Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
1.
Vet Res ; 55(1): 86, 2024 Jul 05.
Artículo en Inglés | MEDLINE | ID: mdl-38970119

RESUMEN

H7N9 subtype avian influenza viruses (AIVs) cause 1567 human infections and have high mortality, posing a significant threat to public health. Previously, we reported that two avian-derived H7N9 isolates (A/chicken/Eastern China/JTC4/2013 and A/chicken/Eastern China/JTC11/2013) exhibit different pathogenicities in mice. To understand the genetic basis for the differences in virulence, we constructed a series of mutant viruses based on reverse genetics. We found that the PB2-E627K mutation alone was not sufficient to increase the virulence of H7N9 in mice, despite its ability to enhance polymerase activity in mammalian cells. However, combinations with PB1-V719M and/or PA-N444D mutations significantly enhanced H7N9 virulence. Additionally, these combined mutations augmented polymerase activity, thereby intensifying virus replication, inflammatory cytokine expression, and lung injury, ultimately increasing pathogenicity in mice. Overall, this study revealed that virulence in H7N9 is a polygenic trait and identified novel virulence-related residues (PB2-627K combined with PB1-719M and/or PA-444D) in viral ribonucleoprotein (vRNP) complexes. These findings provide new insights into the molecular mechanisms underlying AIV pathogenesis in mammals, with implications for pandemic preparedness and intervention strategies.


Asunto(s)
Subtipo H7N9 del Virus de la Influenza A , Mutación , Infecciones por Orthomyxoviridae , Proteínas Virales , Animales , Ratones , Subtipo H7N9 del Virus de la Influenza A/genética , Subtipo H7N9 del Virus de la Influenza A/patogenicidad , Subtipo H7N9 del Virus de la Influenza A/fisiología , Infecciones por Orthomyxoviridae/virología , Infecciones por Orthomyxoviridae/veterinaria , Virulencia , Femenino , Proteínas Virales/genética , Proteínas Virales/metabolismo , Ratones Endogámicos BALB C , Replicación Viral
2.
J Virol ; 96(12): e0049422, 2022 06 22.
Artículo en Inglés | MEDLINE | ID: mdl-35604143

RESUMEN

G protein subunit ß1 (GNB1), the beta subunit of the G protein family, plays an important role in regulating transmembrane signal transduction. Although a recent study has demonstrated that GNB1 can bind the matrix protein 1 (M1) to facilitate M1 transport to budding sites and promote the release of progeny influenza A virus (IAV), whether the GNB1 protein has other functions in IAV replication requires further study. Here, we found that GNB1 promoted IAV replication, as virus yield decreased in GNB1 knockdown or knockout cells. GNB1 interacted with polymerase subunits PB2, PB1, and PA. Overexpressed GNB1 facilitated PB2 binding to importin α3, α5, and α7 promoting the nuclear import of PB2, enhancing viral RNA synthesis and polymerase activity. Altogether, our results demonstrated that GNB1 positively regulates virus replication by interacting with polymerase subunits and facilitating the nuclear import of PB2, which provide novel insights into the molecular mechanism of IAV. IMPORTANCE Until now, there has been only one article on the role of GNB1 in IAV budding. No study has investigated the role of GNB1 in IAV replication. In this study, our research demonstrated that GNB1 could increase the interaction between PB2 and the importin α isoform and mediate the nuclear import of PB2. Therefore, GNB1 could promote viral replication and transcription. Our results provide a better understanding of the molecular mechanisms of viral replication and provide potential antiviral drug targets.


Asunto(s)
Transporte Activo de Núcleo Celular , Subunidades beta de la Proteína de Unión al GTP , Virus de la Influenza A , Gripe Humana , Proteínas Virales , Subunidades beta de la Proteína de Unión al GTP/metabolismo , Humanos , Virus de la Influenza A/genética , Virus de la Influenza A/fisiología , Gripe Humana/genética , Carioferinas/metabolismo , Proteínas Virales/genética , Proteínas Virales/metabolismo , Replicación Viral
3.
J Med Virol ; 95(6): e28849, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-37282768

RESUMEN

The genome of Influenza A virus (IAV) transcribes and replicates in the nucleus of cells and the viral ribonucleoprotein (vRNP) complex plays an important role in viral replication. As a major component of the vRNP complex, the polymerase basic protein 2 (PB2) is translocated to the nucleus via its nuclear localization signals mediated by the importins. Herein, it was identified proliferating cell nuclear antigen (PCNA) as an inhibitor of nuclear import of PB2 and subsequent viral replication. Mechanically, PCNA interacted with PB2 and inhibited the nuclear import of PB2. Furthermore, PCNA decreased the binding efficiency of PB2 with importin alpha (importin α) and the K738, K752, and R755 of PB2 were identified as the key sites binding with PCNA and importin α. Furthermore, PCNA was demonstrated to retrain the vRNP assembly and polymerase activity. Taken together, the results demonstrated that PCNA impaired the nuclear import of PB2, vRNP assembly and polymerase activity, which negatively regulated virus replication.


Asunto(s)
Virus de la Influenza A , Humanos , Transporte Activo de Núcleo Celular , Antígeno Nuclear de Célula en Proliferación/genética , Antígeno Nuclear de Célula en Proliferación/metabolismo , alfa Carioferinas/metabolismo , Ribonucleoproteínas/metabolismo , Replicación Viral
4.
J Med Virol ; 95(10): e29171, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37830751

RESUMEN

Influenza A virus (IAV) relies on intricate and highly coordinated associations with host factors for efficient replication and transmission. Characterization of such factors holds great significance for development of anti-IAV drugs. Our study identified protein arginine methyltransferase 5 (PRMT5) as a novel host factor indispensable for IAV replication. Silencing PRMT5 resulted in drastic repression of IAV replication. Our findings revealed that PRMT5 interacts with each protein component of viral ribonucleoproteins (vRNPs) and promotes arginine symmetric dimethylation of polymerase basic 2 (PB2). Overexpression of PRMT5 enhanced viral polymerase activity in a dose-dependent manner, emphasizing its role in genome transcription and replication of IAV. Moreover, analysis of PB2 protein sequences across various subtypes of IAVs demonstrated the high conservation of potential RG motifs recognized by PRMT5. Overall, our study suggests that PRMT5 supports IAV replication by facilitating viral polymerase activity by interacting with PB2 and promoting its arginine symmetric dimethylation. This study deepens our understanding of how IAV manipulates host factors to facilitate its replication and highlights the great potential of PRMT5 to serve as an anti-IAV therapeutic target.


Asunto(s)
Virus de la Influenza A , Proteína-Arginina N-Metiltransferasas , Humanos , Arginina , Virus de la Influenza A/genética , Proteína-Arginina N-Metiltransferasas/genética , Proteína-Arginina N-Metiltransferasas/metabolismo , Ribonucleoproteínas/metabolismo , Replicación Viral
5.
J Biomed Sci ; 30(1): 14, 2023 Feb 23.
Artículo en Inglés | MEDLINE | ID: mdl-36823664

RESUMEN

BACKGROUND: Influenza is one of the most important viral infections globally. Viral RNA-dependent RNA polymerase (RdRp) consists of the PA, PB1, and PB2 subunits, and the amino acid residues of each subunit are highly conserved among influenza A virus (IAV) strains. Due to the high mutation rate and emergence of drug resistance, new antiviral strategies are needed. Host cell factors are involved in the transcription and replication of influenza virus. Here, we investigated the role of galectin-3, a member of the ß-galactoside-binding animal lectin family, in the life cycle of IAV infection in vitro and in mice. METHODS: We used galectin-3 knockout and wild-type mice and cells to study the intracellular role of galectin-3 in influenza pathogenesis. Body weight and survival time of IAV-infected mice were analyzed, and viral production in mouse macrophages and lung fibroblasts was examined. Overexpression and knockdown of galectin-3 in A549 human lung epithelial cells were exploited to assess viral entry, viral ribonucleoprotein (vRNP) import/export, transcription, replication, virion production, as well as interactions between galectin-3 and viral proteins by immunoblotting, immunofluorescence, co-immunoprecipitation, RT-qPCR, minireplicon, and plaque assays. We also employed recombinant galectin-3 proteins to identify specific step(s) of the viral life cycle that was affected by exogenously added galectin-3 in A549 cells. RESULTS: Galectin-3 levels were increased in the bronchoalveolar lavage fluid and lungs of IAV-infected mice. There was a positive correlation between galectin-3 levels and viral loads. Notably, galectin-3 knockout mice were resistant to IAV infection. Knockdown of galectin-3 significantly reduced the production of viral proteins and virions in A549 cells. While intracellular galectin-3 did not affect viral entry, it increased vRNP nuclear import, RdRp activity, and viral transcription and replication, which were associated with the interaction of galectin-3 with viral PA subunit. Galectin-3 enhanced the interaction between viral PA and PB1 proteins. Moreover, exogenously added recombinant galectin-3 proteins also enhanced viral adsorption and promoted IAV infection in A549 cells. CONCLUSION: We demonstrate that galectin-3 enhances viral infection through increases in vRNP nuclear import and RdRp activity, thereby facilitating viral transcription and replication. Our findings also identify galectin-3 as a potential therapeutic target for influenza.


Asunto(s)
Virus de la Influenza A , Gripe Humana , Animales , Humanos , Ratones , Proteínas Virales/genética , Galectina 3/genética , Galectina 3/metabolismo , Regulación hacia Arriba , Gripe Humana/genética , ARN Viral/metabolismo , Virus de la Influenza A/genética , Ribonucleoproteínas/genética , Ribonucleoproteínas/metabolismo , ARN Polimerasa Dependiente del ARN/genética , ARN Polimerasa Dependiente del ARN/metabolismo , Replicación Viral/genética
6.
Proc Natl Acad Sci U S A ; 116(7): 2577-2582, 2019 02 12.
Artículo en Inglés | MEDLINE | ID: mdl-30626642

RESUMEN

Uncoating is an obligatory step in the virus life cycle that serves as an antiviral target. Unfortunately, it is challenging to study viral uncoating due to methodology limitations for detecting this transient and dynamic event. The uncoating of influenza A virus (IAV), which contains an unusual genome of eight segmented RNAs, is particularly poorly understood. Here, by encapsulating quantum dot (QD)-conjugated viral ribonucleoprotein complexes (vRNPs) within infectious IAV virions and applying single-particle imaging, we tracked the uncoating process of individual IAV virions. Approximately 30% of IAV particles were found to undergo uncoating through fusion with late endosomes in the "around-nucleus" region at 30 to 90 minutes postinfection. Inhibition of viral M2 proton channels and cellular endosome acidification prevented IAV uncoating. IAV vRNPs are released separately into the cytosol after virus uncoating. Then, individual vRNPs undergo a three-stage movement to the cell nucleus and display two diffusion patterns when inside the nucleus. These findings reveal IAV uncoating and vRNP trafficking mechanisms, filling a critical gap in knowledge about influenza viral infection.


Asunto(s)
Virus de la Influenza A/metabolismo , Desencapsidación Viral , Animales , Núcleo Celular/metabolismo , Perros , Virus de la Influenza A/genética , Virus de la Influenza A/patogenicidad , Virus de la Influenza A/fisiología , Células de Riñón Canino Madin Darby , Transporte de Proteínas , Puntos Cuánticos , ARN Viral/genética , Ribonucleoproteínas/metabolismo , Proteínas Virales/metabolismo , Virión/metabolismo , Virión/patogenicidad , Replicación Viral
7.
J Virol ; 95(2)2020 12 22.
Artículo en Inglés | MEDLINE | ID: mdl-33087462

RESUMEN

The viral ribonucleoprotein (vRNP) of the influenza A virus (IAV) is responsible for the viral RNA transcription and replication in the nucleus, and its functions rely on host factors. Previous studies have indicated that eukaryotic translation elongation factor 1 delta (eEF1D) may associate with RNP subunits, but its roles in IAV replication are unclear. Herein, we showed that eEF1D was an inhibitor of IAV replication because knockout of eEF1D resulted in a significant increase in virus yield. eEF1D interacted with RNP subunits polymerase acidic protein (PA), polymerase basic 1 (PB1), polymerase basic 2 (PB2), and also with nucleoprotein (NP) in an RNA-dependent manner. Further studies revealed that eEF1D impeded the nuclear import of NP and PA-PB1 heterodimer of IAV, thereby suppressing the vRNP assembly, viral polymerase activity, and viral RNA synthesis. Together, our studies demonstrate eEF1D negatively regulating the IAV replication by inhibition of the nuclear import of RNP subunits, which not only uncovers a novel role of eEF1D in IAV replication but also provides new insights into the mechanisms of nuclear import of vRNP proteins.IMPORTANCE Influenza A virus is the major cause of influenza, a respiratory disease in humans and animals. Different from most other RNA viruses, the transcription and replication of IAV occur in the cell nucleus. Therefore, the vRNPs must be imported into the nucleus for viral transcription and replication, which requires participation of host proteins. However, the mechanisms of the IAV-host interactions involved in nuclear import remain poorly understood. Here, we identified eEF1D as a novel inhibitor for the influenza virus life cycle. Importantly, eEF1D impaired the interaction between NP and importin α5 and the interaction between PB1 and RanBP5, which impeded the nuclear import of vRNP. Our studies not only reveal the molecular mechanisms of the nuclear import of IAV vRNP but also provide potential anti-influenza targets for antiviral development.


Asunto(s)
Núcleo Celular/metabolismo , Virus de la Influenza A/metabolismo , Proteínas de la Nucleocápside/metabolismo , Factor 1 de Elongación Peptídica/metabolismo , ARN Polimerasa Dependiente del ARN/metabolismo , Proteínas Virales/metabolismo , Células A549 , Transporte Activo de Núcleo Celular , Células HEK293 , Humanos , Virus de la Influenza A/genética , Factor 1 de Elongación Peptídica/genética , Unión Proteica , Multimerización de Proteína , ARN Viral/biosíntesis , ARN Polimerasa Dependiente del ARN/química , Transcripción Genética , Proteínas del Núcleo Viral/química , Proteínas del Núcleo Viral/metabolismo , Proteínas Virales/química , Replicación Viral , alfa Carioferinas/metabolismo , beta Carioferinas/metabolismo
8.
J Virol ; 94(6)2020 02 28.
Artículo en Inglés | MEDLINE | ID: mdl-31896588

RESUMEN

Influenza viruses are highly infectious and are the leading cause of human respiratory diseases and may trigger severe epidemics and occasional pandemics. Although antiviral drugs against influenza viruses have been developed, there is an urgent need to design new strategies to develop influenza virus inhibitors due to the increasing resistance of viruses toward currently available drugs. In this study, we examined the antiviral activity of natural compounds against the following influenza virus strains: A/WSN/33 (H1N1), A/Udorn/72 (H3N2), and B/Lee/40. Papaverine (a nonnarcotic alkaloid that has been used for the treatment of heart disease, impotency, and psychosis) was found to be an effective inhibitor of multiple strains of influenza virus. Kinetic studies demonstrated that papaverine inhibited influenza virus infection at a late stage in the virus life cycle. An alteration in influenza virus morphology and viral ribonucleoprotein (vRNP) localization was observed as an effect of papaverine treatment. Papaverine is a well-known phosphodiesterase inhibitor and also modifies the mitogen-activated protein kinase (MAPK) pathway by downregulating the phosphorylation of MEK and extracellular signal-regulated kinase (ERK). Thus, the modulation of host cell signaling pathways by papaverine may be associated with the nuclear retention of vRNPs and the reduction of influenza virus titers. Interestingly, papaverine also inhibited paramyxoviruses parainfluenza virus 5 (PIV5), human parainfluenza virus 3 (HPIV3), and respiratory syncytial virus (RSV) infections. We propose that papaverine can be a potential candidate to be used as an antiviral agent against a broad range of influenza viruses and paramyxoviruses.IMPORTANCE Influenza viruses are important human pathogens that are the causative agents of epidemics and pandemics. Despite the availability of an annual vaccine, a large number of cases occur every year globally. Here, we report that papaverine, a vasodilator, shows inhibitory action against various strains of influenza virus as well as the paramyxoviruses PIV5, HPIV3, and RSV. A significant effect of papaverine on the influenza virus morphology was observed. Papaverine treatment of influenza-virus-infected cells resulted in the inhibition of virus at a later time in the virus life cycle through the suppression of nuclear export of vRNP and also interfered with the host cellular cAMP and MEK/ERK cascade pathways. This study explores the use of papaverine as an effective inhibitor of both influenza viruses as well as paramyxoviruses.


Asunto(s)
Antivirales/farmacología , Reposicionamiento de Medicamentos , Infecciones por Orthomyxoviridae , Orthomyxoviridae/metabolismo , Papaverina/farmacología , Infecciones por Paramyxoviridae , Paramyxovirinae/metabolismo , Animales , Perros , Evaluación Preclínica de Medicamentos , Células HEK293 , Humanos , Sistema de Señalización de MAP Quinasas/efectos de los fármacos , Células de Riñón Canino Madin Darby , Infecciones por Orthomyxoviridae/tratamiento farmacológico , Infecciones por Orthomyxoviridae/metabolismo , Infecciones por Orthomyxoviridae/patología , Infecciones por Paramyxoviridae/metabolismo , Infecciones por Paramyxoviridae/patología
9.
Cell Microbiol ; 21(5): e13001, 2019 05.
Artículo en Inglés | MEDLINE | ID: mdl-30650225

RESUMEN

Due to an increasing emergence of new and drug-resistant strains of the influenza A virus (IAV), developing novel measures to combat influenza is necessary. We have previously shown that inhibiting Wnt/ß-catenin pathway reduces IAV infection. In this study, we aimed to identify antiviral human microRNAs (miRNAs) that target the Wnt/ß-catenin signalling pathway. Using a miRNA expression library, we identified 85 miRNAs that up-regulated and 20 miRNAs that down-regulated the Wnt/ß-catenin signalling pathway. Fifteen miRNAs were validated to up-regulate and five miRNAs to down-regulate the pathway. Overexpression of four selected miRNAs (miR-193b, miR-548f-1, miR-1-1, and miR-509-1) that down-regulated the Wnt/ß-catenin signalling pathway reduced viral mRNA, protein levels in A/PR/8/34-infected HEK293 cells, and progeny virus production. Overexpression of miR-193b in lung epithelial A549 cells also resulted in decreases of A/PR/8/34 infection. Furthermore, miR-193b inhibited the replication of various strains, including H1N1 (A/PR/8/34, A/WSN/33, A/Oklahoma/3052/09) and H3N2 (A/Oklahoma/309/2006), as determined by a viral reporter luciferase assay. Further studies revealed that ß-catenin was a target of miR-193b, and ß-catenin rescued miR-193b-mediated suppression of IAV infection. miR-193b induced G0/G1 cell cycle arrest and delayed vRNP nuclear import. Finally, adenovirus-mediated gene transfer of miR-193b to the lung reduced viral load in mice challenged by a sublethal dose of A/PR/8/34. Collectively, our findings suggest that miR-193b represses IAV infection by inhibiting Wnt/ß-catenin signalling.


Asunto(s)
Subtipo H1N1 del Virus de la Influenza A/metabolismo , Subtipo H3N2 del Virus de la Influenza A/metabolismo , Gripe Humana/metabolismo , MicroARNs/metabolismo , Vía de Señalización Wnt/genética , beta Catenina/metabolismo , Células A549 , Transporte Activo de Núcleo Celular/genética , Animales , Supervivencia Celular/genética , Ciclina D/genética , Ciclina D/metabolismo , Femenino , Puntos de Control de la Fase G1 del Ciclo Celular/genética , Células HEK293 , Humanos , Subtipo H1N1 del Virus de la Influenza A/genética , Subtipo H3N2 del Virus de la Influenza A/genética , Gripe Humana/genética , Pulmón/metabolismo , Pulmón/virología , Ratones , Ratones Endogámicos C57BL , MicroARNs/genética , Ribonucleoproteínas/metabolismo , Replicación Viral/genética , beta Catenina/genética
10.
J Virol ; 92(23)2018 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-30209172

RESUMEN

Influenza A viral ribonucleoprotein (vRNP) is responsible for transcription and replication of the viral genome in infected cells and depends on host factors for its functions. Identification of the host factors interacting with vRNP not only improves understanding of virus-host interactions but also provides insights into novel mechanisms of viral pathogenicity and the development of new antiviral strategies. Here, we have identified 80 host factors that copurified with vRNP using affinity purification followed by mass spectrometry. LYAR, a cell growth-regulating nucleolar protein, has been shown to be important for influenza A virus replication. During influenza A virus infection, LYAR expression is increased and partly translocates from the nucleolus to the nucleoplasm and cytoplasm. Furthermore, LYAR interacts with RNP subunits, resulting in enhancing viral RNP assembly, thereby facilitating viral RNA synthesis. Taken together, our studies identify a novel vRNP binding host partner important for influenza A virus replication and further reveal the mechanism of LYAR regulating influenza A viral RNA synthesis by facilitating viral RNP assembly.IMPORTANCE Influenza A virus (IAV) must utilize the host cell machinery to replicate, but many of the mechanisms of IAV-host interaction remain poorly understood. Improved understanding of interactions between host factors and vRNP not only increases our basic knowledge of the molecular mechanisms of virus replication and pathogenicity but also provides insights into possible novel antiviral targets that are necessary due to the widespread emergence of drug-resistant IAV strains. Here, we have identified LYAR, a cell growth-regulating nucleolar protein, which interacts with viral RNP components and is important for efficient replication of IAVs and whose role in the IAV life cycle has never been reported. In addition, we further reveal the role of LYAR in viral RNA synthesis. Our results extend and improve current knowledge on the mechanisms of IAV transcription and replication.


Asunto(s)
Proteínas de Unión al ADN/metabolismo , Interacciones Huésped-Patógeno , Virus de la Influenza A/fisiología , Gripe Humana/virología , Proteínas Nucleares/metabolismo , Ribonucleoproteínas/metabolismo , Virión/fisiología , Replicación Viral , Proteínas de Unión al ADN/antagonistas & inhibidores , Proteínas de Unión al ADN/genética , Células HEK293 , Humanos , Gripe Humana/genética , Gripe Humana/metabolismo , Proteínas Nucleares/antagonistas & inhibidores , Proteínas Nucleares/genética , ARN Interferente Pequeño/genética , ARN Viral/genética , ARN Viral/metabolismo , Proteínas de Unión al ARN/genética , Proteínas de Unión al ARN/metabolismo , Ribonucleoproteínas/genética
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda