Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 20 de 396
Filtrar
Más filtros

Publication year range
1.
Cell ; 185(10): 1728-1744.e16, 2022 05 12.
Artículo en Inglés | MEDLINE | ID: mdl-35460644

RESUMEN

As the emerging variants of SARS-CoV-2 continue to drive the worldwide pandemic, there is a constant demand for vaccines that offer more effective and broad-spectrum protection. Here, we report a circular RNA (circRNA) vaccine that elicited potent neutralizing antibodies and T cell responses by expressing the trimeric RBD of the spike protein, providing robust protection against SARS-CoV-2 in both mice and rhesus macaques. Notably, the circRNA vaccine enabled higher and more durable antigen production than the 1mΨ-modified mRNA vaccine and elicited a higher proportion of neutralizing antibodies and distinct Th1-skewed immune responses. Importantly, we found that the circRNARBD-Omicron vaccine induced effective neutralizing antibodies against the Omicron but not the Delta variant. In contrast, the circRNARBD-Delta vaccine protected against both Delta and Omicron or functioned as a booster after two doses of either native- or Delta-specific vaccination, making it a favorable choice against the current variants of concern (VOCs) of SARS-CoV-2.


Asunto(s)
COVID-19 , SARS-CoV-2 , Animales , Anticuerpos Neutralizantes , Anticuerpos Antivirales , COVID-19/prevención & control , Vacunas contra la COVID-19 , Humanos , Macaca mulatta , Ratones , ARN Circular/genética , SARS-CoV-2/genética , Vacunas Sintéticas/genética , Vacunas de ARNm
2.
Cell ; 185(13): 2265-2278.e14, 2022 06 23.
Artículo en Inglés | MEDLINE | ID: mdl-35568034

RESUMEN

Breakthrough infections by SARS-CoV-2 variants become the global challenge for pandemic control. Previously, we developed the protein subunit vaccine ZF2001 based on the dimeric receptor-binding domain (RBD) of prototype SARS-CoV-2. Here, we developed a chimeric RBD-dimer vaccine approach to adapt SARS-CoV-2 variants. A prototype-Beta chimeric RBD-dimer was first designed to adapt the resistant Beta variant. Compared with its homotypic forms, the chimeric vaccine elicited broader sera neutralization of variants and conferred better protection in mice. The protection of the chimeric vaccine was further verified in macaques. This approach was generalized to develop Delta-Omicron chimeric RBD-dimer to adapt the currently prevalent variants. Again, the chimeric vaccine elicited broader sera neutralization of SARS-CoV-2 variants and conferred better protection against challenge by either Delta or Omicron SARS-CoV-2 in mice. The chimeric approach is applicable for rapid updating of immunogens, and our data supported the use of variant-adapted multivalent vaccine against circulating and emerging variants.


Asunto(s)
COVID-19 , Vacunas , Animales , Anticuerpos Neutralizantes , Anticuerpos Antivirales , COVID-19/prevención & control , Vacunas contra la COVID-19 , Humanos , Ratones , SARS-CoV-2/genética
3.
Cell ; 185(9): 1539-1548.e5, 2022 04 28.
Artículo en Inglés | MEDLINE | ID: mdl-35429436

RESUMEN

Virus-like particle (VLP) and live virus assays were used to investigate neutralizing immunity against Delta and Omicron SARS-CoV-2 variants in 259 samples from 128 vaccinated individuals. Following Delta breakthrough infection, titers against WT rose 57-fold and 3.1-fold compared with uninfected boosted and unboosted individuals, respectively, versus only a 5.8-fold increase and 3.1-fold decrease for Omicron breakthrough infection. Among immunocompetent, unboosted patients, Delta breakthrough infections induced 10.8-fold higher titers against WT compared with Omicron (p = 0.037). Decreased antibody responses in Omicron breakthrough infections relative to Delta were potentially related to a higher proportion of asymptomatic or mild breakthrough infections (55.0% versus 28.6%, respectively), which exhibited 12.3-fold lower titers against WT compared with moderate to severe infections (p = 0.020). Following either Delta or Omicron breakthrough infection, limited variant-specific cross-neutralizing immunity was observed. These results suggest that Omicron breakthrough infections are less immunogenic than Delta, thus providing reduced protection against reinfection or infection from future variants.


Asunto(s)
COVID-19 , SARS-CoV-2 , Anticuerpos Neutralizantes , Anticuerpos Antivirales , Vacuna BNT162 , COVID-19/inmunología , COVID-19/prevención & control , Vacunas contra la COVID-19 , Humanos
4.
Cell ; 184(26): 6229-6242.e18, 2021 12 22.
Artículo en Inglés | MEDLINE | ID: mdl-34910927

RESUMEN

SARS-CoV-2 variants of concern exhibit varying degrees of transmissibility and, in some cases, escape from acquired immunity. Much effort has been devoted to measuring these phenotypes, but understanding their impact on the course of the pandemic-especially that of immune escape-has remained a challenge. Here, we use a mathematical model to simulate the dynamics of wild-type and variant strains of SARS-CoV-2 in the context of vaccine rollout and nonpharmaceutical interventions. We show that variants with enhanced transmissibility frequently increase epidemic severity, whereas those with partial immune escape either fail to spread widely or primarily cause reinfections and breakthrough infections. However, when these phenotypes are combined, a variant can continue spreading even as immunity builds up in the population, limiting the impact of vaccination and exacerbating the epidemic. These findings help explain the trajectories of past and present SARS-CoV-2 variants and may inform variant assessment and response in the future.


Asunto(s)
COVID-19/inmunología , COVID-19/transmisión , Evasión Inmune , SARS-CoV-2/inmunología , COVID-19/epidemiología , COVID-19/virología , Simulación por Computador , Humanos , Inmunidad , Modelos Biológicos , Reinfección , Vacunación
5.
Cell ; 184(10): 2587-2594.e7, 2021 05 13.
Artículo en Inglés | MEDLINE | ID: mdl-33861950

RESUMEN

The highly transmissible B.1.1.7 variant of SARS-CoV-2, first identified in the United Kingdom, has gained a foothold across the world. Using S gene target failure (SGTF) and SARS-CoV-2 genomic sequencing, we investigated the prevalence and dynamics of this variant in the United States (US), tracking it back to its early emergence. We found that, while the fraction of B.1.1.7 varied by state, the variant increased at a logistic rate with a roughly weekly doubling rate and an increased transmission of 40%-50%. We revealed several independent introductions of B.1.1.7 into the US as early as late November 2020, with community transmission spreading it to most states within months. We show that the US is on a similar trajectory as other countries where B.1.1.7 became dominant, requiring immediate and decisive action to minimize COVID-19 morbidity and mortality.


Asunto(s)
COVID-19 , Modelos Biológicos , SARS-CoV-2 , COVID-19/genética , COVID-19/mortalidad , COVID-19/transmisión , Femenino , Humanos , Masculino , SARS-CoV-2/genética , SARS-CoV-2/metabolismo , SARS-CoV-2/patogenicidad , Estados Unidos/epidemiología
6.
Cell ; 184(13): 3426-3437.e8, 2021 06 24.
Artículo en Inglés | MEDLINE | ID: mdl-33991487

RESUMEN

We identified an emerging severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variant by viral whole-genome sequencing of 2,172 nasal/nasopharyngeal swab samples from 44 counties in California, a state in the western United States. Named B.1.427/B.1.429 to denote its two lineages, the variant emerged in May 2020 and increased from 0% to >50% of sequenced cases from September 2020 to January 2021, showing 18.6%-24% increased transmissibility relative to wild-type circulating strains. The variant carries three mutations in the spike protein, including an L452R substitution. We found 2-fold increased B.1.427/B.1.429 viral shedding in vivo and increased L452R pseudovirus infection of cell cultures and lung organoids, albeit decreased relative to pseudoviruses carrying the N501Y mutation common to variants B.1.1.7, B.1.351, and P.1. Antibody neutralization assays revealed 4.0- to 6.7-fold and 2.0-fold decreases in neutralizing titers from convalescent patients and vaccine recipients, respectively. The increased prevalence of a more transmissible variant in California exhibiting decreased antibody neutralization warrants further investigation.


Asunto(s)
Anticuerpos Neutralizantes/inmunología , COVID-19/inmunología , COVID-19/transmisión , SARS-CoV-2/genética , Glicoproteína de la Espiga del Coronavirus/inmunología , Anticuerpos Monoclonales/inmunología , Anticuerpos Antivirales/inmunología , Humanos , Mutación/genética , Secuenciación Completa del Genoma/métodos
7.
Immunity ; 54(7): 1611-1621.e5, 2021 07 13.
Artículo en Inglés | MEDLINE | ID: mdl-34166623

RESUMEN

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants continue to emerge during the global pandemic and may facilitate escape from current antibody therapies and vaccine protection. Here we showed that the South African variant B.1.351 was the most resistant to current monoclonal antibodies and convalescent plasma from coronavirus disease 2019 (COVID-19)-infected individuals, followed by the Brazilian variant P.1 and the United Kingdom variant B.1.1.7. This resistance hierarchy corresponded with Y144del and 242-244del mutations in the N-terminal domain and K417N/T, E484K, and N501Y mutations in the receptor-binding domain (RBD) of SARS-CoV-2. Crystal structure analysis of the B.1.351 triple mutant (417N-484K-501Y) RBD complexed with the monoclonal antibody P2C-1F11 revealed the molecular basis for antibody neutralization and escape. B.1.351 and P.1 also acquired the ability to use mouse and mink ACE2 receptors for entry. Our results demonstrate major antigenic shifts and potential broadening of the host range for B.1.351 and P.1 variants, which poses serious challenges to current antibody therapies and vaccine protection.


Asunto(s)
Enzima Convertidora de Angiotensina 2/metabolismo , Anticuerpos Neutralizantes/inmunología , Evasión Inmune , SARS-CoV-2/inmunología , Animales , Anticuerpos Monoclonales/química , Anticuerpos Monoclonales/inmunología , Anticuerpos Neutralizantes/química , Variación Antigénica/genética , COVID-19/inmunología , COVID-19/virología , Especificidad del Huésped , Humanos , Evasión Inmune/genética , Ratones , Visón , Mutación , Unión Proteica , SARS-CoV-2/genética , SARS-CoV-2/fisiología , Glicoproteína de la Espiga del Coronavirus/química , Glicoproteína de la Espiga del Coronavirus/genética , Glicoproteína de la Espiga del Coronavirus/inmunología , Glicoproteína de la Espiga del Coronavirus/metabolismo , Internalización del Virus
8.
Immunity ; 54(6): 1276-1289.e6, 2021 06 08.
Artículo en Inglés | MEDLINE | ID: mdl-33836142

RESUMEN

Interaction of the SARS-CoV-2 Spike receptor binding domain (RBD) with the receptor ACE2 on host cells is essential for viral entry. RBD is the dominant target for neutralizing antibodies, and several neutralizing epitopes on RBD have been molecularly characterized. Analysis of circulating SARS-CoV-2 variants has revealed mutations arising in the RBD, N-terminal domain (NTD) and S2 subunits of Spike. To understand how these mutations affect Spike antigenicity, we isolated and characterized >100 monoclonal antibodies targeting epitopes on RBD, NTD, and S2 from SARS-CoV-2-infected individuals. Approximately 45% showed neutralizing activity, of which ∼20% were NTD specific. NTD-specific antibodies formed two distinct groups: the first was highly potent against infectious virus, whereas the second was less potent and displayed glycan-dependant neutralization activity. Mutations present in B.1.1.7 Spike frequently conferred neutralization resistance to NTD-specific antibodies. This work demonstrates that neutralizing antibodies targeting subdominant epitopes should be considered when investigating antigenic drift in emerging variants.


Asunto(s)
Anticuerpos Monoclonales/inmunología , Anticuerpos Antivirales/inmunología , COVID-19/inmunología , COVID-19/virología , Epítopos/inmunología , SARS-CoV-2/inmunología , Glicoproteína de la Espiga del Coronavirus/inmunología , Enzima Convertidora de Angiotensina 2/química , Enzima Convertidora de Angiotensina 2/metabolismo , Anticuerpos Monoclonales/química , Anticuerpos Neutralizantes/inmunología , Anticuerpos Antivirales/química , COVID-19/diagnóstico , Reacciones Cruzadas/inmunología , Epítopos/química , Epítopos/genética , Humanos , Modelos Moleculares , Mutación , Pruebas de Neutralización , Unión Proteica/inmunología , Conformación Proteica , Glicoproteína de la Espiga del Coronavirus/química , Glicoproteína de la Espiga del Coronavirus/genética , Relación Estructura-Actividad
9.
Annu Rev Med ; 74: 31-53, 2023 01 27.
Artículo en Inglés | MEDLINE | ID: mdl-35850493

RESUMEN

The COVID-19 pandemic has been accompanied by SARS-CoV-2 evolution and emergence of viral variants that have far exceeded initial expectations. Five major variants of concern (Alpha, Beta, Gamma, Delta, and Omicron) have emerged, each having both unique and overlapping amino acid substitutions that have affected transmissibility, disease severity, and susceptibility to natural or vaccine-induced immune responses and monoclonal antibodies. Several of the more recent variants appear to have evolved properties of immune evasion, particularly in cases of prolonged infection. Tracking of existing variants and surveillance for new variants are critical for an effective pandemic response.


Asunto(s)
COVID-19 , Humanos , SARS-CoV-2 , Pandemias , Anticuerpos Monoclonales
10.
Eur J Immunol ; 54(3): e2350664, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38088236

RESUMEN

COVID-19 is a systemic inflammatory disease initiated by SARS-CoV-2 virus infection. Multiple vaccines against the Wuhan variant of SARS-CoV-2 have been developed including a whole virion beta-propiolactone-inactivated vaccine based on the B.1.1 strain (CoviVac). Since most of the population has been vaccinated by targeting the original or early variants of SARS-CoV-2, the emergence of novel mutant variants raises concern over possible evasion of vaccine-induced immune responses. Here, we report on the mechanism of protection by CoviVac, a whole virion-based vaccine, against the Omicron variant. CoviVac-immunized K18-hACE2 Tg mice were protected against both prototype B.1.1 and BA.1-like (Omicron) variants. Subsequently, vaccinated K18-hACE2 Tg mice rapidly cleared the infection via cross-reactive T-cell responses and cross-reactive, non-neutralizing antibodies recognizing the Omicron variant Spike protein. Thus, our data indicate that efficient protection from SARS-CoV-2 variants can be achieved by the orchestrated action of cross-reactive T cells and non-neutralizing antibodies.


Asunto(s)
COVID-19 , Melfalán , SARS-CoV-2 , gammaglobulinas , Animales , Humanos , Ratones , Vacunas de Productos Inactivados , Formación de Anticuerpos , COVID-19/prevención & control , Linfocitos T , Virión , Anticuerpos ampliamente neutralizantes , Anticuerpos Neutralizantes , Anticuerpos Antivirales
11.
J Virol ; : e0067824, 2024 Jul 02.
Artículo en Inglés | MEDLINE | ID: mdl-38953380

RESUMEN

SARS-CoV-2 variants of concern (VOCs) differentially trigger neutralizing and antibody-dependent cellular cytotoxic (ADCC) antibodies with variable cross-reactivity. Omicron BA.4/5 was approved for inclusion in bivalent vaccination boosters, and therefore the antigenic profile of antibodies elicited by this variant is critical to understand. Here, we investigate the ability of BA.4/5-elicited antibodies following the first documented (primary) infection (n = 13) or breakthrough infection after vaccination (n = 9) to mediate neutralization and FcγRIIIa signaling across multiple SARS-CoV-2 variants including XBB.1.5 and BQ.1. Using a pseudovirus neutralization assay and a FcγRIIIa crosslinking assay to measure ADCC potential, we show that unlike SARS-CoV-2 Omicron BA.1, BA.4/5 infection triggers highly cross-reactive functional antibodies. Cross-reactivity was observed both in the absence of prior vaccination and in breakthrough infections following vaccination. However, BQ.1 and XBB.1.5 neutralization and FcγRIIIa signaling were significantly compromised compared to other VOCs, regardless of prior vaccination status. BA.4/5 triggered FcγRIIIa signaling was significantly more resilient against VOCs (<10-fold decrease in magnitude) compared to neutralization (10- to 100-fold decrease). Overall, this study shows that BA.4/5 triggered antibodies are highly cross-reactive compared to those triggered by other variants. Although this is consistent with enhanced neutralization and FcγRIIIa signaling breadth of BA.4/5 vaccine boosters, the reduced activity against XBB.1.5 supports the need to update vaccines with XBB sublineage immunogens to provide adequate coverage of these highly antibody evasive variants. IMPORTANCE: The continued evolution of SARS-CoV-2 has resulted in a number of variants of concern. Of these, the Omicron sublineage is the most immune evasive. Within Omicron, the BA.4/5 sublineage drove the fifth wave of infection in South Africa prior to becoming the dominant variant globally. As a result this spike sequence was approved as part of a bivalent vaccine booster, and rolled out worldwide. We aimed to understand the cross-reactivity of neutralizing and Fc mediated cytotoxic functions elicited by BA.4/5 infection following infection or breakthrough infection. We find that, in contrast to BA.1 which triggered fairly strain-specific antibodies, BA.4/5 triggered antibodies that are highly cross-reactive for neutralization and antibody-dependent cellular cytotoxicity potential. Despite this cross-reactivity, these antibodies are compromised against highly resistant variants such as XBB.1.5 and BQ.1. This suggests that next-generation vaccines will require XBB sublineage immunogens in order to protect against these evasive variants.

12.
Trends Genet ; 37(12): 1069-1080, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34556337

RESUMEN

Superspreading and variants of concern (VOC) of the human pathogen severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) are the main catalyzers of the coronavirus disease 2019 (COVID-19) pandemic. However, measuring their individual impact is challenging. By examining the largest database of SARS-CoV-2 genomes The Global Initiative on Sharing Avian Influenza Data [GISAID; n >1.2 million high-quality (HQ) sequences], we present evidence suggesting that superspreading has had a key role in the epidemiological predominance of VOC. There are clear signatures in the database compatible with large superspreading events (SSEs) coinciding chronologically with the worst epidemiological scenarios triggered by VOC. The data suggest that, without the randomness effect of the genetic drift facilitated by superspreading, new VOC of SARS-CoV-2 would have had more limited chance of success.


Asunto(s)
COVID-19 , Pandemias , SARS-CoV-2/clasificación , Animales , Humanos
13.
Eur J Immunol ; 53(12): e2250332, 2023 12.
Artículo en Inglés | MEDLINE | ID: mdl-37609807

RESUMEN

Knowledge about early immunity to SARS-CoV-2 variants of concern mainly comes from the analysis of human blood. Such data provide limited information about host responses at the site of infection and largely miss the initial events. To gain insights into compartmentalization and the early dynamics of host responses to different SARS-CoV-2 variants, we utilized human angiotensin converting enzyme 2 (hACE2) transgenic mice and tracked immune changes during the first days after infection by RNAseq, multiplex assays, and flow cytometry. Viral challenge infection led to divergent viral loads in the lungs, distinct inflammatory patterns, and innate immune cell accumulation in response to ancestral SARS-CoV-2, Beta (B.1.351) and Delta (B.1.617.2) variant of concern (VOC). Compared to other SARS-CoV-2 variants, infection with Beta (B.1.351) VOC spread promptly to the lungs, leading to increased inflammatory responses. SARS-CoV-2-specific antibodies and T cells developed within the first 7 days postinfection and were required to reduce viral spread and replication. Our studies show that VOCs differentially trigger transcriptional profiles and inflammation. This information contributes to the basic understanding of immune responses immediately postexposure to SARS-CoV-2 and is relevant for developing pan-VOC interventions including prophylactic vaccines.


Asunto(s)
COVID-19 , SARS-CoV-2 , Animales , Ratones , Humanos , Enzima Convertidora de Angiotensina 2/genética , COVID-19/genética , Anticuerpos Antivirales , Ratones Transgénicos , Inmunidad
14.
Infection ; 52(1): 271-273, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37932523

RESUMEN

We present a case of an ultimately fatal course of COVID-19 (coronavirus disease-19) in an 81-year-old female patient during the Omicron surge. The patient did not represent the typical patient at risk for severe COVID-19 with significant causes of immunodeficiency. However, she had been skeptical about the vaccination for severe acute respiratory syndrome virus-2 (SARS-CoV-2) and had refused it. Moreover, there had been no previous COVID-19 episodes. Our case report illustrates that with regard to SARS-CoV-2, immunologically naive patients are still at risk for severe and/or even fatal courses of COVID-19. We call to implement both, recommendations for SARS-CoV-2 vaccinations as well as for antiviral treatment.


Asunto(s)
COVID-19 , SARS-CoV-2 , Femenino , Humanos , Anciano de 80 o más Años , COVID-19/diagnóstico , Vacunación
15.
BMC Infect Dis ; 24(1): 139, 2024 Jan 29.
Artículo en Inglés | MEDLINE | ID: mdl-38287244

RESUMEN

BACKGROUND: The spread of SARS-CoV-2 has been studied at unprecedented levels worldwide. In jurisdictions where molecular analysis was performed on large scales, the emergence and competition of numerous SARS-CoV-2lineages have been observed in near real-time. Lineage identification, traditionally performed from clinical samples, can also be determined by sampling wastewater from sewersheds serving populations of interest. Variants of concern (VOCs) and SARS-CoV-2 lineages associated with increased transmissibility and/or severity are of particular interest. METHOD: Here, we consider clinical and wastewater data sources to assess the emergence and spread of VOCs in Canada retrospectively. RESULTS: We show that, overall, wastewater-based VOC identification provides similar insights to the surveillance based on clinical samples. Based on clinical data, we observed synchrony in VOC introduction as well as similar emergence speeds across most Canadian provinces despite the large geographical size of the country and differences in provincial public health measures. CONCLUSION: In particular, it took approximately four months for VOC Alpha and Delta to contribute to half of the incidence. In contrast, VOC Omicron achieved the same contribution in less than one month. This study provides significant benchmarks to enhance planning for future VOCs, and to some extent for future pandemics caused by other pathogens, by quantifying the rate of SARS-CoV-2 VOCs invasion in Canada.


Asunto(s)
COVID-19 , Humanos , COVID-19/epidemiología , Canadá/epidemiología , Estudios Retrospectivos , SARS-CoV-2/genética , Aguas Residuales
16.
J Infect Dis ; 227(2): 202-205, 2023 01 11.
Artículo en Inglés | MEDLINE | ID: mdl-35759271

RESUMEN

Using multiple cell types and isolates of Delta and Omicron variants of SARS-CoV-2, we report differences in virus production, replication, and infectivity in vitro. Ancestral and Delta SARS-CoV-2 variant exhibit reduced virus production and replication at 34°C compared to 37°C while Omicron replication is balanced between temperatures.


Asunto(s)
COVID-19 , Humanos , SARS-CoV-2/genética , Temperatura
17.
J Infect Dis ; 227(3): 332-338, 2023 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-36179126

RESUMEN

BACKGROUND: We compare the risk of coronavirus disease 2019 (COVID-19) outcomes among co-circulating severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants between January 2021 and May 2022 in Navarra, Spain. METHODS: We compared the frequency of hospitalization and severe disease (intensive care unit admission or death) due to COVID-19 among the co-circulating variants. Variants analyzed were nonvariants of concern (non-VOCs), Alpha, Delta, Omicron BA.1, and Omicron BA.2. Logistic regression models were used to estimate adjusted odds ratio (aOR). RESULTS: The Alpha variant had a higher risk of hospitalization (aOR, 1.86 [95 confidence interval {CI}, 1.282.71]) and severe disease (aOR, 2.40 [95 CI, 1.314.40]) than non-VOCs. The Delta variant did not show a significantly different risk of hospitalization (aOR, 0.73 [95 CI, .401.30]) and severe disease (aOR, 3.04 [95 CI, .5716.22]) compared to the Alpha variant. The Omicron BA.1 significantly reduced both risks relative to the Delta variant (aORs, 0.28 [95 CI, .16.47] and 0.23 [95 CI, .12.46], respectively). The Omicron BA.2 reduced the risk of hospitalization compared to BA.1 (aOR, 0.52 [95 CI, .29.95]). CONCLUSIONS: The Alpha and Delta variants showed an increased risk of hospitalization and severe disease, which decreased considerably with the Omicron BA.1 and BA.2. Surveillance of variants can lead to important differences in severity.


Asunto(s)
COVID-19 , SARS-CoV-2 , Humanos , SARS-CoV-2/genética , COVID-19/epidemiología , Hospitalización , Unidades de Cuidados Intensivos
18.
Emerg Infect Dis ; 29(4): 814-817, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36878009

RESUMEN

We compared serial intervals and incubation periods for SARS-CoV-2 Omicron BA.1 and BA.2 subvariants and Delta variants in Singapore. Median incubation period was 3 days for BA.1 versus 4 days for Delta. Serial interval was 2 days for BA.1 and 3 days for BA.2 but 4 days for Delta.


Asunto(s)
COVID-19 , SARS-CoV-2 , Humanos , Singapur/epidemiología , SARS-CoV-2/genética , COVID-19/epidemiología , Periodo de Incubación de Enfermedades Infecciosas
19.
J Clin Immunol ; 43(8): 1706-1723, 2023 11.
Artículo en Inglés | MEDLINE | ID: mdl-37405544

RESUMEN

Although a more efficient adaptive humoral immune response has been proposed to underlie the usually favorable outcome of pediatric COVID-19, the breadth of viral and vaccine cross-reactivity toward the ever-mutating Spike protein among variants of concern (VOCs) has not yet been compared between children and adults. We assessed antibodies to conformational Spike in COVID-19-naïve children and adults vaccinated by BNT162b2 and ChAdOx1, and naturally infected with SARS-CoV-2 Early Clade, Delta, and Omicron. Sera were analyzed against Spike including naturally occurring VOCs Alpha, Beta, Gamma, Delta, and Omicron BA.1, BA.2, BA.5, BQ.1.1, BA2.75.2, and XBB.1, and variants of interest Epsilon, Kappa, Eta, D.2, and artificial mutant Spikes. There was no notable difference between breadth and longevity of antibody against VOCs in children and adults. Vaccinated individuals displayed similar immunoreactivity profiles across variants compared with naturally infected individuals. Delta-infected patients had an enhanced cross-reactivity toward Delta and earlier VOCs compared to patients infected by Early Clade SARS-CoV-2. Although Omicron BA.1, BA.2, BA.5, BQ.1.1, BA2.75.2, and XBB.1 antibody titers were generated after Omicron infection, cross-reactive binding against Omicron subvariants was reduced across all infection, immunization, and age groups. Some mutations, such as 498R and 501Y, epistatically combined to enhance cross-reactive binding, but could not fully compensate for antibody-evasive mutations within the Omicron subvariants tested. Our results reveal important molecular features central to the generation of high antibody titers and broad immunoreactivity that should be considered in future vaccine design and global serosurveillance in the context of limited vaccine boosters available to the pediatric population.


Asunto(s)
COVID-19 , Vacunas , Niño , Humanos , Adulto , SARS-CoV-2 , Formación de Anticuerpos , Vacuna BNT162 , Anticuerpos
20.
J Clin Immunol ; 43(7): 1506-1518, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37322095

RESUMEN

Following the COVID-19 pandemic, novel vaccines have successfully reduced severe disease and death. Despite eliciting lower antibody responses, adenoviral vector vaccines are nearly as effective as mRNA vaccines. Therefore, protection against severe disease may be mediated by immune memory cells. We here evaluated plasma antibody and memory B cells (Bmem) targeting the SARS-CoV-2 Spike receptor-binding domain (RBD) elicited by the adenoviral vector vaccine ChAdOx1 (AstraZeneca), their capacity to bind Omicron subvariants, and compared this to the response to mRNA BNT162b2 (Pfizer-BioNTech) vaccination. Whole blood was sampled from 31 healthy adults pre-vaccination and 4 weeks after dose one and dose two of ChAdOx1. Neutralizing antibodies (NAb) against SARS-CoV-2 were quantified at each time point. Recombinant RBDs of the Wuhan-Hu-1 (WH1), Delta, BA.2, and BA.5 variants were produced for ELISA-based quantification of plasma IgG and incorporated separately into fluorescent tetramers for flow cytometric identification of RBD-specific Bmem. NAb and RBD-specific IgG levels were over eight times lower following ChAdOx1 vaccination than BNT162b2. In ChAdOx1-vaccinated individuals, median plasma IgG recognition of BA.2 and BA.5 as a proportion of WH1-specific IgG was 26% and 17%, respectively. All donors generated resting RBD-specific Bmem, which were boosted after the second dose of ChAdOx1 and were similar in number to those produced by BNT162b2. The second dose of ChAdOx1 boosted Bmem that recognized VoC, and 37% and 39% of WH1-specific Bmem recognized BA.2 and BA.5, respectively. These data uncover mechanisms by which ChAdOx1 elicits immune memory to confer effective protection against severe COVID-19.


Asunto(s)
Vacuna BNT162 , COVID-19 , Adulto , Humanos , Células B de Memoria , Pandemias , COVID-19/prevención & control , SARS-CoV-2 , Vacunación , Adenoviridae , Anticuerpos Neutralizantes , Inmunoglobulina G , Anticuerpos Antivirales
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda