Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 20 de 73
Filtrar
1.
J Stroke Cerebrovasc Dis ; 33(5): 107666, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38423152

RESUMEN

OBJECTIVE: Velvet antler polypeptide (VAP) has been shown to play important roles in the immune and nervous systems. The purpose of this study was to investigate the protective effects of VAP on cerebral ischemic injury with the involvement of NF-κB signaling pathway in vitro. MATERIALS AND METHODS: PC-12 cells stimulated by oxygen-glucose deprivation/reperfusion (OGD/R) was used to mimic cerebral ischemic injury in vitro. The levels of ROS, SOD, and intracellular concentrations of Ca2+ were measured by the relevant kits. Meanwhile, the expressions of inflammatory cytokines (IL-6, IL-1ß, and TNF-α) were determined by ELISA kit assay. In addition, MTT, EdU, and flow cytometry assays were used to measure the cell proliferation and apoptosis. Besides which, the related proteins of NF-κB signaling pathway were measured by western blotting assay. RESULTS: VAP alleviated cerebral ischemic injury by reducing OGD/R-induced oxidative stress, inflammation, and apoptosis in PC-12 cells in a time dependent manner. Mechanistically, VAP inhibited the levels of p-p65 and p-IkB-α in a time dependent manner, which was induced by OGD/R operation. Moreover, NF-κB agonist diprovocim overturned the suppression effects of VAP on OGD/R-induced oxidative stress, inflammation, and apoptosis in PC-12 cells. CONCLUSIONS: The results demonstrate that VAP may alleviate cerebral ischemic injury by suppressing the activation of NF-κB signaling pathway.


Asunto(s)
Cuernos de Venado , Daño por Reperfusión , Humanos , Animales , FN-kappa B/metabolismo , Cuernos de Venado/metabolismo , Transducción de Señal , Oxígeno/metabolismo , Citocinas/metabolismo , Inflamación/metabolismo , Daño por Reperfusión/prevención & control , Daño por Reperfusión/metabolismo , Apoptosis , Glucosa
2.
Bioorg Chem ; 131: 106304, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36463590

RESUMEN

Velvet antler is a traditional Chinese medicine with various pharmacological values, which is an important raw material for traditional Chinese medicinal wine. Nevertheless, the chemical compositions and bioactivities of velvet antler residue used for making medicinal wine are rarely reported, leading to a waste of resources. In this study, a velvet antler protein (VA-pro) was extracted from velvet antler residue by simulating the gastrointestinal digestion, and its composition, structural characteristics and in vivo anti-tumor activities were determined and investigated. VA-pro possessed high purity with a relatively low molecular weight as 22.589 kDa under HPLC, one- and two-dimensional electrophoresis, and it contained high contents of Pro, Gly, Glu and Ala. Besides, the secondary structure of VA-pro was dominated by ß-turn and ß-sheet, and VA-pro possessed similar protein sequence, isoelectric point and amino acid compositions to hypothetical protein G4228_020061. The in vivo results substantiated that VA-pro could improve the body weights and immune organ indices, increase the expressions of sera cytokines and regulate the distributions of T and B lymphocytes subsets in peripheral blood of S180 tumor-bearing mice. Furthermore, VA-pro could effectively inhibit solid S180 tumors growth by inducing S phase cell cycle arrest mediated through mitochondria. To summarize, our study provided theoretical support that VA-pro had the potential to be used as an immunopotentiator in immunocompromised or cancer-bearing hosts.


Asunto(s)
Cuernos de Venado , Neoplasias , Ratones , Animales , Cuernos de Venado/química , Cuernos de Venado/metabolismo , Peso Molecular , Proteínas/metabolismo , Aminoácidos/metabolismo , Neoplasias/metabolismo
3.
Med Mycol ; 60(9)2022 Sep 24.
Artículo en Inglés | MEDLINE | ID: mdl-36099875

RESUMEN

Oral biofilms comprise extracellular polysaccharides and polymicrobial microorganisms. The objectives of the study were to characterize the deer velvet antler (DVA) compounds and their effect on Candida species biofilm formation with the hypothesis that DVA inhibits the biofilm of Candida spp. Liquid Chromatography-Quadrupole Time of Flight-Mass Spectrometry (LC-QTOF-MS) was conducted to characterize the DVA compounds. To study the effect of DVA on biofilm, Candida albicans ATCC MYA-4901 (ALT5), AIDS isolate (ALC2), oral cancer isolate (ALC3), C. dubliniensis ATCC MYA-2975, C. glabrata ATCC 90030, C. krusei 14 243, C. lusitaniae ATCC 34449, C. parapsilosis ATCC 22019, and C. tropicalis ATCC 13803 were inoculated with DVA in separate wells of a 96-well plate containing RPMI-1640 followed by 72 h incubation. A total of 45 compounds were detected in the DVA extract. C. lusitaniae exhibited a higher percentage of biofilm biomass reduction when treated with DVA extract (66.10% ± 5.33), followed by ALC3 (44.12% ± 6.24). However, C. glabrata, C. krusei, and C. parapsilosis showed no reduction in biofilm biomass after being treated with DVA extract. Most Candida strains also exhibited decreased total cell count when treated with DVA extract, except for ALC3 and C. krusei. ALT5 had the lowest total cell count (0.17 × 105 cells/ml) when cultured with DVA extract. In conclusion, DVA extract inhibits Candida spp. biofilm formation except for C. glabrata, C. krusei, and C. parapsilosis.


The study determines deer velvet antler (DVA) compounds and their effect on Candida species biofilm formation. A total of 45 compounds were detected in the DVA extract. Most Candida spp. exhibited a higher percentage of biofilm reduction and decreased total cell count when treated with DVA extract.


Asunto(s)
Cuernos de Venado , Ciervos , Animales , Biopelículas , Candida , Candida glabrata , Candida tropicalis , Extractos Vegetales/farmacología
4.
Int J Med Sci ; 18(8): 1778-1785, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33746595

RESUMEN

Background: The mucus integrity and abnormal inflammatory response are the crucial biomarker of inflammatory bowel disease (IBD). Velvet antler (VA) has been used as traditional Chinese medicines for many years. Anti-inflammatory property was demonstrated via suppression of cyclooxygenase-2 and cytokines protein expression. And it has further proved to promote wound healing in streptozotocin-induced diabetic rats model. The aforementioned functionalities of VA extracts may be associated with the treatment of IBD. Thus, the aim of present study was to evaluate the effect of velvet antler water extracts form Formosan Sambar deer (Rusa unicolor swinhoei, SVAE) and red deer (Cervus elaphus, RVAE) on the barrier function and to investigate the possible mechanism using in vitro model. Methods: Human colonic epithelial cell models (Caco-2) were co-cultured with various concentrations of both SVAE and RVAE (250-500 µg mL-1) in dextran sulfate sodium (DSS)-induced colitis model. Trans-epithelial electrical resistance (TEER) value and the macromolecule permeability of Fluorescein isothiocyanate (FITC)-labeled dextran were measured to evaluate the integrity of monolayer of Caco-2. Western blotting was performed for analysis of protein expressions of occludin, Zonula occludens-1 (ZO-1), claudin-1, claudin-2 and myosin light chain kinase (MLCK). The cytotoxicity was conducted by MTT assay. Results: Results indicated that both SVAE and RVAE could enhance integrity of monolayer in dextran sulfate sodium (DSS)-induced colonic epithelial cell model (Caco-2) through reducing the decline of trans-epithelial electrical resistance (TEER) and macromolecule permeability at the concentration of 250 µg mL-1. RVAE significantly increased the expression of tight junction proteins (occludin and ZO-1) while SVAE significantly reduced the activity of MLCK (P < 0.05.). Elevated C-C chemokine ligand 20 (CCL20) production suggested that both SVAE and RVAE could enhance the repair of epithelial cell. Besides, MTT assay revealed that both extracts showed no cytotoxicity. Conclusion: Thus, SVAE and RVAE supplementation may attenuate barrier damage by enhancing the occludin and ZO-1 protein expression, decreasing MLCK expression, promoting the CCL20 production. In the future, animal study is needed for further confirmation.


Asunto(s)
Cuernos de Venado/química , Productos Biológicos/farmacología , Ciervos , Enfermedades Inflamatorias del Intestino/tratamiento farmacológico , Uniones Estrechas/efectos de los fármacos , Animales , Productos Biológicos/aislamiento & purificación , Productos Biológicos/uso terapéutico , Células CACO-2 , Sulfato de Dextran/toxicidad , Humanos , Enfermedades Inflamatorias del Intestino/patología , Mucosa Intestinal/efectos de los fármacos , Mucosa Intestinal/patología , Proteínas de Uniones Estrechas/metabolismo , Uniones Estrechas/patología , Pruebas de Toxicidad Aguda , Agua/química
5.
J Integr Neurosci ; 20(3): 573-583, 2021 Sep 30.
Artículo en Inglés | MEDLINE | ID: mdl-34645090

RESUMEN

We investigated the anti-aging effects of velvet antler polypeptide on D-galactose (D-gal)-induced aging mice. D-gal-induced aging mice were established and randomly divided into five groups, the control, model, vitamin E (VE), velvet antler polypeptide low-dose and velvet antler polypeptide high-dose groups. The Morris water maze test was used to evaluate the learning and memory abilities of aging mice. Hippocampal neurons were observed via hematoxylin-eosin staining and transmission electron microscopy. Biochemical methods were used to detect the activities of superoxide dismutase, malonaldehyde and other enzymes and evaluate the influence of velvet antler polypeptide on the antioxidant capacity of aging mice. Using 16S rRNA gene sequencing and meristem technology, we assessed the effect of velvet antler polypeptide on aging mice's intestinal flora and fatty acid metabolism. The experimental results showed that velvet antler polypeptide could significantly improve aging mice's learning and cognitive abilities, increase the activities of superoxide dismutase, glutathione peroxidase, and catalase in the serum decrease the malonaldehyde content. Intestinal microecological analysis showed that velvet antler polypeptide could significantly increase the beneficial bacterial genus Lactobacillus abundance. Western blot analysis further demonstrated that velvet antler polypeptide could promote fatty acid metabolism by activating peroxisome proliferator-activated receptor α (PPARα) and upregulating the expression of the downstream enzymes carnitine-palmitoyl transferase-1 A and acyl-CoA oxidase 1 while downregulating that of apolipoprotein E4 (APOE4), thereby reducing fatty acid accumulation and increasing adenosine-triphosphate (ATP) production. Therefore, velvet antler polypeptide improves the intestinal microecology and activates the PPARα/APOE4 pathway to regulate fatty acid metabolism.


Asunto(s)
Envejecimiento/efectos de los fármacos , Cuernos de Venado , Apolipoproteína E4/efectos de los fármacos , Disfunción Cognitiva/tratamiento farmacológico , Microbioma Gastrointestinal/efectos de los fármacos , Medicina Tradicional China , PPAR alfa/efectos de los fármacos , Animales , Cuernos de Venado/química , Conducta Animal/efectos de los fármacos , Femenino , Masculino , Aprendizaje por Laberinto/efectos de los fármacos , Ratones , Ratones Endogámicos ICR , Péptidos/farmacología , Transducción de Señal/efectos de los fármacos
6.
Yi Chuan ; 43(4): 308-322, 2021 Apr 20.
Artículo en Inglés | MEDLINE | ID: mdl-33972206

RESUMEN

Deer family is one of the most abundant mammalian families in the world. Deer species are distributed in wide geographic ranges including the North Pole, tropical regions and high-altitude mountains. Of these deer species, China accounts for more than 40% of them and is the main site for deer evolution. Besides the common phenotypical attributes for ruminants, deer family is evolved to possess the unique head gears with periodic regeneration, i.e. antlers. It is currently well accepted that deer is a very valuable model for the studies of ecology, behavior, evolution and biology, especially for the study of mammalian organ regeneration. Reference deer genome is the basis for systematically illustrating deer evolution, deciphering unique biological attributes of deer species, and is significant in protection and utilization of deer genetic resources. In this review, we summarize the recent progress in the field of deer genome research, including data of deer genetic variation, molecular basis of adaptive evolution, and key genes and functional genomics involved in deer antler origin and evolution. The overall aim of the paper is to provide the reference neccessary for in depth investigation of deer species.


Asunto(s)
Cuernos de Venado , Ciervos , Animales , China , Ciervos/genética , Humanos , Organogénesis , Regeneración
7.
Hereditas ; 157(1): 24, 2020 Jun 26.
Artículo en Inglés | MEDLINE | ID: mdl-32591015

RESUMEN

BACKGROUND: Sika deer is one of the most popular and valued animals in China. However, few studies have been conducted on the microsatellite of Sika deer, which has hampered the progress of genetic selection breeding. To develop and characterize a set of microsatellites for Sika deer which provide helpful information for protection of Sika deer natural resources and effectively increase the yield and quantity of velvet antler. RESULTS: We conducted a transcriptome survey of Sika deer using next-generation sequencing technology. One hundred eighty-two thousand two hundred ninety-five microsatellite markers were identified in the transcriptome, 170 of 200 loci were successfully amplified across panels of 140 individuals from Shuangyang Sika deer population. And 29 loci were found to be obvious polymorphic. Number of alleles is from 3 to 14. The expected heterozygosity ranged from 0.3087 to 0.7644. The observed heterozygosity ranged from 0 to 0.7698. The polymorphism information content values of those microsatellites varied ranged from 0.2602 to 0.7507. The marker-trait association was tested for 6 important and kernel characteristics of two-branched velvet antler in Shuangyang Sika deer through one-way analysis of variance. The results showed that marker-trait associations were identified with 8 different markers, especially M009 and M027. CONCLUSIONS: This study not only provided a large scale of microsatellites which were valuable for future genetic mapping and trait association in Sika deer, but also offers available information for molecular breeding in Sika deer.


Asunto(s)
Cuernos de Venado/crecimiento & desarrollo , Ciervos/crecimiento & desarrollo , Ciervos/genética , Etiquetas de Secuencia Expresada , Estudios de Asociación Genética , Variación Genética , Repeticiones de Microsatélite , Animales , Perfilación de la Expresión Génica , Marcadores Genéticos , Pruebas Genéticas , Sitios de Carácter Cuantitativo , Carácter Cuantitativo Heredable , Transcriptoma
8.
J Integr Neurosci ; 19(3): 469-477, 2020 Sep 30.
Artículo en Inglés | MEDLINE | ID: mdl-33070526

RESUMEN

We investigated the effects of velvet antler polypeptide on cognitive impairment and the underlying mechanisms. Hydrogen peroxide-induced cell injury was used to establish an in vitro model of SH-SY5Y cells. In addition, we established an in vivo mouse model of cognitive impairment using intraperitoneal injections of scopolamine hydrobromide in strain mice. We administered three different doses of velvet antler polypeptide in this mouse model and assessed the influence of velvet antler polypeptide on the morphology of hippocampal neurons, hippocampal neuronal apoptosis, adrenocorticotropic hormone, and corticosterone activities in brain tissue samples, and the molecular and biochemical regulation of B-cell lymphoma-2, B-cell lymphoma-2 Associated X-protein, Cysteine-aspartic acid protease-3, glucocorticoid receptor, mineralocorticoid receptor, and corticotropin-releasing hormone in murine hippocampal neurons. Our data suggest that velvet antler polypeptide decreases glucocorticoid receptor, mineralocorticoid receptor, and corticotropin-releasing hormone levels and regulates the hormones released by the hypothalamic-pituitary-adrenal axis, thus suppressing neuronal apoptosis.


Asunto(s)
Cuernos de Venado/química , Apoptosis/efectos de los fármacos , Sistema Hipotálamo-Hipofisario/efectos de los fármacos , Neuronas/efectos de los fármacos , Fármacos Neuroprotectores/administración & dosificación , Péptidos/administración & dosificación , Sistema Hipófiso-Suprarrenal/efectos de los fármacos , Animales , Línea Celular Tumoral , Ciervos , Femenino , Humanos , Sistema Hipotálamo-Hipofisario/metabolismo , Sistema Hipotálamo-Hipofisario/patología , Masculino , Ratones Endogámicos ICR , Neuronas/metabolismo , Sistema Hipófiso-Suprarrenal/metabolismo
9.
Chem Biodivers ; 17(2): e1900512, 2020 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-31900973

RESUMEN

Velvet antler (VA) is crucial and precious nourishment in China and some countries in Southeast Asia and has excellent anti-fatigue effect. The incidence of fatigue syndrome has increased gradually. VA can be a potential source of anti-fatigue products. Therefore, we investigated the anti-fatigue activity of different sections (upper, middle, and basal section) of VA from different species (red deer and sika deer) via loading swimming test in mice. Furthermore, nucleosides are one kind of active components in VA which could considerably reduce fatigue in mice. In order to explore whether the nucleosides are correlated with anti-fatigue effect, the contents of eight nucleosides (uracil, cytidine, hypoxanthine, xanthine, thymine, inosine, guanosine, and adenosine) were determined simultaneously using high-performance liquid chromatography. The results indicated that the swimming time in mice was increased from basal to upper section, which was consistent with the change trend of the total contents of eight nucleosides of VA. Therefore, we speculated that the contents of nucleosides in VA may affect its anti-fatigue effect. Furthermore, the contents of nucleosides were also used as a reference for evaluating the quality of different parts of VA obtained from red and sika deer.


Asunto(s)
Cuernos de Venado/metabolismo , Fatiga/tratamiento farmacológico , Nucleósidos/uso terapéutico , Animales , Peso Corporal/efectos de los fármacos , Cromatografía Líquida de Alta Presión , Ciervos , Masculino , Ratones , Nucleósidos/análisis , Nucleósidos/farmacología , Condicionamiento Físico Animal
10.
Mol Genet Genomics ; 294(2): 431-443, 2019 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-30539301

RESUMEN

Velvet antler displays the fastest and most robust tissue proliferation in the animal world, it is a model for a complete organ development/regeneration, and alternative medicine, tonic made from velvet antler, was beneficial for human. The weight of velvet antler had high biomedical and economic value, but the related regulation mechanisms controlling velvet antler weight remain unclear. In this study, extremely heavy and light velvet antler groups were selected from a sika deer population of 100 individuals with extreme velvet antler weight. A combination of full-length transcriptome sequencing and microRNA sequencing to the proliferation zone in the tip of velvet antler was applied. A total of 55306 transcripts and 1082 microRNAs were identified. Some highly expressed genes (COL1A1, COL1A2, COL3A1, FN1, and ATP6) and microRNAs (miR-21, let-7i, and miR-27b) were highly correlated with the physiological and growth characteristics of velvet antlers. Among the 334 differentially expressed genes, we found that most of the genes were located in the developmental process, especially animal organ development process. It is exciting to see that more blood vessels were found in the growing tip of heavy velvet antler through histological observation, and GO term of blood vessel development was also significant different between two groups. The combination analysis with mRNA and microRNA data in velvet antler showed a specific regulation network involved in the development of bone, mesenchyme, cartilage, and blood vessel, and helped us clearly find out the candidate 14 genes and 6 microRNAs, which could be used for selecting significant DNA markers of velvet antler weight.


Asunto(s)
Cuernos de Venado/crecimiento & desarrollo , Ciervos/crecimiento & desarrollo , MicroARNs/genética , Transcriptoma/genética , Animales , Ciervos/genética , Regulación del Desarrollo de la Expresión Génica/genética , Redes Reguladoras de Genes/genética , Humanos , Regeneración/genética
11.
Glycoconj J ; 36(2): 127-139, 2019 04.
Artículo en Inglés | MEDLINE | ID: mdl-30680582

RESUMEN

Glycosaminoglycans (GAG) from the velvet antlers of Sika deer (Cervus nippon) at the different growing stages (Fukurozuno, Anshi, and Santajo) of bred and wild deer were isolated and their concentrations and sulfation patterns were analyzed. GAG were digested with chondroitinase ABC, ACI, heparinase-I and -III, and keratanase-II into the corresponding repeating disaccharides of chondroitin sulfate (CS), dermatan sulfate (DS), hyaluronan, heparan sulfate (HS), and keratan sulfate. Cartilaginous tissues contained CS-DS at high concentrations with an almost equal ratio of 4- and 6-sulfates, while 4-sulfate-type CS-DS predominantly occupied ossified tissues, but at low concentrations. High O- and N-sulfation degrees of HS correspond to high ossification. Dynamic quantitative changes in CS-DS and compositional changes in CS-DS and HS were closely associated with the mineralization of deer antlers.


Asunto(s)
Cuernos de Venado/química , Glicosaminoglicanos/análisis , Animales , Cuernos de Venado/crecimiento & desarrollo , Cuernos de Venado/metabolismo , Ciervos , Glicosaminoglicanos/metabolismo , Masculino
12.
BMC Complement Altern Med ; 19(1): 191, 2019 Jul 30.
Artículo en Inglés | MEDLINE | ID: mdl-31362725

RESUMEN

BACKGROUND: Wnt/ß-catenin signaling pathway is closely related to osteoarthritis. In our preliminary study, ß-catenin conditional activation (cAct) mice that specifically over-express ß-catenin gene in cartilage chondrocyte exhibits osteoarthritis-like phenotype in the lumbar disc and knee joint. Therefore, we used the mice to model FJ-OA and test the potential curative effect of Velvet Antler Polypeptide (VAP) on this mice model. METHODS: We tested the effect of VAP on ß-catenin conditional activation mice, and used Cre negative littermates as controls. Micro-CT, histology and histomorphometry analysis were performed to evaluate the curative effect of VAP on mice facet joint-like phenotype. Expression of ß-catenin and collagen II was detected by immunohistochemistry (IHC) and western-blot., MMP13, ADAMTS4 and ADAMTS5 was detected by immunofluorescence (IF). RT-PCR analysis was preformed to detect mRNA expression of cartilage degrading enzymes, such as MMP13, ADAMTS4 and ADAMTS5. RESULTS: Results of micro-CT (µCT) analysis showed that VAP could partially reverse lumbar disc osteophyte formation observed in ß-catenin(ex3)Col2ER mice. Histology data revealed VAP partially improved facet joint cartilage tissue invades. Histomorphometry analysis showed an increase in total cartilage area after VAP treatment. IHC show that VAP reduced ß-catenin protein levels and moderately up-regulated collagen II protein levels. RT-PCR and IF data showed that VAP down-regulated the expression of extracellular matrix synthesis (ECM) degradation enzymes MMP13, ADAMTS4 and ADAMTS5. CONCLUSION: Taken together, VAP may modulate ECM by inhibits MMP13, ADAMTS4 and ADAMTS5 via Wnt /ß-catenin signaling pathway. Velvet Antler Polypeptide may be a potential medicine for FJ-OA.


Asunto(s)
Cuernos de Venado/química , Osteoartritis/tratamiento farmacológico , Péptidos/administración & dosificación , beta Catenina/metabolismo , Proteína ADAMTS4/genética , Proteína ADAMTS4/metabolismo , Proteína ADAMTS5/genética , Proteína ADAMTS5/metabolismo , Animales , Apoptosis/efectos de los fármacos , Cartílago Articular/efectos de los fármacos , Cartílago Articular/metabolismo , Condrocitos/efectos de los fármacos , Condrocitos/metabolismo , Ciervos , Humanos , Articulaciones/efectos de los fármacos , Articulación de la Rodilla/efectos de los fármacos , Metaloproteinasa 13 de la Matriz/genética , Metaloproteinasa 13 de la Matriz/metabolismo , Ratones , Osteoartritis/genética , Osteoartritis/metabolismo , beta Catenina/genética
13.
BMC Complement Altern Med ; 19(1): 350, 2019 Dec 05.
Artículo en Inglés | MEDLINE | ID: mdl-31806003

RESUMEN

BACKGROUND: The use of deer velvet antler (DVA) as a potent traditional medicine ingredient goes back for over 2000 years in Asia. Increasingly, though, DVA is being included as a high protein functional food ingredient in convenient, ready to consume products in Korea and China. As such, it is a potential source of endogenous bioactive peptides and of 'cryptides', i.e. bioactive peptides enzymatically released by endogenous proteases, by processing and/or by gastrointestinal digestion. Fermentation is an example of a processing step known to release bioactive peptides from food proteins. In this study, we aimed to identify in silico bioactive peptides and cryptides in DVA, before and after fermentation, and subsequently to validate the major predicted bioactivity by in vitro analysis. METHODS: Peptides that were either free or located within proteins were identified in the DVA samples by liquid chromatography-tandem mass spectrometry (LC-MS/MS) followed by database searching. Bioactive peptides and cryptides were identified in silico by sequence matching against a database of known bioactive peptides. Angiotensin-converting enzyme (ACE) inhibitory activity was measured by a colorimetric method. RESULTS: Three free bioactive peptides (LVVYPW, LVVYPWTQ and VVYPWTQ) were solely found in fermented DVA, the latter two of which are known ACE inhibitors. However matches to multiple ACE inhibitor cryptides were obtained within protein and peptide sequences of both unfermented and fermented DVA. In vitro analysis showed that the ACE inhibitory activity of DVA was more pronounced in the fermented sample, but both unfermented and fermented DVA had similar activity following release of cryptides by simulated gastrointestinal digestion. CONCLUSIONS: DVA contains multiple ACE inhibitory peptide sequences that may be released by fermentation or following oral consumption, and which may provide a health benefit through positive effects on the cardiovascular system. The study illustrates the power of in silico combined with in vitro methods for analysis of the effects of processing on bioactive peptides in complex functional ingredients like DVA.


Asunto(s)
Inhibidores de la Enzima Convertidora de Angiotensina , Cuernos de Venado/química , Productos Biológicos , Péptidos , Inhibidores de la Enzima Convertidora de Angiotensina/química , Inhibidores de la Enzima Convertidora de Angiotensina/metabolismo , Animales , Productos Biológicos/química , Productos Biológicos/metabolismo , Simulación por Computador , Ciervos , Digestión , Fermentación , Modelos Biológicos , Péptidos/química , Péptidos/metabolismo
14.
Int J Mol Sci ; 20(20)2019 Oct 19.
Artículo en Inglés | MEDLINE | ID: mdl-31635129

RESUMEN

Velvet antler has a long history in traditional medicine. It is also an important healthy ingredient in food as it is rich in protein. However, there has been no report about antioxidant peptides extracted from velvet antler by enzymatic hydrolysis. Thus, the objective of this study was to hydrolyze velvet antler using different commercial proteases (Acalase, Neutrase, trypsin, pepsin, and α-chymotrypsin). Antioxidant activities of different hydrolysates were investigated using peroxyl radical scavenging assay by electron spin resonance spectrometry. Among all enzymatic hydrolysates, Alcalase hydrolysate exhibited the highest peroxyl radical scavenging activity. Alcalase hydrolysate was then purified using ultrafiltration, gel filtration, and reverse-phase high performance liquid chromatography. The purified peptide was identified to be Trp-Asp-Val-Lys (tetrapeptide) with molecular weight of 547.29 Da by Q-TOF ESI mass spectroscopy. This purified peptide exhibited strong scavenging activity against peroxyl radical (IC50 value, 0.028 mg/mL). In addition, this tetrapeptide showed significant protection ability against AAPH-induced oxidative stress by inhibiting of reactive oxygen species (ROS) generation in Chang liver cells in vitro and in a zebrafish model in vivo. This research suggests that the tetrapeptide derived from Alcalase-proteolytic hydrolysate of velvet antler are excellent antioxidants and could be effectively applied as functional food ingredients and pharmaceuticals.


Asunto(s)
Antioxidantes/farmacología , Hepatocitos/efectos de los fármacos , Hepatocitos/metabolismo , Estrés Oxidativo/efectos de los fármacos , Fragmentos de Péptidos/farmacología , Subtilisinas/química , Animales , Antioxidantes/química , Antioxidantes/aislamiento & purificación , Cuernos de Venado/química , Depuradores de Radicales Libres/química , Depuradores de Radicales Libres/farmacología , Humanos , Hidrólisis , Fragmentos de Péptidos/química , Fragmentos de Péptidos/aislamiento & purificación , Especies Reactivas de Oxígeno/metabolismo , Pez Cebra
15.
Molecules ; 24(7)2019 Mar 31.
Artículo en Inglés | MEDLINE | ID: mdl-30935092

RESUMEN

Furosine (Nε-(2-furoylmethyl)-l-lysine) is formed during the early stages of the Maillard reaction from a lysine Amadori compound and is frequently used as a marker of reaction progress. Furosine is toxic, with significant effects on animal livers, kidneys, and other organs. However, reports on the formation of furosine in processed velvet antler are scarce. In this study, we have quantified the furosine content in processed velvet antler by using UPLC-MS/MS. The furosine contents of velvet antler after freeze-drying, boiling, and processing without and with blood were 148.51⁻193.93, 168.10⁻241.22, 60.29⁻80.33, and 115.18⁻138.99 mg/kg protein, respectively. The factors affecting furosine formation in processed velvet antler, including reducing sugars, proteins, amino acids, and process temperature, are discussed herein. Proteins, amino acids, and reducing sugars are substrates for the Maillard reaction and most significantly influence the furosine content in the processed velvet antler. High temperatures induce the production of furosine in boiled velvet antler but not in the freeze-dried samples, whereas more furosine is produced in velvet antler processed with blood, which is rich in proteins, amino acids, and reducing sugars, than in the samples processed without blood. Finally, wax slices rich in proteins, amino acids, and reducing sugars produced more furosine than the other parts of the velvet antler. These data provide a reference for guiding the production of low-furosine velvet antler and can be used to estimate the consumer intake of furosine from processed velvet antler.


Asunto(s)
Cuernos de Venado/química , Lisina/análogos & derivados , Aminoácidos/química , Animales , Cromatografía Liquida , Lisina/química , Reacción de Maillard , Estructura Molecular , Reproducibilidad de los Resultados , Azúcares/química , Espectrometría de Masas en Tándem
16.
Immunopharmacol Immunotoxicol ; 38(6): 385-389, 2016 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-27600490

RESUMEN

CONTEXT: Velvet antler (VA) is recognized as one of the most important Chinese traditional medical herbs. To date, the immunoactivity of the single component of VA is rarely studied though its compound extracts have been well analyzed. OBJECTIVE: The current study was designed to evaluate the immunomodulatory effects of a recombinant polypeptide (rVAP32) based on the VA of the sika deer by comparison with its natural counterpart (nVAP32). MATERIALS AND METHODS: Splenocytes proliferation and NK-cell cytotoxicity assay was evaluated by the WST-8 colorimetric method. CD4+/CD8+ cell subpopulations regulation was screened by the flowcytometry method and the Th1 or Th2-related cytokine production was measured by ELISA. RESULTS: In vitro tests showed that both rVAP32 and nVAP32 could significantly stimulate splenocytes proliferation and enhance the NK-cell cytotoxicity and CD4+/CD8+ cell subpopulations when compared with the irrelevant peptide and blank control groups. Also, they demonstrated a significant capacity in up- and down-regulating the expression of Th1- and Th2-related cytokines, respectively. There is no statistically significant difference found between the rVAP32 tested group and nVAP32 control group. DISCUSSION AND CONCLUSION: The results obtained herein indicate that rVAP32 has the similar immunomodulatory effects on the immune system of mice as its counterpart nVAP32 in vitro. The further test in vivo is qualified and rVAP32 is promised for developing a new biopharmaceutical product as a substitute for nVAP32.

17.
Nutrients ; 16(14)2024 Jul 13.
Artículo en Inglés | MEDLINE | ID: mdl-39064700

RESUMEN

Velvet antler, a traditional tonic widely used in East Asia for its health benefits, is explored in this study for its protective effects against hypoxia-induced damage using Caenorhabditis elegans (C. elegans) as a model. Hypoxia, characterized by low oxygen availability, induces significant physiological stress and potential tissue damage. Our research demonstrates that methanol extracts from velvet antler (MEs) enhance the survival of C. elegans under hypoxic conditions. This enhancement is achieved through the stabilization of hypoxia-inducible factor-1 (HIF-1) and the promotion of lipid accumulation, both of which are crucial for mitigating cellular damage. Specifically, MEs improve mitochondrial function, increase ATP production, and aid in the recovery of physical activity in C. elegans post-hypoxia or following hypoxia-reoxygenation (HR). The pivotal role of HIF-1 is underscored by the loss of these protective effects when HIF-1 function is inhibited. Additionally, our findings reveal that the gene related to lipid metabolism, ech-8, significantly contributes to the lipid accumulation that enhances resilience to hypoxia in C. elegans treated with MEs. These results not only highlight the therapeutic potential of velvet antler in modern medical applications, particularly for conditions involving hypoxic stress, but also provide insights into the molecular mechanisms by which MEs confer protection against hypoxic damage.


Asunto(s)
Cuernos de Venado , Caenorhabditis elegans , Hipoxia , Metabolismo de los Lípidos , Metanol , Animales , Caenorhabditis elegans/efectos de los fármacos , Cuernos de Venado/química , Metabolismo de los Lípidos/efectos de los fármacos , Hipoxia/metabolismo , Metanol/química , Proteínas de Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/genética , Factor 1 Inducible por Hipoxia/metabolismo , Mitocondrias/efectos de los fármacos , Mitocondrias/metabolismo , Sustancias Protectoras/farmacología
18.
Pharmaceuticals (Basel) ; 17(7)2024 Jul 22.
Artículo en Inglés | MEDLINE | ID: mdl-39065820

RESUMEN

Parkinson's disease (PD) is the second most common neurodegenerative disorder globally. Recognizing the potential of velvet antler in the nervous system, as shown in numerous studies, this research was aimed at evaluating the neuroprotective effects of Sika Deer velvet antler peptide (VAP), along with the underlying mechanisms in neurotoxin-induced PD models. Initially, a peptidomic analysis of the VAP, which comprised 189 varieties of peptides, was conducted using LC-MS. Nine sequences were identified as significant using Proteome Discoverer 2.5 software. In a cellular model of PD, where PC12 cells are treated with the neurotoxin 1-methyl-4-phenylpyridinium (MPP+), the administration of the VAP reduced the cell damage and apoptosis induced by MPP+. This protective effect was associated with a decrease in oxidative stress. This protective mechanism was found to be mediated through the activation of the SIRT1-dependent Akt/Nrf2/HO-1-signaling pathway. In animal models, specifically in mice with 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced PD, the administration of the VAP effectively reduced the dopaminergic neuron damage and reversed the neurobehavioral deficits. They also diminished microglia activation and apoptosis, all without any noticeable adverse effects. Additionally, the VAP was observed to beneficially alter the gut microbiota, as marked by an increase in the abundances of Prevotellaceae, Helicobacteraceae, and Prevotella. These findings suggest that VAP exerts its neuroprotective effect against neurodegeneration by inhibiting oxidative stress and modulating gut microbiota.

19.
Pharmaceutics ; 16(5)2024 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-38794272

RESUMEN

Deer antlers are the fastest growing tissue. Because they are based on proto-oncogenes, to avoid the risk of cancer, antlers evolved strong anticancer mechanisms, and thus their extract (DVA) is effective also against the few human tumours studied so far. We assessed whether DVA is a general anticancer compound by testing the direct effects in cells of different tumours: glioblastoma (GBM; lines U87MG and U251), colorectal (CRC; lines DLD-1, HT-29, SW480, and SW620), breast cancer (BRCA; lines MCF7, SKBR3, and PA00), and leukaemia (THP-1). DVA reduced the viability of tumours but not healthy cells (NHC; lines 293T and HaCaT). Mobility decreased at least for the longest test (72 h). Intraperitoneal/oral 200 mg DVA/kg administration in GBM xenograft mice for 28 d reduced tumour weight by 66.3% and 61.4% respectively, and it also reduced spleen weight (43.8%). In addition, tumours treated with DVA showed symptoms of liquefactive necrosis. Serum cytokines showed DVA up-regulated factors related to tumour fighting and down-regulated those related to inducing immune tolerance to the tumour. DVA shows general anticancer effects in the lines tested and, in GBM mice, also strong indirect effects apparently mediated by the immune system. DVA may contain a future anticancer medicine without secondary effects.

20.
J Ginseng Res ; 48(3): 323-332, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38707646

RESUMEN

Background: Studies have reported that the combination of two or more therapeutic compounds at certain ratios has more noticeable pharmaceutical properties than single compounds and requires reduced dosage of each agent. Red ginseng and velvet antler have been extensively used in boosting immunity and physical strength and preventing diseases. Thus, this study was conducted to elucidate the skin-protective potentials of red ginseng extract (RGE) and velvet antler extract (VAE) alone or in combination on ultraviolet (UVB)-irradiated human keratinocytes and SKH-1 hairless mice. Methods: HaCaT cells were preincubated with RGE/VAE alone or in combination for 2 h before UVB (30 mJ/cm2) irradiation. SKH-1 mice were orally given RGE/VAE alone or in combination for 15 days before exposure to single dose of UVB (600 mJ/cm2). Treated cells and treated skin tissues were collected and subjected to subsequent experiments. Results: RGE/VAE pretreatment alone or in combination significantly prevented UVB-induced cell death, apoptosis, reactive oxygen species production, and DNA damage in keratinocytes and SKH-1 mouse skins by downregulating mitogen-activated protein kinases/activator protein 1/nuclear factor kappa B and caspase signaling pathways. These extracts also strengthened the antioxidant defense systems and skin barriers in UVB-irradiated HaCaT cells and SKH-1 mouse skins. Furthermore, RGE/VAE co-administration appeared to be more effective in preventing UVB-caused skin injury than these extracts used alone. Conclusion: Overall, these findings suggest that the consumption of RGE/VAE, especially in combination, offers a protective ability against UVB-caused skin injury by preventing inflammation and apoptosis and enhancing antioxidant capacity.

SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda