transporte Vesicular/fisiología
4.
Cell ; 178(2): 346-360.e24, 2019 07 11.
Artículo en Inglés | MEDLINE | ID: mdl-31257026

RESUMEN

Neutrophils are a component of the tumor microenvironment and have been predominantly associated with cancer progression. Using a genetic approach complemented by adoptive transfer, we found that neutrophils are essential for resistance against primary 3-methylcholantrene-induced carcinogenesis. Neutrophils were essential for the activation of an interferon-γ-dependent pathway of immune resistance, associated with polarization of a subset of CD4- CD8- unconventional αß T cells (UTCαß). Bulk and single-cell RNA sequencing (scRNA-seq) analyses unveiled the innate-like features and diversity of UTCαß associated with neutrophil-dependent anti-sarcoma immunity. In selected human tumors, including undifferentiated pleomorphic sarcoma, CSF3R expression, a neutrophil signature and neutrophil infiltration were associated with a type 1 immune response and better clinical outcome. Thus, neutrophils driving UTCαß polarization and type 1 immunity are essential for resistance against murine sarcomas and selected human tumors.


Asunto(s)
Resistencia a la Enfermedad , Neoplasias/patología , Neutrófilos/inmunología , Sarcoma/patología , Linfocitos T/metabolismo , Animales , Cromonas/toxicidad , Resistencia a la Enfermedad/inmunología , Humanos , Inmunidad Innata , Interferón gamma/genética , Interferón gamma/metabolismo , Interleucina-12/genética , Interleucina-12/metabolismo , Estimación de Kaplan-Meier , Macrófagos/inmunología , Macrófagos/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Neoplasias/inmunología , Neoplasias/mortalidad , Infiltración Neutrófila , Neutrófilos/citología , Neutrófilos/metabolismo , Receptores del Factor Estimulante de Colonias/metabolismo , Sarcoma/inducido químicamente , Sarcoma/inmunología , Linfocitos T/citología , Linfocitos T/inmunología , Microambiente Tumoral
5.
Mol Cell ; 84(12): 2337-2352.e9, 2024 Jun 20.
Artículo en Inglés | MEDLINE | ID: mdl-38870935

RESUMEN

Ribosome assembly requires precise coordination between the production and assembly of ribosomal components. Mutations in ribosomal proteins that inhibit the assembly process or ribosome function are often associated with ribosomopathies, some of which are linked to defects in proteostasis. In this study, we examine the interplay between several yeast proteostasis enzymes, including deubiquitylases (DUBs) Ubp2 and Ubp14, and E3 ligases Ufd4 and Hul5, and we explore their roles in the regulation of the cellular levels of K29-linked unanchored polyubiquitin (polyUb) chains. Accumulating K29-linked unanchored polyUb chains associate with maturing ribosomes to disrupt their assembly, activate the ribosome assembly stress response (RASTR), and lead to the sequestration of ribosomal proteins at the intranuclear quality control compartment (INQ). These findings reveal the physiological relevance of INQ and provide insights into mechanisms of cellular toxicity associated with ribosomopathies.


Asunto(s)
Poliubiquitina , Proteínas Ribosómicas , Ribosomas , Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae , Proteínas Ribosómicas/metabolismo , Proteínas Ribosómicas/genética , Ribosomas/metabolismo , Ribosomas/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Poliubiquitina/metabolismo , Poliubiquitina/genética , Ubiquitina-Proteína Ligasas/metabolismo , Ubiquitina-Proteína Ligasas/genética , Ubiquitinación , Proteostasis , Núcleo Celular/metabolismo
6.
Mol Cell ; 81(16): 3275-3293.e12, 2021 08 19.
Artículo en Inglés | MEDLINE | ID: mdl-34245671

RESUMEN

Cells communicate with their environment via surface proteins and secreted factors. Unconventional protein secretion (UPS) is an evolutionarily conserved process, via which distinct cargo proteins are secreted upon stress. Most UPS types depend upon the Golgi-associated GRASP55 protein. However, its regulation and biological role remain poorly understood. Here, we show that the mechanistic target of rapamycin complex 1 (mTORC1) directly phosphorylates GRASP55 to maintain its Golgi localization, thus revealing a physiological role for mTORC1 at this organelle. Stimuli that inhibit mTORC1 cause GRASP55 dephosphorylation and relocalization to UPS compartments. Through multiple, unbiased, proteomic analyses, we identify numerous cargoes that follow this unconventional secretory route to reshape the cellular secretome and surfactome. Using MMP2 secretion as a proxy for UPS, we provide important insights on its regulation and physiological role. Collectively, our findings reveal the mTORC1-GRASP55 signaling hub as the integration point in stress signaling upstream of UPS and as a key coordinator of the cellular adaptation to stress.


Asunto(s)
Proteínas de la Matriz de Golgi/genética , Proteoma/genética , Proteómica , Estrés Fisiológico/genética , Matriz Extracelular/genética , Aparato de Golgi/genética , Humanos , Diana Mecanicista del Complejo 1 de la Rapamicina/genética , Proteínas de la Membrana/genética , Transporte de Proteínas/genética , Transducción de Señal/genética
7.
Semin Immunol ; 69: 101811, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37473560

RESUMEN

Unconventional protein secretion (UPS) allows the release of specific leaderless proteins independently of the classical endoplasmic reticulum (ER)-Golgi secretory pathway. While it remains one of the least understood mechanisms in cell biology, UPS plays an essential role in immunity as it controls the release of the IL-1 family of cytokines, which coordinate host defense and inflammatory responses. The unconventional secretion of IL-1ß and IL-18, the two most prominent members of the IL-1 family, is initiated by inflammasome complexes - cytosolic signaling platforms that are assembled in response to infectious or noxious stimuli. Inflammasomes activate inflammatory caspases that proteolytically mature IL-1ß/- 18, but also induce pyroptosis, a lytic form of cell death. Pyroptosis is caused by gasdermin-D (GSDMD), a member of the gasdermin protein family, which is activated by caspase cleavage and forms large ß-barrel plasma membrane pores. This pore-forming activity is shared with other family members that are activated during infection or upon treatment with chemotherapy drugs. While the induction of cell death was assumed to be the main function of gasdermin pores, accumulating evidence suggests that they have also non-lytic functions, such as in the release of cytokines and alarmins, or in regulating ion fluxes. This has raised the possibility that gasdermin pores are one of the main mediators of UPS. Here, I summarize and discuss new insights into gasdermin activation and pore formation, how gasdermin pores achieve selective cargo release, and how gasdermin pore formation and ninjurin-1-driven plasma membrane rupture are executed and regulated.


Asunto(s)
Gasderminas , Piroptosis , Humanos , Piroptosis/fisiología , Inflamasomas , Caspasas/metabolismo , Citocinas/metabolismo , Interleucina-1/metabolismo
8.
Semin Immunol ; 70: 101834, 2023 11.
Artículo en Inglés | MEDLINE | ID: mdl-37659169

RESUMEN

T cell survival, differentiation after stimulation, and function are intrinsically linked to distinct cellular metabolic states. The ability of T cells to readily transition between metabolic states enables flexibility to meet the changing energy demands defined by distinct effector states or T cell lineages. Immune aging is characterized, in part, by the loss of naïve T cells, accumulation of senescent T cells, severe dysfunction in memory phenotype T cells in particular, and elevated levels of inflammatory cytokines, or 'inflammaging'. Here, we review our current understanding of the phenotypic and functional changes that occur with aging in T cells, and how they relate to metabolic changes in the steady state and after T cell activation. We discuss the apparent contradictions in the aging T cell phenotype - where enhanced differentiation states and metabolic profiles in the steady state can correspond to a diminished capacity to adapt metabolically and functionally after T cell activation. Finally, we discuss key recent studies that indicate the enormous potential for aged T cell metabolism to induce systemic inflammaging and organism-wide multimorbidity, resulting in premature death.


Asunto(s)
Envejecimiento , Linfocitos T , Humanos , Anciano , Diferenciación Celular , Activación de Linfocitos , Citocinas/metabolismo
9.
Trends Biochem Sci ; 47(8): 699-709, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35490075

RESUMEN

In recent years, a surprisingly complex picture emerged about endoplasmic reticulum (ER)/Golgi-independent secretory pathways, and several routes have been discovered that differ with regard to their molecular mechanisms and machineries. Fibroblast growth factor 2 (FGF2) is secreted by a pathway of unconventional protein secretion (UPS) that is based on direct self-translocation across the plasma membrane. Building on previous research, a component of this process has been identified to be glypican-1 (GPC1), a GPI-anchored heparan sulfate proteoglycan located on cell surfaces. These findings not only shed light on the molecular mechanism underlying this process but also reveal an intimate relationship between FGF2 and GPC1 that might be of critical relevance for the prominent roles they both have in tumor progression and metastasis.


Asunto(s)
Factor 2 de Crecimiento de Fibroblastos , Aparato de Golgi , Animales , Transporte Biológico , Membrana Celular/metabolismo , Factor 2 de Crecimiento de Fibroblastos/metabolismo , Aparato de Golgi/metabolismo , Mamíferos , Transporte de Proteínas
10.
Mol Cell Proteomics ; : 100854, 2024 Oct 08.
Artículo en Inglés | MEDLINE | ID: mdl-39389361

RESUMEN

Ubiquitin carboxyl-terminal hydrolase 19 (USP19) is a unique deubiquitinase (DUB), characterized by multiple variants generated by alternative splicing. Several variants bear a C-terminal transmembrane domain that anchors them to the endoplasmic reticulum (ER). Other than regulating protein stability by preventing proteasome degradation, USP19 has been reported to rescue substrates from ER-associated protein degradation (ERAD) in a catalytic-independent manner, promote autophagy and address proteins to lysosomal degradation via endosomal microautophagy. USP19 has recently emerged as the protein responsible for the unconventional secretion of misfolded proteins including Parkinson's disease-associated protein α-synuclein. Despite mounting evidence that USP19 plays crucial roles in several biological processes, the underlying mechanisms are unclear due to lack of information on the physiological substrates of USP19. Herein, we used high-resolution quantitative proteomics to analyze changes in the secretome and cell proteome induced by loss of USP19 to identify proteins whose secretion or turnover is regulated by USP19. We found that ablation of USP19 induced significant proteomic alterations both in and out of the cell. Loss of USP19 impaired the release of several lysosomal proteins, including legumain (LGMN) and several cathepsins. In order to understand the underlaying mechanism, we dissected the USP19-regulated secretion of LGMN in several cell types. We found that LGMN was not a DUB substrate of USP19 and that its USP19-dependent release did not require their direct interaction. LGMN secretion occurred by a mechanism that involved the Golgi apparatus, autophagosome formation and lysosome function. This mechanism resembled the recently described "lysosomal exocytosis", by which lysosomal hydrolases are secreted, when ubiquitination of p62 is increased in cells lacking deubiquitinases such as USP15 and USP17. In conclusion, our proteomic characterization of USP19 has identified a collection of proteins in the secretome and within the cell that are regulated by USP19, which link USP19 to secretion of lysosomal proteins, including LGMN.

11.
Semin Immunol ; 61-64: 101661, 2022 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-36374780

RESUMEN

MAIT cells are one representative of a group of related unconventional or pre-set T cells, and are particularly abundant in humans. While these unconventional T cell types, which also include populations of Vδ2 cells and iNKT cells, recognise quite distinct ligands, they share functional features including the ability to sense "danger" by integration of cytokine signals. Since such signals are common to many human pathologies, activation of MAIT cells in particular has been widely observed. In this review we will discuss recent trends in these data, for example the findings from patients with Covid-19 and responses to novel vaccines. Covid-19 is an example where MAIT cell activation has been correlated with disease severity by several groups, and the pathways leading to activation are being clarified, but the overall role of the cells in vivo requires further exploration. Given the potential wide functional responsiveness of these cells, which ranges from tissue repair to cytotoxicity, and likely impacts on the activity of many other cell populations, defining the role of these cells - not only as sensitive biomarkers but also as mediators - across human disease remains an important task.


Asunto(s)
COVID-19 , Células T Invariantes Asociadas a Mucosa , Humanos , Células T Invariantes Asociadas a Mucosa/metabolismo , Citocinas/metabolismo , Activación de Linfocitos
12.
Proc Natl Acad Sci U S A ; 120(11): e2217816120, 2023 Mar 14.
Artículo en Inglés | MEDLINE | ID: mdl-36897971

RESUMEN

Superconductivity is a macroscopic manifestation of a quantum phenomenon where pairs of electrons delocalize and develop phase coherence over a long distance. A long-standing quest has been to address the underlying microscopic mechanisms that fundamentally limit the superconducting transition temperature, Tc. A platform which serves as an ideal playground for realizing "high"-temperature superconductors are materials where the electrons' kinetic energy is quenched and interactions provide the only energy scale in the problem. However, when the noninteracting bandwidth for a set of isolated bands is small compared to the interactions, the problem is inherently nonperturbative. In two spatial dimensions, Tc is controlled by superconducting phase stiffness. Here, we present a theoretical framework for computing the electromagnetic response for generic model Hamiltonians, which controls the maximum possible superconducting phase stiffness and thereby Tc, without resorting to any mean-field approximation. Our explicit computations demonstrate that the contribution to the phase stiffness arises from i) "integrating out" the remote bands that couple to the microscopic current operator and ii) the density-density interactions projected on to the isolated narrow bands. Our framework can be used to obtain an upper bound on the phase stiffness and relatedly Tc for a range of physically inspired models involving both topological and nontopological narrow bands with density-density interactions. We discuss a number of salient aspects of this formalism by applying it to a specific model of interacting flat bands and compare the upper bound against the known Tc from independent numerically exact computations.

13.
Proc Natl Acad Sci U S A ; 120(21): e2208276120, 2023 May 23.
Artículo en Inglés | MEDLINE | ID: mdl-37186859

RESUMEN

Iron-chalcogenide superconductors FeSe1-xSx possess unique electronic properties such as nonmagnetic nematic order and its quantum critical point. The nature of superconductivity with such nematicity is important for understanding the mechanism of unconventional superconductivity. A recent theory suggested the possible emergence of a fundamentally new class of superconductivity with the so-called Bogoliubov Fermi surfaces (BFSs) in this system. However, such an ultranodal pair state requires broken time-reversal symmetry (TRS) in the superconducting state, which has not been observed experimentally. Here, we report muon spin relaxation (µSR) measurements in FeSe1-xSx superconductors for 0 ≤ x ≤ 0.22 covering both orthorhombic (nematic) and tetragonal phases. We find that the zero-field muon relaxation rate is enhanced below the superconducting transition temperature Tc for all compositions, indicating that the superconducting state breaks TRS both in the nematic and tetragonal phases. Moreover, the transverse-field µSR measurements reveal that the superfluid density shows an unexpected and substantial reduction in the tetragonal phase (x > 0.17). This implies that a significant fraction of electrons remain unpaired in the zero-temperature limit, which cannot be explained by the known unconventional superconducting states with point or line nodes. The TRS breaking and the suppressed superfluid density in the tetragonal phase, together with the reported enhanced zero-energy excitations, are consistent with the ultranodal pair state with BFSs. The present results reveal two different superconducting states with broken TRS separated by the nematic critical point in FeSe1-xSx, which calls for the theory of microscopic origins that account for the relation between nematicity and superconductivity.

14.
Trends Biochem Sci ; 46(8): 673-686, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-33558127

RESUMEN

The ATG8 family proteins are critical players in autophagy, a cytoprotective process that mediates degradation of cytosolic cargo. During autophagy, ATG8s conjugate to autophagosome membranes to facilitate cargo recruitment, autophagosome biogenesis, transport, and fusion with lysosomes, for cargo degradation. In addition to these canonical functions, recent reports demonstrate that ATG8s are also delivered to single-membrane organelles, which leads to highly divergent degradative or secretory fates, vesicle maturation, and cargo specification. The association of ATG8s with different vesicles involves complex regulatory mechanisms still to be fully elucidated. Whether individual ATG8 family members play unique canonical or non-canonical roles, also remains unclear. This review summarizes the many open molecular questions regarding ATG8s that are only beginning to be unraveled.


Asunto(s)
Autofagia , Proteínas Asociadas a Microtúbulos , Autofagosomas , Familia de las Proteínas 8 Relacionadas con la Autofagia , Proteínas Relacionadas con la Autofagia , Lisosomas
15.
J Biol Chem ; 300(3): 105677, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38272225

RESUMEN

The emerging roles of O-GlcNAcylation, a distinctive post-translational modification, are increasingly recognized for their involvement in the intricate processes of protein trafficking and secretion. This modification exerts its influence on both conventional and unconventional secretory pathways. Under healthy and stress conditions, such as during diseases, it orchestrates the transport of proteins within cells, ensuring timely delivery to their intended destinations. O-GlcNAcylation occurs on key factors, like coat protein complexes (COPI and COPII), clathrin, SNAREs (soluble N-ethylmaleimide-sensitive factor attachment protein receptors), and GRASP55 (Golgi reassembly stacking protein of 55 kDa) that control vesicle budding and fusion in anterograde and retrograde trafficking and unconventional secretion. The understanding of O-GlcNAcylation offers valuable insights into its critical functions in cellular physiology and the progression of diseases, including neurodegeneration, cancer, and metabolic disorders. In this review, we summarize and discuss the latest findings elucidating the involvement of O-GlcNAc in protein trafficking and its significance in various human disorders.


Asunto(s)
Clatrina , Proteínas SNARE , Humanos , Acetilglucosamina/metabolismo , Clatrina/metabolismo , Procesamiento Proteico-Postraduccional , Transporte de Proteínas/fisiología , Proteínas SNARE/metabolismo , Animales , Acetilación , Glucosa/metabolismo
16.
Eur J Immunol ; : e2451265, 2024 Sep 09.
Artículo en Inglés | MEDLINE | ID: mdl-39246170

RESUMEN

In vitro cultures remain crucial for studying the fundamental mechanisms of human T-cell development. Here, we introduce a novel in vitro cultivation system based on ThymoSpheres (TS): dense spheroids consisting of DLL4-expressing stromal cells and human hematopoietic precursor cells, in the absence of thymic epithelial cells. These spheroids are subsequently cultured at the air-liquid interphase. TS generate large numbers of mature T cells, are easy to manipulate, scalable, and can be repeatably sampled to monitor T-cell differentiation. The mature T cells generated from primary human hematopoietic precursor cells were extensively characterized using single-cell RNA and combined T-cell receptor (TCR) sequencing. These predominantly CD8α T cells exhibit transcriptional and TCR CDR3 characteristics similar to the recently described human polyclonal αß unconventional T cell (UTC) lineage. This includes the expression of hallmark genes associated with agonist selection, such as IKZF2 (Helios), and the expression of various natural killer receptors. The TCR repertoire of these UTCs is polyclonal and enriched for CDR3-associated autoreactive features and early rearrangements of the TCR-α chain. In conclusion, TS cultures offer an intriguing platform to study the development of this human polyclonal UTC lineage and its inducing selection mechanisms.

17.
Int Immunol ; 36(8): 377-392, 2024 Jul 13.
Artículo en Inglés | MEDLINE | ID: mdl-38557824

RESUMEN

Invariant natural killer T (iNKT) cells, which bear αß-type T-cell antigen-receptors (TCRs), recognize glycolipid antigens in a cluster of differentiation 1d (CD1d)-restricted manner. Regarding these cells, the unique modes of thymic selection and maturation elucidate innateness, irrespective of them also being members of the adaptive immune system as a T-cell. iNKT cells develop and differentiate into NKT1 [interferon γ (IFN-γ)-producing], NKT2 [interleukin 4 (IL-4)/IL-13-producing], or NKT17 (IL-17-producing) subsets in the thymus. After egress, NKT10 (IL-10-producing), follicular helper NKT (NKTfh; IL-21-producing), and regulatory NKT (NKTreg) subsets emerge following stimulation in the periphery. Moreover, iNKT cells have been shown to possess several physiological or pathological roles. iNKT cells exhibit dual alleviating or aggravating roles in experimentally induced immune and/or inflammatory diseases in mice. These findings indicate that the modulation of iNKT cells can be employed for therapeutic use or prevention of human diseases. In this review, we discuss the potential roles of iNKT cells in the development of immune/inflammatory diseases of the cardiovascular system, with emphasis on atherosclerosis, aortic aneurysms, and cardiac remodeling.


Asunto(s)
Enfermedades Cardiovasculares , Inflamación , Células T Asesinas Naturales , Humanos , Células T Asesinas Naturales/inmunología , Animales , Enfermedades Cardiovasculares/inmunología , Inflamación/inmunología , Ratones
18.
EMBO Rep ; 24(9): e57289, 2023 09 06.
Artículo en Inglés | MEDLINE | ID: mdl-37465980

RESUMEN

Over the recent years, it has become apparent that a deeper understanding of cell-to-cell and organ-to-organ communication is necessary to fully comprehend both homeostatic and pathological states. Autophagy is indispensable for cellular development, function, and homeostasis. A crucial aspect is that autophagy can also mediate these processes through its secretory role. The autophagy-derived secretome relays its extracellular signals in the form of nutrients, proteins, mitochondria, and extracellular vesicles. These crosstalk mediators functionally shape cell fate decisions, tissue microenvironment and systemic physiology. The diversity of the secreted cargo elicits an equally diverse type of responses, which span over metabolic, inflammatory, and structural adaptations in disease and homeostasis. We review here the emerging role of the autophagy-derived secretome in the communication between different cell types and organs and discuss the mechanisms involved.


Asunto(s)
Comunicación Celular , Vesículas Extracelulares , Autofagia/fisiología , Vesículas Extracelulares/metabolismo , Transporte Biológico , Proteínas/metabolismo
19.
Cell Mol Life Sci ; 81(1): 290, 2024 Jul 06.
Artículo en Inglés | MEDLINE | ID: mdl-38970666

RESUMEN

Pattern recognition receptors (PRRs) play a crucial role in innate immunity, and a complex network tightly controls their signaling cascades to maintain immune homeostasis. Within the modification network, posttranslational modifications (PTMs) are at the core of signaling cascades. Conventional PTMs, which include phosphorylation and ubiquitination, have been extensively studied. The regulatory role of unconventional PTMs, involving unanchored ubiquitination, ISGylation, SUMOylation, NEDDylation, methylation, acetylation, palmitoylation, glycosylation, and myristylation, in the modulation of innate immune signaling pathways has been increasingly investigated. This comprehensive review delves into the emerging field of unconventional PTMs and highlights their pivotal role in innate immunity.


Asunto(s)
Inmunidad Innata , Procesamiento Proteico-Postraduccional , Transducción de Señal , Humanos , Animales , Transducción de Señal/inmunología , Ubiquitinación , Receptores de Reconocimiento de Patrones/metabolismo , Receptores de Reconocimiento de Patrones/inmunología , Acetilación , Metilación , Fosforilación , Sumoilación , Glicosilación
20.
Cell Mol Life Sci ; 81(1): 356, 2024 Aug 19.
Artículo en Inglés | MEDLINE | ID: mdl-39158730

RESUMEN

FGF12 belongs to a subfamily of FGF proteins called FGF homologous factors (FHFs), which until recently were thought to be non-signaling intracellular proteins. Our recent studies have shown that although they lack a conventional signal peptide for secretion, they can reach the extracellular space, especially under stress conditions. Here, we unraveled that the long "a" isoform of FGF12 is secreted in a pathway involving the A1 subunit of Na(+)/K(+) ATPase (ATP1A1), Tec kinase and lipids such as phosphatidylinositol and phosphatidylserine. Further, we showed that the short "b" isoform of FGF12, which binds ATP1A1 and phosphatidylserine less efficiently, is not secreted from cells. We also indicated regions in the FGF12a protein sequence that are crucial for its secretion, including N-terminal fragment and specific residues, and proposed that liquid-liquid phase separation may be important in this process. Our results strongly suggest that the mechanism of this process is very similar for all unconventionally secreted FGF proteins.


Asunto(s)
Factores de Crecimiento de Fibroblastos , Humanos , Factores de Crecimiento de Fibroblastos/metabolismo , ATPasa Intercambiadora de Sodio-Potasio/metabolismo , Animales , Isoformas de Proteínas/metabolismo , Isoformas de Proteínas/genética , Fosfatidilserinas/metabolismo , Secuencia de Aminoácidos
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda