Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 20 de 52
Filtrar
1.
Proc Natl Acad Sci U S A ; 120(49): e2310124120, 2023 Dec 05.
Artículo en Inglés | MEDLINE | ID: mdl-38019862

RESUMEN

Singlet exciton fission (SEF) is initiated by ultrafast internal conversion of a singlet exciton into a correlated triplet pair [Formula: see text]. The "reaction coordinates" for ultrafast SEF even in archetypal systems such as pentacene thin film remain unclear. Couplings between fast electrons and slow nuclei are ubiquitous across a range of phenomena in chemistry. Accordingly, spectroscopic detection of vibrational coherences in the [Formula: see text] photoproduct motivated investigations into a possible role of vibronic coupling, akin to that reported in several photosynthetic proteins. However, acenes are very different from chlorophylls with 10× larger vibrational displacements upon photoexcitation and low-frequency vibrations modulating intermolecular orbital overlaps. Whether (and if so how) these unique features carry any mechanistic significance for SEF remains a poorly understood question. Accordingly, synthetic design of new molecules aiming to mimic this process across the solar spectrum has broadly relied on tuning electronic couplings. We address this gap and identify previously unrecognized synergistic interplay of vibrations, which in striking contrast to photosynthesis, vitally enhances SEF across a broad, nonselective and, therefore, unavoidable range of vibrational frequencies. We argue that attaching mechanistic significance to spectroscopically observed prominent quantum beats is misleading. Instead, we show that vibronic mixing leads to anisotropic quantum beats and propose readily implementable polarization-based two-dimensional electronic spectroscopy experiments which uniquely distinguish vibrations which drive vibronic mixing and promote SEF, against spectator vibrations simply accompanying ultrafast internal conversion. Our findings introduce crucial ingredients in synthetic design of SEF materials and spectroscopy experiments aiming to decipher mechanistic details from quantum beats.

2.
Nano Lett ; 24(3): 797-804, 2024 Jan 24.
Artículo en Inglés | MEDLINE | ID: mdl-38189787

RESUMEN

Structurally well-defined graphene nanoribbons (GNRs) are nanostructures with unique optoelectronic properties. In the liquid phase, strong aggregation typically hampers the assessment of their intrinsic properties. Recently we reported a novel type of GNRs, decorated with aliphatic side chains, yielding dispersions consisting mostly of isolated GNRs. Here we employ two-dimensional electronic spectroscopy to unravel the optical properties of isolated GNRs and disentangle the transitions underlying their broad and rather featureless absorption band. We observe that vibronic coupling, typically neglected in modeling, plays a dominant role in the optical properties of GNRs. Moreover, a strong environmental effect is revealed by a large inhomogeneous broadening of the electronic transitions. Finally, we also show that the photoexcited bright state decays, on the 150 fs time scale, to a dark state which is in thermal equilibrium with the bright state, that remains responsible for the emission on nanosecond time scales.

3.
Chemphyschem ; 25(11): e202400130, 2024 Jun 03.
Artículo en Inglés | MEDLINE | ID: mdl-38427966

RESUMEN

In this study, we examine the adiabat-to-diabat (ATD) angles for trajectories in 2-dimensional vibrational subspace of the seam space of two degenerate states. In circulating around the tangential touching degeneracy center, the ATD angle is changed by 2 π ${2\pi }$ or 0, similar to the Renner-Teller problem and the pseudo-Jahn-Teller problem, respectively. These ATD angle profiles may be indistinguishable from those of circulating multiple conical intersections or a pseudo-Jahn-Teller center. Methods to discern those seemingly indistinguishable cases are proposed. A sharp zigzag variation of the ATD angle is seen as a feature for trajectories that graze a pseudo-Jahn-Teller-type tangential touching center, in contrast to the monotonic steep variation for grazing a conical intersection or a Renner-Teller-type tangential touching center.

4.
Proc Natl Acad Sci U S A ; 118(11)2021 03 16.
Artículo en Inglés | MEDLINE | ID: mdl-33688046

RESUMEN

Photosynthetic species evolved to protect their light-harvesting apparatus from photoxidative damage driven by intracellular redox conditions or environmental conditions. The Fenna-Matthews-Olson (FMO) pigment-protein complex from green sulfur bacteria exhibits redox-dependent quenching behavior partially due to two internal cysteine residues. Here, we show evidence that a photosynthetic complex exploits the quantum mechanics of vibronic mixing to activate an oxidative photoprotective mechanism. We use two-dimensional electronic spectroscopy (2DES) to capture energy transfer dynamics in wild-type and cysteine-deficient FMO mutant proteins under both reducing and oxidizing conditions. Under reducing conditions, we find equal energy transfer through the exciton 4-1 and 4-2-1 pathways because the exciton 4-1 energy gap is vibronically coupled with a bacteriochlorophyll-a vibrational mode. Under oxidizing conditions, however, the resonance of the exciton 4-1 energy gap is detuned from the vibrational mode, causing excitons to preferentially steer through the indirect 4-2-1 pathway to increase the likelihood of exciton quenching. We use a Redfield model to show that the complex achieves this effect by tuning the site III energy via the redox state of its internal cysteine residues. This result shows how pigment-protein complexes exploit the quantum mechanics of vibronic coupling to steer energy transfer.


Asunto(s)
Proteínas Bacterianas/química , Transferencia de Energía , Complejos de Proteína Captadores de Luz/química , Fotosíntesis , Teoría Cuántica , Proteínas Bacterianas/genética , Cisteína/química , Complejos de Proteína Captadores de Luz/genética , Oxidación-Reducción , Análisis Espectral/métodos , Vibración
5.
Chemphyschem ; 24(11): e202200882, 2023 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-37212395

RESUMEN

Multi-mode vibronic coupling in the X ˜ 2 Π g ${{\tilde{X}}^{2}{\Pi }_{g}}$ , A ˜ 2 Σ g + ${{\tilde{A}}^{2}{\Sigma }_{g}^{+}}$ , B ˜ 2 Σ u + ${{\tilde{B}}^{2}{\Sigma }_{u}^{+}}$ and C ˜ 2 Π u ${{\tilde{C}}^{2}{\Pi }_{u}}$ electronic states of Cyanogen radical cation (C 2 ${{}_{2}}$ N 2 . + ${{}_{2}^{.+}}$ ) is investigated with the aid of ab initio quantum chemistry and first principles quantum dynamics methods. The electronic degenerate states of Π symmetry of C 2 ${{}_{2}}$ N 2 . + ${{}_{2}^{.+}}$ undergo Renner-Teller (RT) splitting along degenerate vibrational modes of π symmetry. The RT split components form symmetry allowed conical intersections with those from nearby RT split states or with non-degenerate electronic states of Σ symmetry. A parameterized vibronic Hamiltonian is constructed using standard vibronic coupling theory in a diabatic electronic basis and symmetry rules. The parameters of the Hamiltonian are derived from ab initio calculated adiabatic electronic energies. The vibronic spectrum is calculated, assigned and compared with the available experimental data. The impact of various electronic coupling on the vibronic structure of the spectrum is discussed.

6.
J Fluoresc ; 2023 Dec 12.
Artículo en Inglés | MEDLINE | ID: mdl-38085462

RESUMEN

The Sonogashira coupling reaction was used to synthesize a fluorenone derivative, with an extended conjugated structure to which fluorene is connected via acetylene linkage. This compound exhibited diverse fluorescence (FL) colors in the visible region depending on the polarity of the matrix solvents used. The solvatochromic FL presented as sky blue, green, and yellow in hexane, THF, and DMF, respectively. Fluorene moiety and fluorenone moiety acted as an electron donor (D) and as an electron acceptor (A), respectively, leading to an excited state intramolecular charge transfer based on the D-π-A electronic structure. In particular, this derivative showed a remarkable FL quenching in alcohol and chloroform, probably due to vibronic coupling through hydrogen bonding with these solvents. This idea was supported by the fact that the two solvents are characterized by very high hydrogen bond donor acidities compared to other solvents used in this study. This derivative also responded to the presence of very small amounts of water at several mg/mL levels in organic solvents, resulting in remarkable FL quenching.

7.
Molecules ; 28(19)2023 Sep 25.
Artículo en Inglés | MEDLINE | ID: mdl-37836645

RESUMEN

The short-range charge transfer of DNA base triplets has wide application prospects in bioelectronic devices for identifying DNA bases and clinical diagnostics, and the key to its development is to understand the mechanisms of short-range electron dynamics. However, tracing how electrons are transferred during the short-range charge transfer of DNA base triplets remains a great challenge. Here, by means of ab initio molecular dynamics and Ehrenfest dynamics, the nuclear-electron interaction in the thymine-adenine-thymine (TAT) charge transfer process is successfully simulated. The results show that the electron transfer of TAT has an oscillating phenomenon with a period of 10 fs. The charge density difference proves that the charge transfer proportion is as high as 59.817% at 50 fs. The peak position of the hydrogen bond fluctuates regularly between -0.040 and -0.056. The time-dependent Marcus-Levich-Jortner theory proves that the vibrational coupling between nucleus and electron induces coherent electron transfer in TAT. This work provides a real-time demonstration of the short-range coherent electron transfer of DNA base triplets and establishes a theoretical basis for the design and development of novel biological probe molecules.


Asunto(s)
Electrones , Timina , Timina/química , Transporte de Electrón , Simulación de Dinámica Molecular , ADN/química
8.
Angew Chem Int Ed Engl ; 62(8): e202217704, 2023 Feb 13.
Artículo en Inglés | MEDLINE | ID: mdl-36578175

RESUMEN

We newly synthesized a series of homo- and hetero-tetracene (Tc) oligomers to propose a molecular design strategy for the efficient exciton transport in linear oligomers by promoting correlated triplet pair (TT) dissociation and controlling sequential exciton trapping process of individual doubled triplet excitons (T+T) by intramolecular singlet fission. First, entropic gain effects on the number of Tc units are examined by comparing Tc-homo-oligomers [(Tc)n : n=2, 4, 6]. Then, a comparison of (Tc)n and Tc-hetero-oligomer [TcF3 -(Tc)4 -TcF3 ] reveals the vibronic coupling effect for entropic gain. Observed entropic effects on the T+T formation indicated that the exciton migration is rationalized by number of possible TT states increased both by increasing the number of Tc units and by the vibronic levels at the terminal TcF3 units. Finally, we successfully observed high-yield exciton trapping process (trapped triplet yield: ΦTrT =176 %).

9.
Angew Chem Int Ed Engl ; 62(9): e202217530, 2023 Feb 20.
Artículo en Inglés | MEDLINE | ID: mdl-36622736

RESUMEN

10H-Dibenzo[b,e][1,4]thiaborinine 5,5-dioxide (SO2B)-a high triplet (T1 =3.05 eV) strongly electron-accepting boracycle was successfully utilised in thermally activated delayed fluorescence (TADF) emitters PXZ-Dipp-SO2B and CZ-Dipp-SO2B. We demonstrate the near-complete separation of highest occupied and lowest unoccupied molecular orbitals leading to a low oscillator strength of the S1 →S0 CT transition, resulting in very long ca. 83 ns and 400 ns prompt fluorescence lifetimes for CZ-Dipp-SO2B and PXZ-Dipp-SO2B, respectively, but retaining near unity photoluminescence quantum yield. OLEDs using CZ-Dipp-SO2B as the luminescent dopant display high external quantum efficiency (EQE) of 23.3 % and maximum luminance of 18600 cd m-2 with low efficiency roll off at high brightness. For CZ-Dipp-SO2B, reverse intersystem crossing (rISC) is mediated through the vibronic coupling of two charge transfer (CT) states, without involving the triplet local excited state (3 LE), resulting in remarkable rISC rate invariance to environmental polarity and polarisability whilst giving high organic light-emitting diode (OLED) efficiency. This new form of rISC allows stable OLED performance to be achieved in different host environments.

10.
Angew Chem Int Ed Engl ; 62(16): e202218892, 2023 Apr 11.
Artículo en Inglés | MEDLINE | ID: mdl-36815469

RESUMEN

Sulfone-embedded heterocyclics are of great interest in organic light-emitting diodes (OLEDs), however, exploring highly efficient narrowband emitters based on sulfone-embedded heterocyclics remains challenging. Herein, five emitters with different sulfur valence state and molecular rigidity, namely tP, tCPD, 2tCPD, tPD and tPT, are thoroughly analysed. With restricted twisting of flexible peripheral phenyl by strengthening molecular rigidity, molecular emission spectra can be enormously narrowed. Further, introducing the sulfone group with bending vibration in low-frequency region that suppresses high-frequency vibration, sharp narrow full-widths at half-maximum of 28 and 25 nm are achieved for 2tCPD and tPD, respectively. Maximum external quantum efficiencies of 22.0 % and 27.1 % are successfully realized for 2tCPD- and tPD-based OLED devices. These results offer a novel design strategy for constructing narrowband emitters by introducing sulfone group into a rigid molecular framework.

11.
Photochem Photobiol Sci ; 21(7): 1287-1298, 2022 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-35403961

RESUMEN

We explore the excited-state intramolecular proton transfer process of quinophthalone theoretically. This molecule possesses three low-lying singlet excited states ([Formula: see text] and [Formula: see text]) in a narrow energy gap of less than the N-H stretching frequency. Dynamics simulations show nonadiabatic wavepacket transfer to [Formula: see text] and [Formula: see text] upon initiating the wavepacket on [Formula: see text]. Multiple accessible conical intersections that lie in the Franck-Condon region facilitate the nonadiabatic wavepacket transfer. Nuclear densities associated with the proton transfer promoting vibrations would start accumulating on [Formula: see text] and [Formula: see text] within a few tens of femtoseconds, validating the involvement of these vibrations in the nonadiabatic events that occur before the proton transfer process. Our findings emphasize the necessity of refined kinetic models for assigning the time constants of ultrafast transient spectroscopy measurements due to the simultaneous evolution of nonadiabatic events and proton transfer kinetics in quinophthalone.


Asunto(s)
Indenos , Quinolinas , Protones , Teoría Cuántica
12.
Photochem Photobiol Sci ; 21(9): 1689-1700, 2022 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-35716333

RESUMEN

The development of new singlet fission chromophores is a vibrant area of research to explore the possibility of efficient photovoltaic devices. Using high-level ab-initio density matrix renormalization group calculations, we present a systematic analysis of BN-doped perylenes for their potential application as singlet fission candidates. Four singlet fission chromophores are identified considering the monomer-based properties and their excitonic characters are further analyzed in a dimer configuration optimized in a six-dimensional space for local maxima of fission rates. Furthermore, a multistate multimode vibronic Hamiltonian is employed to identify intra- and interstate vibrational pathways for excitation energy modulation. Several photophysical properties such as Davydov splitting, activation energy and vibronic admixture of multiexcitonic and charge-transfer states are calculated for physically accessible dimers. The optimal dimer packing results in appropriate vibrational relaxation of singlet fission states and promotes significant population transfer which would be more attenuated without such couplings. This work not only identifies potential singlet fission systems with favorable electronic properties but also highlights the sensitivity of dimer packings with respect to the substitution patterns in singlet fission chromophores.


Asunto(s)
Dimerización , Perileno , Transferencia de Energía , Modelos Químicos , Perileno/química , Vibración
13.
Angew Chem Int Ed Engl ; 61(48): e202213051, 2022 11 25.
Artículo en Inglés | MEDLINE | ID: mdl-36208080

RESUMEN

How to utilize molecular vibration to tune triplet-involved emissions in multiple states is highly challenging. Here, star-shaped triphenylamine derivatives have been employed as model systems to understand how molecular vibration affects thermally activated delayed fluorescence (TADF) and room temperature phosphorescence (RTP) emissions in multiple states. Nonplanar, star-shaped conformations allow molecules to generate appropriate vibrations in the solution state, facilitating vibronic coupling between their T1 and T2 states to generate effective TADF. More importantly, a relatively dispersed state can allow the molecules to efficiently vibrate in the solid state, and a crystalline environment further promotes a more efficient TADF. Lastly, by suppressing molecular vibration to inhibit the TADF, ultra-long RTP was observed upon doping these molecules into polymers. These molecules can be used in information encryption and storage as well as bioimaging.


Asunto(s)
Vibración , Fluorescencia
14.
Chemphyschem ; 22(17): 1754-1768, 2021 09 03.
Artículo en Inglés | MEDLINE | ID: mdl-34085351

RESUMEN

The effects of the vibronic coupling in quantum cellular automata (QCA) based on the square planar mixed valence (MV) molecular cells comprising four paramagnetic centers (spin cores) and two excess mobile electrons are analyzed in the important particular case when the Coulomb energy gap between the ground antipodal diagonal-type two-electron configurations and the excited side-type configurations considerably exceeds both the one-electron transfer parameter (strong U-limit) and the vibronic stabilization energy. Under such conditions the developed model involves the second-order double exchange, the Heisenberg-Dirac-Van Vleck (HDVV) exchange and the vibronic coupling of the excess electrons with the molecular B1g -vibration composed of four full-symmetric local vibrations. The latter interaction is shown to significant amplify the ability of the electric field produced by the driver-cell to polarize the excess electrons in the working cell, which can be termed "the effect of the vibronic enhancement of the cell-cell interaction". This effect leads to a redetermination of the conditions for switching between different spin-states, as well as to a significant change in the shapes of the cell-cell response functions. The obtained results demonstrate the importance of the vibronic coupling in all aspects (such as description of a free cell and cell-cell response) of the theory of molecular QCA based on MV clusters.

15.
Molecules ; 26(23)2021 Nov 26.
Artículo en Inglés | MEDLINE | ID: mdl-34885747

RESUMEN

There is experimental evidence of high vibronic activity that accompanies the allowed transition between the ground state and the lowest electronic singlet excited state of oligofurans that contain two, three, and four furan rings. The absorption and emission spectra of the three lowest oligofurans measured at liquid nitrogen temperature show distinct fine structures that are reproduced using the projection-based model of vibronic coupling (with Dushinsky rotation included) parameterized utilizing either Density Functional Theory (DFT, with several different exchange-correlation functionals) or ab initio (CC2) quantum chemistry calculations. Using as a reference the experimental data concerning the electronic absorption and fluorescence for the eight lowest oligofurans, we first analyzed the performance of the exchange-correlation functionals for the electronic transition energies and the reorganization energies. Subsequently, we used the best functionals alongside with the CC2 method to explore how the reorganization energies are distributed among the totally symmetric vibrations, identify the normal modes that dominate in the fine structures present in the absorption and emission bands, and trace their evolution with the increasing number of rings in the oligofuran series. Confrontation of the simulated spectra with the experiment allows for the verification of the performance of the selected DFT functionals and the CC2 method.

16.
J Comput Chem ; 41(11): 1068-1080, 2020 04 30.
Artículo en Inglés | MEDLINE | ID: mdl-31965589

RESUMEN

Nonradiative decay pathways associated with vibronically coupled S1 (ππ*)-S2 (nπ*) potential energy surfaces of 3- and 5-hydroxychromones are investigated by employing the linear vibronic coupling approach. The presence of a conical intersection close to the Franck-Condon point is identified based on the critical examination of computed energetics and structural parameters of stationary points. We show that very minimal displacements of relevant atoms of intramolecular proton transfer geometry are adequate to drive the molecule toward the conical intersection nuclear configuration. The evolving wavepacket on S1 (ππ*) bifurcates at the conical intersection: a part of the wavepacket moves to S2 (nπ*) within a few femtoseconds while the other decays to S1 minimum. Our findings indicate the possibility of forming the proton transfer tautomer product via S2 (nπ*), competing with the traditional pathway occurring on S1 (ππ*).

17.
Photosynth Res ; 144(2): 137-145, 2020 May.
Artículo en Inglés | MEDLINE | ID: mdl-32306173

RESUMEN

We study the impact of underdamped intramolecular vibrational modes on the efficiency of the excitation energy transfer in a dimer in which each state is coupled to its own underdamped vibrational mode and, in addition, to a continuous background of environmental modes. For this, we use the numerically exact hierarchy equation of motion approach. We determine the quantum yield and the transfer time in dependence of the vibronic coupling strength, and in dependence of the damping of the incoherent background. Moreover, we tune the vibrational frequencies out of resonance with the excitonic energy gap. We show that the quantum yield is enhanced by up to 10% when the vibrational frequency of the donor is larger than at the acceptor. The vibronic energy eigenstates of the acceptor acquire then an increased density of states, which leads to a higher occupation probability of the acceptor in thermal equilibrium. We can conclude that an underdamped vibrational mode which is weakly coupled to the dimer fuels a faster transfer of excitation energy, illustrating that long-lived vibrations can, in principle, enhance energy transfer, without involving long-lived electronic coherence.


Asunto(s)
Modelos Químicos , Proteínas/química , Transferencia de Energía , Teoría Cuántica , Vibración
18.
Nano Lett ; 19(12): 8630-8637, 2019 12 11.
Artículo en Inglés | MEDLINE | ID: mdl-31698905

RESUMEN

There is growing experimental and theoretical evidence that vibronic couplings, couplings between electronic and nuclear degrees of freedom, play a fundamental role in ultrafast excited-state dynamics in organic donor-acceptor hybrids. Whereas vibronic coupling has been shown to support charge separation at donor-acceptor interfaces, so far, little is known about its role in the real-space transport of charges in such systems. Here we theoretically study charge transport in thiophene:fullerene stacks using time-dependent density functional tight-binding theory combined with Ehrenfest molecular dynamics for open systems. Our results reveal coherent oscillations of the charge density between neighboring donor sites, persisting for ∼200 fs and promoting charge transport within the polymer stacks. At the donor-acceptor interface, vibronic wave packets are launched, propagating coherently over distances of more than 3 nm into the acceptor region. This supports previous experimental observations of long-range ballistic charge-carrier motion in organic photovoltaic systems and highlights the importance of vibronic coupling engineering as a concept for tailoring the functionality of hybrid organic devices.

19.
J Comput Chem ; 40(6): 794-810, 2019 Mar 05.
Artículo en Inglés | MEDLINE | ID: mdl-30593705

RESUMEN

The presence of nonadiabatic effects during the interaction of small molecules with metals has been observed experimentally for the last decades. Specially remarkable are the effects found for NO/Au, where experiments have suggested the presence of very strong vibronic coupling during the molecular scattering. However, the accurate inclusion of the nonadiabatic effects in periodic boundary conditions (PBC) theoretical methods remain an unapproachable challenge. Here, aiming to give some theoretical insight to the strong vibronic coupling, we have adopted a pragmatic point of view, taking use of an auxiliary simplified system, NO/Au3 . We show the importance of nonadiabatic coupling, during the scattering of NO from a Au3 cluster, using a diabatic representation of 12 electronic states of the system, including a few charge-transfer states. Our diabatic representation is obtained by rotating the orbital and configuration interaction (CI) vectors of a restricted active space (RAS) wavefunction. We present a strategy for extracting the best effective manifold of states relevant to the system, below some prescribed energy, directly from the RAS CI vectors. This scheme is able to disentangle a large dense manifold of adiabatic states with strong coupling and crossings. This approach is also shown to work for multireference configuration interaction (MRCI). By performing quantum propagations, we observed an increase in vibrational redistribution with increasing initial vibrational or translational energies. We suggest that these nonadiabatic effects should also be present at smaller energies in larger clusters. © 2018 Wiley Periodicals, Inc.

20.
Angew Chem Int Ed Engl ; 58(42): 14911-14914, 2019 Oct 14.
Artículo en Inglés | MEDLINE | ID: mdl-31343100

RESUMEN

Restriction of intramolecular motion (RIM), as the working mechanism of aggregation-induced emission (AIE), cannot fully explain some heteroatom-containing systems. Now, two excited states are taken into account and a mechanism, restriction of access to dark state (RADS), is specified to elaborate RIM and complete the picture of AIE mechanism. A nitrogen-containing molecule named APA is chosen as a model compound; its weak fluorescence in solution is ascribed to the easy access from the bright (π,π*) state to the close-lying dark (n,π*) state. By either metal complexation or aggregation, the dark state is less accessible due to restriction of the molecular motion leading to the dark state and elevation of the dark state energy, thus the bright state emission is restored. RADS is powerful in elucidating the AIE effect of molecules with excited states favoring non-radiative decay, including overlap-forbidden states such as (n,π*) and CT states, spin-forbidden triplet states, and so on.

SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda