Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
1.
CA Cancer J Clin ; 72(1): 34-56, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34792808

RESUMEN

Radiation therapy (RT) continues to play an important role in the treatment of cancer. Adaptive RT (ART) is a novel method through which RT treatments are evolving. With the ART approach, computed tomography or magnetic resonance (MR) images are obtained as part of the treatment delivery process. This enables the adaptation of the irradiated volume to account for changes in organ and/or tumor position, movement, size, or shape that may occur over the course of treatment. The advantages and challenges of ART maybe somewhat abstract to oncologists and clinicians outside of the specialty of radiation oncology. ART is positioned to affect many different types of cancer. There is a wide spectrum of hypothesized benefits, from small toxicity improvements to meaningful gains in overall survival. The use and application of this novel technology should be understood by the oncologic community at large, such that it can be appropriately contextualized within the landscape of cancer therapies. Likewise, the need to test these advances is pressing. MR-guided ART (MRgART) is an emerging, extended modality of ART that expands upon and further advances the capabilities of ART. MRgART presents unique opportunities to iteratively improve adaptive image guidance. However, although the MRgART adaptive process advances ART to previously unattained levels, it can be more expensive, time-consuming, and complex. In this review, the authors present an overview for clinicians describing the process of ART and specifically MRgART.


Asunto(s)
Imagen por Resonancia Magnética Intervencional/métodos , Neoplasias/radioterapia , Aceleradores de Partículas , Oncología por Radiación/métodos , Planificación de la Radioterapia Asistida por Computador/métodos , Historia del Siglo XX , Historia del Siglo XXI , Humanos , Imagen por Resonancia Magnética Intervencional/historia , Imagen por Resonancia Magnética Intervencional/instrumentación , Imagen por Resonancia Magnética Intervencional/tendencias , Neoplasias/diagnóstico por imagen , Oncología por Radiación/historia , Oncología por Radiación/instrumentación , Oncología por Radiación/tendencias , Planificación de la Radioterapia Asistida por Computador/historia , Planificación de la Radioterapia Asistida por Computador/instrumentación , Planificación de la Radioterapia Asistida por Computador/tendencias
2.
Strahlenther Onkol ; 200(5): 418-424, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38488899

RESUMEN

PURPOSE: This study aimed to assess the margin for the planning target volume (PTV) using the Van Herk formula. We then validated the proposed margin by real-time magnetic resonance imaging (MRI). METHODS: An analysis of cone-beam computed tomography (CBCT) data from early glottic cancer patients was performed to evaluate organ motion. Deformed clinical target volumes (CTV) after rigid registration were acquired using the Velocity program (Varian Medical Systems, Palo Alto, CA, USA). Systematic (Σ) and random errors (σ) were evaluated. The margin for the PTV was defined as 2.5 Σ + 0.7 σ according to the Van Herk formula. To validate this margin, we accrued healthy volunteers. Sagittal real-time cine MRI was conducted using the ViewRay system (ViewRay Inc., Oakwood Village, OH, USA). Within the obtained sagittal images, the vocal cord was delineated. The movement of the vocal cord was summed up and considered as the internal target volume (ITV). We then assessed the degree of overlap between the ITV and the PTV (vocal cord plus margins) by calculating the volume overlap ratio, represented as (ITV∩PTV)/ITV. RESULTS: CBCTs of 17 early glottic patients were analyzed. Σ and σ were 0.55 and 0.57 for left-right (LR), 0.70 and 0.60 for anterior-posterior (AP), and 1.84 and 1.04 for superior-inferior (SI), respectively. The calculated margin was 1.8 mm (LR), 2.2 mm (AP), and 5.3 mm (SI). Four healthy volunteers participated for validation. A margin of 3 mm (AP) and 5 mm (SI) was applied to the vocal cord as the PTV. The average volume overlap ratio between ITV and PTV was 0.92 (range 0.85-0.99) without swallowing and 0.77 (range 0.70-0.88) with swallowing. CONCLUSION: By evaluating organ motion by using CBCT, the margin was 1.8 (LR), 2.2 (AP), and 5.3 mm (SI). The margin acquired using CBCT fitted well in real-time cine MRI. Given that swallowing during radiotherapy can result in a substantial displacement, it is crucial to consider strategies aimed at minimizing swallowing and related motion.


Asunto(s)
Tomografía Computarizada de Haz Cónico , Glotis , Neoplasias Laríngeas , Imagen por Resonancia Cinemagnética , Humanos , Tomografía Computarizada de Haz Cónico/métodos , Imagen por Resonancia Cinemagnética/métodos , Glotis/diagnóstico por imagen , Masculino , Neoplasias Laríngeas/diagnóstico por imagen , Neoplasias Laríngeas/radioterapia , Persona de Mediana Edad , Femenino , Adulto , Anciano , Movimientos de los Órganos , Sistemas de Computación , Planificación de la Radioterapia Asistida por Computador/métodos , Reproducibilidad de los Resultados , Sensibilidad y Especificidad
3.
Radiol Med ; 124(2): 145-153, 2019 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-30374650

RESUMEN

The aim of this study was to evaluate the variation of radiomics features, defined as "delta radiomics", in patients undergoing neoadjuvant radiochemotherapy (RCT) for rectal cancer treated with hybrid magnetic resonance (MR)-guided radiotherapy (MRgRT). The delta radiomics features were then correlated with clinical complete response (cCR) outcome, to investigate their predictive power. A total of 16 patients were enrolled, and 5 patients (31%) showed cCR at restaging examinations. T2*/T1 MR images acquired with a hybrid 0.35 T MRgRT unit were considered for this analysis. An imaging acquisition protocol of 6 MR scans per patient was performed: the first MR was acquired at first simulation (t0) and the remaining ones at fractions 5, 10, 15, 20 and 25. Radiomics features were extracted from the gross tumour volume (GTV), and each feature was correlated with the corresponding delivered dose. The variations of each feature during treatment were quantified, and the ratio between the values calculated at different dose levels and the one extracted at t0 was calculated too. The Wilcoxon-Mann-Whitney test was performed to identify the features whose variation can be predictive of cCR, assessed with a MR acquired 6 weeks after RCT and digital examination. The most predictive feature ratios in cCR prediction were the L_least and glnu ones, calculated at the second week of treatment (22 Gy) with a p value = 0.001. Delta radiomics approach showed promising results and the quantitative analysis of images throughout MRgRT treatment can successfully predict cCR offering an innovative personalized medicine approach to rectal cancer treatment.


Asunto(s)
Adenocarcinoma/radioterapia , Imagen por Resonancia Magnética/métodos , Medicina de Precisión , Radioterapia Guiada por Imagen/métodos , Neoplasias del Recto/radioterapia , Adenocarcinoma/patología , Anciano , Anciano de 80 o más Años , Biopsia , Quimioradioterapia , Femenino , Humanos , Masculino , Persona de Mediana Edad , Estadificación de Neoplasias , Neoplasias del Recto/patología , Resultado del Tratamiento , Carga Tumoral
4.
J Appl Clin Med Phys ; 18(4): 161-171, 2017 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-28681448

RESUMEN

The ArcCHECK-MR diode array utilizes a correction system with a virtual inclinometer to correct the angular response dependencies of the diodes. However, this correction system cannot be applied to measurements on the ViewRay MR-IGRT system due to the virtual inclinometer's incompatibility with the ViewRay's multiple simultaneous beams. Additionally, the ArcCHECK's current correction factors were determined without magnetic field effects taken into account. In the course of performing ViewRay IMRT quality assurance with the ArcCHECK, measurements were observed to be consistently higher than the ViewRay TPS predictions. The goals of this study were to quantify the observed discrepancies and test whether applying the current factors improves the ArcCHECK's accuracy for measurements on the ViewRay. Gamma and frequency analysis were performed on 19 ViewRay patient plans. Ion chamber measurements were performed at a subset of diode locations using a PMMA phantom with the same dimensions as the ArcCHECK. A new method for applying directionally dependent factors utilizing beam information from the ViewRay TPS was developed in order to analyze the current ArcCHECK correction factors. To test the current factors, nine ViewRay plans were altered to be delivered with only a single simultaneous beam and were measured with the ArcCHECK. The current correction factors were applied using both the new and current methods. The new method was also used to apply corrections to the original 19 ViewRay plans. It was found the ArcCHECK systematically reports doses higher than those actually delivered by the ViewRay. Application of the current correction factors by either method did not consistently improve measurement accuracy. As dose deposition and diode response have both been shown to change under the influence of a magnetic field, it can be concluded the current ArcCHECK correction factors are invalid and/or inadequate to correct measurements on the ViewRay system.


Asunto(s)
Imagen por Resonancia Magnética Intervencional/métodos , Neoplasias/radioterapia , Humanos , Imagen por Resonancia Magnética Intervencional/instrumentación , Neoplasias/diagnóstico por imagen , Fantasmas de Imagen , Garantía de la Calidad de Atención de Salud , Dosificación Radioterapéutica , Reproducibilidad de los Resultados
5.
Med Phys ; 47(11): 5455-5466, 2020 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-32996591

RESUMEN

PURPOSE: MRI is the gold-standard imaging modality for brain tumor diagnosis and delineation. The purpose of this work was to investigate the feasibility of performing brain stereotactic radiosurgery (SRS) with a 0.35 T MRI-guided linear accelerator (MRL) equipped with a double-focused multileaf collimator (MLC). Dosimetric comparisons were made vs a conventional C-arm-mounted linac with a high-definition MLC. METHODS: The quality of MRL single-isocenter brain SRS treatment plans was evaluated as a function of target size for a series of spherical targets with diameters from 0.6 cm to 2.5 cm in an anthropomorphic head phantom and six brain metastases (max linear dimension = 0.7-1.9 cm) previously treated at our clinic on a conventional linac. Each target was prescribed 20 Gy to 99% of the target volume. Step-and-shoot IMRT plans were generated for the MRL using 11 static coplanar beams equally spaced over 360° about an isocenter placed at the center of the target. Couch and collimator angles are fixed for the MRL. Two MRL planning strategies (VR1 and VR2) were investigated. VR1 minimized the 12 Gy isodose volume while constraining the maximum point dose to be within ±1 Gy of 25 Gy which corresponded to normalization to an 80% isodose volume. VR2 minimized the 12 Gy isodose volume without the maximum dose constraint. For the conventional linac, the TB1 method followed the same strategy as VR1 while TB2 used five noncoplanar dynamic conformal arcs. Plan quality was evaluated in terms of conformity index (CI), conformity/gradient index (CGI), homogeneity index (HI), and volume of normal brain receiving ≥12 Gy (V12Gy ). Quality assurance measurements were performed with Gafchromic EBT-XD film following an absolute dose calibration protocol. RESULTS: For the phantom study, the CI of MRL plans was not significantly different compared to a conventional linac (P > 0.05). The use of dynamic conformal arcs and noncoplanar beams with a conventional linac spared significantly more normal brain (P = 0.027) and maximized the CGI, as expected. The mean CGI was 95.9 ± 4.5 for TB2 vs 86.6 ± 3.7 (VR1), 88.2 ± 4.8 (VR2), and 88.5 ± 5.9 (TB1). Each method satisfied a normal brain V12Gy  ≤ 10.0 cm3 planning goal for targets with diameter ≤2.25 cm. The mean V12Gy was 3.1 cm3 for TB2 vs 5.5 cm3 , 5.0 cm3 and 4.3 cm3 , for VR1, VR2, and TB1, respectively. For a 2.5-cm diameter target, only TB2 met the V12Gy planning objective. The MRL clinical brain plans were deemed acceptable for patient treatment. The normal brain V12Gy was ≤6.0 cm3 for all clinical targets (maximum target volume = 3.51 cm3 ). CI and CGI ranged from 1.12-1.65 and 81.2-88.3, respectively. Gamma analysis pass rates (3%/1mm criteria) exceeded 97.6% for six clinical targets planned and delivered on the MRL. The mean measured vs computed absolute dose difference was -0.1%. CONCLUSIONS: The MRL system can produce clinically acceptable brain SRS plans for spherical lesions with diameter ≤2.25 cm. Large lesions (>2.25 cm) should be treated with a linac capable of delivering noncoplanar beams.


Asunto(s)
Neoplasias Encefálicas , Radiocirugia , Encéfalo/diagnóstico por imagen , Encéfalo/cirugía , Neoplasias Encefálicas/diagnóstico por imagen , Neoplasias Encefálicas/radioterapia , Neoplasias Encefálicas/cirugía , Estudios de Factibilidad , Humanos , Imagen por Resonancia Magnética , Aceleradores de Partículas , Dosificación Radioterapéutica , Planificación de la Radioterapia Asistida por Computador
6.
Med Phys ; 47(2): 604-613, 2020 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-31808949

RESUMEN

PURPOSE: The purpose of this paper was to design, manufacture, and evaluate a tissue equivalent, dual magnetic resonance/computed tomography (MR/CT) visible anthropomorphic head and neck (H&N) phantom. This phantom was specially designed as an end-to-end quality assurance (QA) tool for MR imaging guided radiotherapy (MRIgRT) systems participating in NCI-sponsored clinical trials. METHOD: The MRIgRT H&N phantom was constructed using a water-fillable acrylic shell and a custom insert that mimics an organ at risk (OAR) and target structures. The insert consists of a primary and secondary planning target volume (PTV) manufactured of a synthetic Clear Ballistic gel, an acrylic OAR and surrounding tissue fabricated using melted Superflab. Radiochromic EBT3 film and thermoluminescent detectors (TLDs) were used to measure the dose distribution and absolute dose, respectively. The phantom was evaluated by conducting an end-to-end test that included: imaging on a GE Lightspeed CT simulator, planning on Monaco treatment planning software (TPS), verifying treatment setup with MR, and irradiating on Elekta's 1.5 T Unity MR linac system. The phantom was irradiated three times using the same plan to determine reproducibility. Three institutions, equipped with either ViewRay MRIdian 60 Co or ViewRay MRIdian Linac, were used to conduct a feasibility study by performing independent end-to-end studies. Thermoluminescent detectors were evaluated in both reproducibility and feasibility studies by comparing ratios of measured TLD to reported TPS calculated values. Radiochromic film was used to compare measured planar dose distributions to expected TPS distributions. Film was evaluated by using an in-house gamma analysis software to measure the discrepancies between film and TPS. RESULTS: The MRIgRT H&N phantom on the Unity system resulted in reproducible TLD doses (SD < 1.5%). The measured TLD to calculated dose ratios for the Unity system ranged from 0.94 to 0.98. The Viewray dose result comparisons had a larger range (0.95-1.03) but these depended on the TPS dose calculations from each site. Using a 7%/4 mm gamma analysis, Viewray institutions had average axial and sagittal passing rates of 97.3% and 96.2% and the Unity system had average passing rates of 97.8% and 89.7%, respectively. All of the results were within the Imaging and Radiation Oncology Core in Houston (IROC-Houston) standard credentialing criteria of 7% on TLDs, and >85% of pixels passing gamma analysis using 7%/4 mm on films. CONCLUSIONS: An MRIgRT H&N phantom that is tissue equivalent and visible on both CT and MR was developed. The results from initial reproducibility and feasibility testing of the MRIgRT H&N phantom using the tested MGIgRT systems suggests the phantom's potential utility as a credentialing tool for NCI-clinical trials.


Asunto(s)
Cabeza/diagnóstico por imagen , Imagen por Resonancia Magnética/instrumentación , Cuello/diagnóstico por imagen , Tomografía Computarizada por Rayos X/instrumentación , Ensayos Clínicos como Asunto , Diseño de Equipo , Estudios de Factibilidad , Cabeza/anatomía & histología , Cabeza/efectos de la radiación , Humanos , Cuello/anatomía & histología , Cuello/efectos de la radiación , Fantasmas de Imagen , Control de Calidad , Radioterapia Guiada por Imagen
7.
Cureus ; 12(3): e7334, 2020 Mar 20.
Artículo en Inglés | MEDLINE | ID: mdl-32313775

RESUMEN

Purpose To evaluate the intensity modulated radiotherapy (IMRT) quality assurance (QA) results of the multichannel film dosimetry analysis with single scan method by using Gafchromic™ EBT3 (Ashland Inc., Covington, KY, USA) film under 0.35 T magnetic field. Methods Between September 2018 and June 2019, 70 patients were treated with ViewRay MRIdian® (ViewRay Inc., Mountain View, CA) linear accelerator (Linac). Film dosimetry QA plans were generated for all IMRT treatments. Multichannel film dosimetry for red, green and blue (RGB) channels were compared with treatment planning system (TPS) dose maps by gamma evaluation analysis. Results The mean gamma passing rates of RGB channels are 97.3% ± 2.26%, 96.0% ± 3.27% and 96.2% ± 3.14% for gamma evaluation with 2% DD/2 mm distance to agreement (DTA), respectively. Moreover, the mean gamma passing rates of RGB channels are 99.7% ± 0.41%, 99.6% ± 0.59% and 99.5% ± 0.67% for gamma evaluation with 3% DD/3 mm DTA, respectively. Conclusion The patient specific QA using Gafchromic™ EBT3 film with multichannel film dosimetry seems to be a suitable tool to implement for MR-guided IMRT treatments under 0.35 T magnetic field. Multichannel film dosimetry with Gafchromic™ EBT3 is a consistent QA tool for gamma evaluation of the treatment plans even with 2% DD/2 mm DTA under 0.35 T magnetic field presence.

8.
Brachytherapy ; 17(4): 680-688, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29773331

RESUMEN

PURPOSE: To characterize image quality and feasibility of using ViewRay MRI (VR)-guided brachytherapy planning for cervical cancer. METHODS AND MATERIALS: Cervical cancer patients receiving intracavitary brachytherapy with tandem and ovoids, planned using 0.35T VR MRI at our institution, were included in this series. The high-risk clinical target volume (HR-CTV), visible gross tumor volume, bladder, sigmoid, bowel, and rectum contours for each fraction of brachytherapy were evaluated for dosimetric parameters. Typically, five brachytherapy treatments were planned using the T2 sequence on diagnostic MRI for the first and third fractions, and a noncontrast true fast imaging with steady-state precession sequence on VR or CT scan for the remaining fractions. Most patients received 5.5 Gy × 5 fractions using high-dose-rate Ir-192 following 45 Gy of whole-pelvis radiotherapy. The plan was initiated at 5.5 Gy to point A and subsequently optimized and prescribed to the HR-CTV. The goal equivalent dose in 2 Gy fractions for the combined external beam and brachytherapy dose was 85 Gy. Soft-tissue visualization using contrast-to-noise ratios to distinguish normal tissues from tumor at their interface was compared between diagnostic MRI, CT, and VR. RESULTS: One hundred and forty-two fractions of intracavitary brachytherapy were performed from April 2015 to January 2017 on 29 cervical cancer patients, ranging from stages IB1 to IVA. The median HR-CTV was 27.78 cc, with median D90 HR-CTV of 6.1 Gy. The median time from instrument placement to start of treatment using VR was 65 min (scan time 2 min), compared to 105 min using diagnostic MRI (scan time 11 min) (t-test, p < 0.01). The contrast-to-noise ratio of tumor to cervix in both diagnostic MRI and VR had significantly higher values compared to CT (ANOVA and t-tests, p < 0.01). CONCLUSIONS: We report the first clinical use of VR-guided brachytherapy. Time to treatment using this approach was shorter compared to diagnostic MRI. VR also provided significant advantage in visualizing the tumor and cervix compared to CT. This presents a feasible and reliable manner to image and plan gynecologic brachytherapy.


Asunto(s)
Braquiterapia/métodos , Imagen por Resonancia Magnética/métodos , Planificación de la Radioterapia Asistida por Computador/métodos , Neoplasias del Cuello Uterino/radioterapia , Adulto , Anciano , Anciano de 80 o más Años , Fraccionamiento de la Dosis de Radiación , Femenino , Humanos , Persona de Mediana Edad , Dosificación Radioterapéutica , Tomografía Computarizada por Rayos X , Neoplasias del Cuello Uterino/diagnóstico
9.
Med Phys ; 45(6): 2647-2659, 2018 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-29663429

RESUMEN

PURPOSE: Tools to perform regular quality assurance of magnetic resonance image-guided radiotherapy (MRIgRT) systems should ideally be independent of interference from the magnetic fields. Remotely acquired optical Cherenkov imaging-based dosimetry measurements in water were investigated for this purpose, comparing measures of dose accuracy, temporal dynamics, and overall integrated IMRT delivery. METHODS: A 40 × 30.5 × 37.5 cm3 water tank doped with 1 g/L of quinine sulfate was imaged using an intensified charge-coupled device (ICCD) to capture the Cherenkov emission while being irradiated by a commercial MRIgRT system (ViewRay™). The ICCD was placed down-bore at the end of the couch, 4 m from treatment isocenter and behind the 5-Gauss line of the 0.35-T MRI. After establishing optimal camera acquisition settings, square beams of increasing size (4.2 × 4.2 cm2 , 10.5 × 10.5 cm2 , and 14.7 × 14.7 cm2 ) were imaged at 0.93 frames per second, from an individual cobalt-60 treatment head, to develop projection measures related to percent depth dose (PDD) curves and cross beam profiles (CPB). These Cherenkov-derived measurements were compared to ionization chamber (IC) and radiographic film dosimetry data, as well as simulation data from the treatment planning system (TPS). An intensity-modulated radiotherapy (IMRT) commissioning plan from AAPM TG-119 (C4:C-Shape) was also imaged at 2.1 frames per second, and the single linear sum image from 509 s of plan delivery was compared to the dose volume prediction generated by the TPS using gamma index analysis. RESULTS: Analysis of standardized test target images (1024 × 1024 pixels) yielded a pixel resolution of 0.37 mm/pixel. The beam width measured from the Cherenkov image-generated projection CBPs was within 1 mm accuracy when compared to film measurements for all beams. The 502 point measurements (i.e., pixels) of the Cherenkov image-based projection percent depth dose curves (pPDDs) were compared to pPDDs simulated by the treatment planning system (TPS), with an overall average error of 0.60%, 0.56%, and 0.65% for the 4.2, 10.5, and 14.7 cm square beams, respectively. The relationships between pPDDs and central axis PDDs derived from the TPS were used to apply a weighting factor to the Cherenkov pPDD, so that the Cherenkov data could be directly compared to IC PDDs (average error of -0.07%, 0.10%, and -0.01% for the same sized beams, respectively). Finally, the composite image of the TG-119 C4 treatment plan achieved a 95.1% passing rate using 4%/4 mm gamma index agreement criteria between Cherenkov intensity and TPS dose volume data. CONCLUSIONS: This is the first examination of Cherenkov-generated pPDDs and pCBPs in an MR-IGRT system. Cherenkov imaging measurements were fast to acquire, and minimal error was observed overall. Cherenkov imaging also provided novel real-time data for IMRT QA. The strengths of this imaging are the rapid data capture ability providing real-time, high spatial resolution data, combined with the remote, noncontact nature of imaging. The biggest limitation of this method is the two-dimensional (2D) projection-based imaging of three-dimensional (3D) dose distributions through the transparent water tank.


Asunto(s)
Imagen por Resonancia Magnética Intervencional/métodos , Imagen Óptica/métodos , Garantía de la Calidad de Atención de Salud/métodos , Radioterapia Guiada por Imagen/métodos , Radioterapia de Intensidad Modulada/métodos , Calibración , Simulación por Computador , Dosimetría por Película , Humanos , Imagen por Resonancia Magnética Intervencional/instrumentación , Método de Montecarlo , Imagen Óptica/instrumentación , Quinina , Dosificación Radioterapéutica , Planificación de la Radioterapia Asistida por Computador , Radioterapia Guiada por Imagen/instrumentación , Radioterapia de Intensidad Modulada/instrumentación , Factores de Tiempo , Agua
10.
Radiat Oncol ; 13(1): 51, 2018 Mar 24.
Artículo en Inglés | MEDLINE | ID: mdl-29573744

RESUMEN

BACKGROUND: To simplify the adaptive treatment planning workflow while achieving the optimal tumor-dose coverage in pancreatic cancer patients undergoing daily adaptive magnetic resonance image guided radiation therapy (MR-IGRT). METHODS: In daily adaptive MR-IGRT, the plan objective function constructed during simulation is used for plan re-optimization throughout the course of treatment. In this study, we have constructed the initial objective functions using two methods for 16 pancreatic cancer patients treated with the ViewRay™ MR-IGRT system: 1) the conventional method that handles the stomach, duodenum, small bowel, and large bowel as separate organs at risk (OARs) and 2) the OAR grouping method. Using OAR grouping, a combined OAR structure that encompasses the portions of these four primary OARs within 3 cm of the planning target volume (PTV) is created. OAR grouping simulation plans were optimized such that the target coverage was comparable to the clinical simulation plan constructed in the conventional manner. In both cases, the initial objective function was then applied to each successive treatment fraction and the plan was re-optimized based on the patient's daily anatomy. OAR grouping plans were compared to conventional plans at each fraction in terms of coverage of the PTV and the optimized PTV (PTV OPT), which is the result of the subtraction of overlapping OAR volumes with an additional margin from the PTV. RESULTS: Plan performance was enhanced across a majority of fractions using OAR grouping. The percentage of the volume of the PTV covered by 95% of the prescribed dose (D95) was improved by an average of 3.87 ± 4.29% while D95 coverage of the PTV OPT increased by 3.98 ± 4.97%. Finally, D100 coverage of the PTV demonstrated an average increase of 6.47 ± 7.16% and a maximum improvement of 20.19%. CONCLUSIONS: In this study, our proposed OAR grouping plans generally outperformed conventional plans, especially when the conventional simulation plan favored or disregarded an OAR through the assignment of distinct weighting parameters relative to the other critical structures. OAR grouping simplifies the MR-IGRT adaptive treatment planning workflow at simulation while demonstrating improved coverage compared to delivered pancreatic cancer treatment plans in daily adaptive radiation therapy.


Asunto(s)
Neoplasias Pancreáticas/radioterapia , Planificación de la Radioterapia Asistida por Computador/métodos , Radioterapia Guiada por Imagen/métodos , Algoritmos , Humanos , Imagen por Resonancia Magnética , Órganos en Riesgo , Dosificación Radioterapéutica , Radioterapia de Intensidad Modulada/métodos , Flujo de Trabajo
11.
Technol Cancer Res Treat ; 17: 1533033818787383, 2018 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-30012039

RESUMEN

INTRODUCTION: To evaluate the intra-/interobserver variability of gross target volumes between delineation based on magnetic resonance imaging and computed tomography in patients simulated for stereotactic body radiotherapy for primary lung cancer and lung metastasis. MATERIALS AND METHODS: Twenty-five patients (27 lesions) who underwent computed tomography and magnetic resonance simulation with the MR-60Co system (ViewRay) were included in the study. Gross target volumes were delineated on the magnetic resonance imaging (GTVMR) and computed tomography (GTVCT) images by 2 radiation oncologists (RO1 and RO2). Volumes of all contours were measured. Levels of intraobserver (GTVMR_RO vs GTVCT_RO) and interobserver (GTVMR_RO1 vs GTVMR_RO2; GTVCT_RO1 vs GTVCT_RO2) agreement were evaluated using the generalized κ statistics and the paired t test. RESULTS: No significant volumetric difference was observed between all 4 comparisons (GTVMR_RO1 vs GTVCT_RO1, GTVMR_RO2 vs GTVCT_RO2, GTVMR_RO1 vs GTVMR_RO2, and GTVCT_RO1 vs GTVCT_RO2; P > .05), with mean volumes of GTVs ranging 5 to 6 cm3. The levels of agreement between those 4 comparisons were all substantial with mean κ values of 0.64, 0.66, 0.74, and 0.63, respectively. However, the interobserver agreement level was significantly higher for GTVCT compared to GTVMR ( P <.001). The mean κ values significantly increased in all 4 comparisons for tumors >5 cm3 compared to tumors ≤5 cm3 (all P < .05). CONCLUSION: No significant differences in volumes between magnetic resonance- and computed tomograpghy-based Gross target volumes were found among 2 ROs. Magnetic resonance-based GTV delineation for lung stereotactic body radiotherapy also demonstrated acceptable interobserver agreement. Tumors >5 cm3 show higher intra-/interobserver agreement compared to tumors <5 cm3. More experience should be accumulated to reduce variability in magnetic resonance-based Gross target volumes delineation in lung stereotactic body radiotherapy.


Asunto(s)
Neoplasias Pulmonares/diagnóstico por imagen , Neoplasias Pulmonares/radioterapia , Radiocirugia , Radioterapia Guiada por Imagen , Radioisótopos de Cobalto/uso terapéutico , Femenino , Humanos , Pulmón/diagnóstico por imagen , Pulmón/patología , Pulmón/efectos de la radiación , Pulmón/cirugía , Neoplasias Pulmonares/patología , Neoplasias Pulmonares/cirugía , Imagen por Resonancia Magnética , Masculino , Planificación de la Radioterapia Asistida por Computador , Tomografía Computarizada por Rayos X , Carga Tumoral
12.
Transl Androl Urol ; 7(3): 308-320, 2018 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-30050792

RESUMEN

Intensity-modulated radiotherapy (IMRT) has become the standard radiotherapy technology utilized for the treatment of prostate cancer, as it permits the delivery of highly conformal radiation dose distributions. Image-guided radiotherapy (IGRT) is an essential companion to IMRT that allows the treatment team to account for daily changes in target anatomy and positioning. In the present review, we will discuss the different sources of geometric uncertainty and review the rationale behind using IGRT in the treatment of prostate cancer. We will then describe commonly employed IGRT techniques and review their benefits and drawbacks. Additionally, we will review the evidence suggesting a potential clinical benefit to utilizing IGRT.

13.
Med Dosim ; 41(1): 87-91, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-26755076

RESUMEN

We evaluated the feasibility of planning stereotactic body radiotherapy (SBRT) for large central early-stage non-small cell lung cancer with a tri-cobalt-60 (tri-(60)Co) system equipped with real-time magnetic resonance imaging (MRI) guidance, as compared to linear accelerator (LINAC)-based SBRT. In all, 20 patients with large central early-stage non-small cell lung cancer who were treated between 2010 and 2015 with LINAC-based SBRT were replanned using a tri-(60)Co system for a prescription dose of 50Gy in 4 fractions. Doses to organs at risk were evaluated based on established MD Anderson constraints for central lung SBRT. R100 values were calculated as the total tissue volume receiving 100% of the dose (V100) divided by the planning target volume and compared to assess dose conformity. Dosimetric comparisons between LINAC-based and tri-(60)Co SBRT plans were performed using Student׳s t-test and Wilcoxon Ranks test. Blinded reviews by radiation oncologists were performed to assess the suitability of both plans for clinical delivery. The mean planning target volume was 48.3cc (range: 12.1 to 139.4cc). Of the tri-(60)Co SBRT plans, a mean 97.4% of dosimetric parameters per patient met MD Anderson dose constraints, whereas a mean 98.8% of dosimetric parameters per patient were met with LINAC-based SBRT planning (p = 0.056). R100 values were similar between both plans (1.20 vs 1.21, p = 0.79). Upon blinded review by 4 radiation oncologists, an average of 90% of the tri-(60)Co SBRT plans were considered acceptable for clinical delivery compared with 100% of the corresponding LINAC-based SBRT plans (p = 0.17). SBRT planning using the tri-(60)Co system with built-in MRI is feasible and achieves clinically acceptable plans for most central lung patients, with similar target dose conformity and organ at risk dosimetry. The added benefit of real-time MRI-guided therapy may further optimize tumor targeting while improving normal tissue sparing, which warrants further investigation in a prospective feasibility clinical trial.


Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas/radioterapia , Radioisótopos de Cobalto/uso terapéutico , Teleterapia por Radioisótopo , Radiocirugia , Planificación de la Radioterapia Asistida por Computador , Anciano , Anciano de 80 o más Años , Femenino , Humanos , Masculino , Persona de Mediana Edad
14.
Artículo en Zh | WPRIM | ID: wpr-745259

RESUMEN

ViewRay magnetic resonance (MR) guided radiotherapy system not only solves the problem of imaging dose,but also can set up accurately,online adaptive radiotherapy and gated irradiation according to magnetic resonance imaging (MRI).The development of this system provides a new technical means of accurate radiotherapy.This review describes the main structure of the ViewRay system,and summarizes quality assurance (QA),dosimetric comparison,respiratory motion management,online adaptive radiotherapy,and preliminary treatment effect.

SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda