Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Banco de datos
País como asunto
Tipo del documento
Publication year range
1.
Proc Natl Acad Sci U S A ; 121(30): e2319628121, 2024 Jul 23.
Artículo en Inglés | MEDLINE | ID: mdl-39012821

RESUMEN

Heterotrophic protists are vital in Earth's ecosystems, influencing carbon and nutrient cycles and occupying key positions in food webs as microbial predators. Fossils and molecular data suggest the emergence of predatory microeukaryotes and the transition to a eukaryote-rich marine environment by 800 million years ago (Ma). Neoproterozoic vase-shaped microfossils (VSMs) linked to Arcellinida testate amoebae represent the oldest evidence of heterotrophic microeukaryotes. This study explores the phylogenetic relationship and divergence times of modern Arcellinida and related taxa using a relaxed molecular clock approach. We estimate the origin of nodes leading to extant members of the Arcellinida Order to have happened during the latest Mesoproterozoic and Neoproterozoic (1054 to 661 Ma), while the divergence of extant infraorders postdates the Silurian. Our results demonstrate that at least one major heterotrophic eukaryote lineage originated during the Neoproterozoic. A putative radiation of eukaryotic groups (e.g., Arcellinida) during the early-Neoproterozoic sustained by favorable ecological and environmental conditions may have contributed to eukaryotic life endurance during the Cryogenian severe ice ages. Moreover, we infer that Arcellinida most likely already inhabited terrestrial habitats during the Neoproterozoic, coexisting with terrestrial Fungi and green algae, before land plant radiation. The most recent extant Arcellinida groups diverged during the Silurian Period, alongside other taxa within Fungi and flowering plants. These findings shed light on heterotrophic microeukaryotes' evolutionary history and ecological significance in Earth's ecosystems, using testate amoebae as a proxy.


Asunto(s)
Ecosistema , Fósiles , Procesos Heterotróficos , Filogenia , Biodiversidad , Evolución Biológica , Amebozoos/genética , Amebozoos/clasificación , Amoeba/genética , Amoeba/clasificación , Amoeba/fisiología , Eucariontes/genética , Eucariontes/clasificación
2.
Geobiology ; 21(3): 290-309, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-36651474

RESUMEN

Vase-shaped microfossils (VSMs) are found globally in middle Neoproterozoic (800-730 Ma) marine strata and represent the earliest evidence for testate (shell-forming) amoebozoans. VSM tests are hypothesized to have been originally organic in life but are most commonly preserved as secondary mineralized casts and molds. A few reports, however, suggest possible organic preservation. Here, we test the hypothesis that VSMs from shales of the lower Walcott Member of the Chuar Group, Grand Canyon, Arizona, contain original organic material, as reported by B. Bloeser in her pioneering studies of Chuar VSMs. We identified VSMs from two thin section samples of Walcott Member black shales in transmitted light microscopy and used scanning electron microscopy to image VSMs. Carbonaceous material is found within the internal cavity of all VSM tests from both samples and is interpreted as bitumen mobilized from Walcott shales likely during the Cretaceous. Energy dispersive X-ray spectroscopy (EDS) and wavelength dispersive X-ray spectroscopy (WDS) reveal that VSM test walls contain mostly carbon, iron, and sulfur, while silica is present only in the surrounding matrix. Raman spectroscopy was used to compare the thermal maturity of carbonaceous material within the samples and indicated the presence of pyrite and jarosite within fossil material. X-ray absorption spectroscopy revealed the presence of reduced organic sulfur species within the carbonaceous test walls, the carbonaceous material found within test cavities, and in the sedimentary matrix, suggesting that organic matter sulfurization occurred within the Walcott shales. Our suite of spectroscopic analyses reveals that Walcott VSM test walls are organic and sometimes secondarily pyritized (with the pyrite variably oxidized to jarosite). Both preservation modes can occur at a millimeter spatial scale within sample material, and at times even within a single specimen. We propose that sulfurization within the Walcott Shales promoted organic preservation, and furthermore, the ratio of iron to labile VSM organic material controlled the extent of pyrite replacement. Based on our evidence, we conclude that the VSMs are preserved with original organic test material, and speculate that organic VSMs may often go unrecognized, given their light-colored, translucent appearance in transmitted light.


Asunto(s)
Hierro , Espectrometría Raman , Arizona , Espectrometría Raman/métodos
3.
Curr Biol ; 29(6): 991-1001.e3, 2019 03 18.
Artículo en Inglés | MEDLINE | ID: mdl-30827918

RESUMEN

Life was microbial for the majority of Earth's history, but as very few microbial lineages leave a fossil record, the Precambrian evolution of life remains shrouded in mystery. Shelled (testate) amoebae stand out as an exception with rich documented diversity in the Neoproterozoic as vase-shaped microfossils (VSMs). While there is general consensus that most of these can be attributed to the Arcellinida lineage in Amoebozoa, it is still unclear whether they can be used as key fossils for interpretation of early eukaryotic evolution. Here, we present a well-resolved phylogenomic reconstruction based on 250 genes, obtained using single-cell transcriptomic techniques from a representative selection of 19 Arcellinid testate amoeba taxa. The robust phylogenetic framework enables deeper interpretations of evolution in this lineage and demanded an updated classification of the group. Additionally, we performed reconstruction of ancestral morphologies, yielding hypothetical ancestors remarkably similar to existing Neoproterozoic VSMs. We demonstrate that major lineages of testate amoebae were already diversified before the Sturtian glaciation (720 mya), supporting the hypothesis that massive eukaryotic diversification took place in the early Neoproterozoic and congruent with the interpretation that VSM are arcellinid testate amoebae.


Asunto(s)
Fósiles/anatomía & histología , Lobosea/clasificación , Lobosea/genética , Genes Protozoarios , Filogenia
4.
PeerJ ; 3: e1234, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26734499

RESUMEN

The terrestrial cycling of Si is thought to have a large influence on the terrestrial and marine primary production, as well as the coupled biogeochemical cycles of Si and C. Biomineralization of silica is widespread among terrestrial eukaryotes such as plants, soil diatoms, freshwater sponges, silicifying flagellates and testate amoebae. Two major groups of testate (shelled) amoebae, arcellinids and euglyphids, produce their own silica particles to construct shells. The two are unrelated phylogenetically and acquired biomineralizing capabilities independently. Hyalosphenids, a group within arcellinids, are predators of euglyphids. We demonstrate that hyalosphenids can construct shells using silica scales mineralized by the euglyphids. Parsimony analyses of the current hyalosphenid phylogeny indicate that the ability to "steal" euglyphid scales is most likely ancestral in hyalosphenids, implying that euglyphids should be older than hyalosphenids. However, exactly when euglyphids arose is uncertain. Current fossil record contains unambiguous euglyphid fossils that are as old as 50 million years, but older fossils are scarce and difficult to interpret. Poor taxon sampling of euglyphids has also prevented the development of molecular clocks. Here, we present a novel molecular clock reconstruction for arcellinids and consider the uncertainties due to various previously used calibration points. The new molecular clock puts the origin of hyalosphenids in the early Carboniferous (∼370 mya). Notably, this estimate coincides with the widespread colonization of land by Si-accumulating plants, suggesting possible links between the evolution of Arcellinid testate amoebae and the expansion of terrestrial habitats rich in organic matter and bioavailable Si.

SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda