Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo del documento
Publication year range
1.
Sensors (Basel) ; 22(7)2022 Mar 24.
Artículo en Inglés | MEDLINE | ID: mdl-35408098

RESUMEN

Underground Mining (UM) is a hostile industry that generally requires a wireless communication system as a cross-cutting axis for its optimal operation. Therefore, in the last five years, it has been shown that, in addition to radio-frequency-based communication links, wireless optical communications, such as Visible Light Communication (VLC), can be applied to UM environments. The application of VLC systems in underground mines, known as UM-VLC, must take into account the unique physical features of underground mines. Among the physical phenomena found in underground mines, the most important ones are the positioning of optical transmitters and receivers, irregular walls, shadowing, and a typical phenomenon found in tunnels known as scattering, which is caused by the atmosphere and dust particles. Consequently, it is necessary to use proper dust particle distribution models consistent with these scenarios to describe the scattering phenomenon in a coherent way in order to design realistic UM-VLC systems with better performance. Therefore, in this article, we present an in-depth study of the interaction of optical links with dust particles suspended in the UM environment and the atmosphere. In addition, we analytically derived a hemispherical 3D dust particle distribution model, along with its main statistical parameters. This analysis allows to develop a more realistic scattering channel component and presents an enhanced UM-VLC channel model. The performance of the proposed UM-VLC system is evaluated using computational numerical simulations following the IEEE 802.1.5.7 standard in terms of Channel Impulse Response (CIR), received power, Signal-to-Noise-Ratio (SNR), Root Mean Square (RMS) delay spread, and Bit Error Rate (BER). The results demonstrate that the hemispherical dust particle distribution model is more accurate and realistic in terms of the metrics evaluated compared to other models found in the literature. Furthermore, the performance of the UM-VLC system is negatively affected when the number of dust particles suspended in the environment increases.

2.
Entropy (Basel) ; 24(11)2022 Oct 22.
Artículo en Inglés | MEDLINE | ID: mdl-36359600

RESUMEN

Visible light communication (VLC) is considered an enabling technology for future 6G wireless systems. Among the many applications in which VLC systems are used, one of them is harsh environments such as Underground Mining (UM) tunnels. However, these environments are subject to degrading environmental and intrinsic challenges for optical links. Therefore, current research should focus on solutions to mitigate these problems and improve the performance of Underground Mining Visible Light Communication (UM-VLC) systems. In this context, this article presents a novel solution that involves an improvement to the Angle Diversity Receivers (ADRs) based on the adaptive orientation of the Photo-Diodes (PDs) in terms of the Received Signal Strength Ratio (RSSR) scheme. Specifically, this methodology is implemented in a hemidodecahedral ADR and evaluated in a simulated UM-VLC scenario. The performance of the proposed design is evaluated using metrics such as received power, user data rate, and bit error rate (BER). Furthermore, our approach is compared with state-of-the-art ADRs implemented with fixed PDs and with the Time of Arrival (ToA) reception method. An improvement of at least 60% in terms of the analyzed metrics compared to state-of-the-art solutions is obtained. Therefore, the numerical results demonstrate that the hemidodecahedral ADR, with adaptive orientation PDs, enhances the received optical signal. Furthermore, the proposed scheme improves the performance of the UM-VLC system due to its optimum adaptive angular positioning, which is completed according to the strongest optical received signal power. By improving the performance of the UM-VLC system, this novel method contributes to further consideration of VLC systems as potential and enabling technologies for future 6G deployments.

SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda