Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 20 de 553
Filtrar
1.
Annu Rev Immunol ; 42(1): 489-519, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38941607

RESUMEN

Recent advances have contributed to a mechanistic understanding of neuroimmune interactions in the intestine and revealed an essential role of this cross talk for gut homeostasis and modulation of inflammatory and infectious intestinal diseases. In this review, we describe the innervation of the intestine by intrinsic and extrinsic neurons and then focus on the bidirectional communication between neurons and immune cells. First, we highlight the contribution of neuronal subtypes to the development of colitis and discuss the different immune and epithelial cell types that are regulated by neurons via the release of neuropeptides and neurotransmitters. Next, we review the role of intestinal inflammation in the development of visceral hypersensitivity and summarize how inflammatory mediators induce peripheral and central sensitization of gut-innervating sensory neurons. Finally, we outline the importance of immune cells and gut microbiota for the survival and function of different neuronal populations at homeostasis and during bacterial and helminth infection.


Asunto(s)
Neuroinmunomodulación , Humanos , Animales , Intestinos/inmunología , Homeostasis , Microbioma Gastrointestinal/inmunología , Mucosa Intestinal/inmunología , Mucosa Intestinal/metabolismo , Mucosa Intestinal/microbiología , Neuronas/metabolismo , Neuronas/inmunología , Neuropéptidos/metabolismo , Sistema Nervioso Entérico/inmunología , Sistema Nervioso Entérico/metabolismo
2.
Cell ; 170(1): 185-198.e16, 2017 Jun 29.
Artículo en Inglés | MEDLINE | ID: mdl-28648659

RESUMEN

Dietary, microbial, and inflammatory factors modulate the gut-brain axis and influence physiological processes ranging from metabolism to cognition. The gut epithelium is a principal site for detecting such agents, but precisely how it communicates with neural elements is poorly understood. Serotonergic enterochromaffin (EC) cells are proposed to fulfill this role by acting as chemosensors, but understanding how these rare and unique cell types transduce chemosensory information to the nervous system has been hampered by their paucity and inaccessibility to single-cell measurements. Here, we circumvent this limitation by exploiting cultured intestinal organoids together with single-cell measurements to elucidate intrinsic biophysical, pharmacological, and genetic properties of EC cells. We show that EC cells express specific chemosensory receptors, are electrically excitable, and modulate serotonin-sensitive primary afferent nerve fibers via synaptic connections, enabling them to detect and transduce environmental, metabolic, and homeostatic information from the gut directly to the nervous system.


Asunto(s)
Células Quimiorreceptoras/metabolismo , Células Enterocromafines/metabolismo , Tracto Gastrointestinal/citología , Vías Nerviosas , Secuencia de Aminoácidos , Animales , Secuencia de Bases , Canales de Calcio/metabolismo , Catecolaminas/metabolismo , Perfilación de la Expresión Génica , Humanos , Síndrome del Colon Irritable/patología , Ratones , Fibras Nerviosas/metabolismo , Proteínas del Tejido Nervioso/metabolismo , Receptores Odorantes/metabolismo , Receptores de Serotonina 5-HT3/metabolismo , Serotonina/metabolismo , Transducción de Señal , Sinapsis/metabolismo , Canal Catiónico TRPA1 , Canales de Potencial de Receptor Transitorio/metabolismo
3.
Gastroenterology ; 166(6): 976-994, 2024 06.
Artículo en Inglés | MEDLINE | ID: mdl-38325759

RESUMEN

Chronic visceral pain is one of the most common reasons for patients with gastrointestinal disorders, such as inflammatory bowel disease or disorders of brain-gut interaction, to seek medical attention. It represents a substantial burden to patients and is associated with anxiety, depression, reductions in quality of life, and impaired social functioning, as well as increased direct and indirect health care costs to society. Unfortunately, the diagnosis and treatment of chronic visceral pain is difficult, in part because our understanding of the underlying pathophysiologic basis is incomplete. In this review, we highlight recent advances in peripheral pain signaling and specific physiologic and pathophysiologic preclinical mechanisms that result in the sensitization of peripheral pain pathways. We focus on preclinical mechanisms that have been translated into treatment approaches and summarize the current evidence base for directing treatment toward these mechanisms of chronic visceral pain derived from clinical trials. The effective management of chronic visceral pain remains of critical importance for the quality of life of suffers. A deeper understanding of peripheral pain mechanisms is necessary and may provide the basis for novel therapeutic interventions.


Asunto(s)
Dolor Crónico , Dolor Visceral , Humanos , Dolor Visceral/fisiopatología , Dolor Visceral/terapia , Dolor Visceral/diagnóstico , Dolor Visceral/etiología , Dolor Crónico/terapia , Dolor Crónico/fisiopatología , Dolor Crónico/diagnóstico , Dolor Crónico/psicología , Animales , Calidad de Vida , Transducción de Señal
4.
Mol Pain ; : 17448069241260349, 2024 May 25.
Artículo en Inglés | MEDLINE | ID: mdl-38795338

RESUMEN

Irritable bowel syndrome (IBS) is a prevalent functional gastrointestinal disease characterized by chronic visceral pain with a complex etiology and challenging treatment. Although accumulating evidence supports the involvement of central nervous system sensitization in the development of visceral pain, the precise molecular mechanisms remain incompletely understood. In this study, we highlight the critical regulatory role of lysine-specific demethylase 6B (KDM6B) in the anterior cingulate cortex (ACC) in chronic visceral pain. To simulate clinical IBS conditions, we utilized the neonatal maternal deprivation (NMD) mouse model. Our results demonstrated that NMD induced chronic visceral pain and anxiety-like behaviors in mice. Notably, the protein expression level of KDM6B significantly increased in the ACC of NMD mice, leading to a reduction in the expression level of H32K7me3. Immunofluorescence staining revealed that KDM6B primarily co-localizes with neurons in the ACC, with minimal presence in microglia and astrocytes. Injecting GSK-J4 (a KDM6B-specific inhibitor) into ACC of NMD mice, resulted in a significant alleviation in chronic visceral pain and anxiety-like behaviors, as well as a remarkable reduction in NR2B expression level. ChIP assay further indicated that KDM6B regulates NR2B expression by influencing the demethylation of H3K27me3. In summary, our findings underscore the critical role of KDM6B in regulating chronic visceral pain and anxiety-like behaviors in NMD mice. These insights provide a basis for further understanding the molecular pathways involved in IBS and may pave the way for targeted therapeutic interventions.

5.
Eur J Neurosci ; 60(1): 3544-3556, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38695253

RESUMEN

Empathetic relationships and the social transference of behaviours have been shown to occur in humans, and more recently through the development of rodent models, where both fear and pain phenotypes develop in observer animals. Clinically, observing traumatic events can induce 'trauma and stressor-related disorders' as defined in the DSM 5. These disorders are often comorbid with pain and gastrointestinal disturbances; however, our understanding of how gastrointestinal - or visceral - pain can be vicariously transmitted is lacking. Visceral pain originates from the internal organs, and despite its widespread prevalence, remains poorly understood. We established an observation paradigm to assess the impact of witnessing visceral pain. We utilised colorectal distension (CRD) to induce visceral pain behaviours in a stimulus rodent while the observer rodent observed. Twenty four hours post-observation, the observer rodent's visceral sensitivity was assessed using CRD. The observer rodents were found to have significant hyperalgesia as determined by lower visceral pain threshold and higher number of total pain behaviours compared with controls. The behaviours of the observer animals during the observation were found to be correlated with the behaviours of the stimulus animal employed. We found that observer animals had hypoactivity of the hypothalamic-pituitary-adrenal (HPA) axis, highlighted by reduced corticosterone at 90 minutes post-CRD. Using c-Fos immunohistochemistry we showed that observer animals also had increased activation of the anterior cingulate cortex, and decreased activation of the paraventricular nucleus, compared with controls. These results suggest that witnessing another animal in pain produces a behavioural phenotype and impacts the brain-gut axis.


Asunto(s)
Modelos Animales de Enfermedad , Estrés Psicológico , Dolor Visceral , Animales , Masculino , Dolor Visceral/fisiopatología , Dolor Visceral/psicología , Ratas , Estrés Psicológico/fisiopatología , Ratas Sprague-Dawley , Sistema Hipotálamo-Hipofisario/fisiopatología , Sistema Hipotálamo-Hipofisario/metabolismo , Hiperalgesia/fisiopatología , Sistema Hipófiso-Suprarrenal/fisiopatología , Sistema Hipófiso-Suprarrenal/metabolismo , Proteínas Proto-Oncogénicas c-fos/metabolismo , Umbral del Dolor/fisiología
6.
Am J Physiol Gastrointest Liver Physiol ; 326(2): G133-G146, 2024 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-38050686

RESUMEN

Sex differences in visceral nociception have been reported in clinical and preclinical studies, but the potential differences in sensory neural encoding of the colorectum between males and females are not well understood. In this study, we systematically assessed sex differences in colorectal neural encoding by conducting high-throughput optical recordings in intact dorsal root ganglia (DRGs) from control and visceral hypersensitive mice. We found an apparent sex difference in zymosan-induced behavioral visceral hypersensitivity: enhanced visceromotor responses to colorectal distension were observed only in male mice, not in female mice. In addition, a higher number of mechanosensitive colorectal afferents were identified per mouse in the zymosan-treated male group than in the saline-treated male group, whereas the mechanosensitive afferents identified per mouse were comparable between the zymosan- and saline-treated female groups. The increased number of identified afferents in zymosan-treated male mice was predominantly from thoracolumbar (TL) innervation, which agrees with the significant increase in the TL afferent proportion in the zymosan group as compared with the control group in male mice. In contrast, female mice showed no difference in the proportion of colorectal neurons between saline- and zymosan-treated groups. Our results revealed a significant sex difference in colorectal afferent innervation and sensitization in the context of behavioral visceral hypersensitivity, which could drive differential clinical symptoms in male and female patients.NEW & NOTEWORTHY We used high-throughput GCaMP6f recordings to study 2,275 mechanosensitive colorectal afferents in mice. Our results revealed significant sex differences in the zymosan-induced behavioral visceral hypersensitivity, which were present in male but not female mice. Male mice also showed sensitization of colorectal afferents in the thoracolumbar pathway, whereas female mice did not. These findings highlight sex differences in sensory neural anatomy and function of the colorectum, with implications for sex-specific therapies for treating visceral pain.


Asunto(s)
Neoplasias Colorrectales , Dolor Visceral , Humanos , Femenino , Masculino , Ratones , Animales , Recto/inervación , Colon/metabolismo , Zimosan/metabolismo , Caracteres Sexuales , Mecanotransducción Celular/fisiología , Dolor Visceral/metabolismo , Neoplasias Colorrectales/metabolismo , Ratones Endogámicos C57BL , Neuronas Aferentes/fisiología
7.
Am J Obstet Gynecol ; 230(5): 550.e1-550.e10, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38290643

RESUMEN

BACKGROUND: Symptomatic dysmenorrhea is a global problem, affecting more than 40% of menstruating persons. Cross-sectional studies have implicated psychosocial, biological, and sensory factors in dysmenorrhea but the mechanisms are not fully understood. Only a few prospective longitudinal studies have evaluated such factors in relation to the emergence and course of dysmenorrhea at menarche. OBJECTIVE: This study aimed to describe the initial menstruation experience and to evaluate the association of premenarchal psychosocial and sensory factors with the intensity of dysmenorrhea during the period in the fourth month. STUDY DESIGN: This was a prospective cohort study of adolescents who completed premenarchal assessments and postmenarchal daily menstrual diaries for their first (n=149) and fourth month periods (n=114). They were recruited shortly before menarche and completed baseline assessments, including psychosocial questionnaires and experimental pain sensitivity (pressure testing, bladder provocation), and their parents completed related pain questionnaires. The relation between the hypothesized premenarchal factors and month 4 dysmenorrhea intensity was evaluated using Kruskal-Wallis and chi-square tests for low (<3 on a 0-10 scale) vs higher (≥3) menstrual pain groups based on maximal pain ratings recorded in a daily diary. RESULTS: Low levels of dysmenorrhea characterized the first (median, 1; interquartile range, 0-2) and fourth month periods (1; 0-3). Maximal pain ratings increased from the first to the fourth period (3; 1-5 vs 4; 1-6; P=.007). The distribution of dysmenorrhea was multimodal at month 4 with 31.6% of the participants having low levels of maximal pain (1; 0-1) and 68.4% having higher levels (5; 4-6; Hartigan's dip test P<.001). The baseline demographic, psychosocial, and parental pain characteristics were not associated with the development of worse dysmenorrhea. The baseline experimental pain sensitivity, based on pressure pain thresholds, did not differ between the low (15.7 N; 12.5-22.3) and higher (15.0 N; 10.9-21.4]) level dysmenorrhea groups. Baseline bladder pain at first urge also did not differ (low, 6; 0-20 vs higher, 7; 0-19). CONCLUSION: By their fourth month period, two-thirds of adolescents fell into the higher group for maximal dysmenorrhea, half reported some related impairments in physical activity, and one-seventh reported some related school absence. Premenarchal factors (experimental pain sensitivity, psychosocial profile, parental pain experience) linked to chronic pain emergence in the adult literature did not predict dysmenorrhea intensity, suggesting the dominant factor at menarche may be peripheral afferent activation. Further research is needed to understand the evolution of psychosocial and sensory mechanisms in the development and course of dysmenorrhea.


Asunto(s)
Dismenorrea , Menarquia , Dimensión del Dolor , Humanos , Femenino , Dismenorrea/psicología , Dismenorrea/fisiopatología , Adolescente , Estudios Prospectivos , Encuestas y Cuestionarios , Estudios de Cohortes , Umbral del Dolor , Menstruación
8.
Scand J Gastroenterol ; 59(3): 254-259, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-37975245

RESUMEN

BACKGROUND/AIMS: The evaluation of visceral hypersensitivity and gastric accommodation in patients with gastroparesis (GP) is difficult. CT-scan gastric volumetry allows to test the distension of different regions of the stomach. We aimed to study gastric volumes and patient's sensitivity to gastric distension between in patients with GP compared to patients with GERD. METHOD: Retrospective study including patients who had CT-scan volumetry for GP or GERD. Two CT-scan series were made after gastric distension: left lateral decubitus 30° (LLD30) for antrum and right lateral decubitus (RLD) for body. Pain and discomfort were assessed using visual analogue scale (VAS). Gastric volumes were measured for LLD30 and RLD. RESULTS: 13 patients (7 GP and 6 GERD) were included. Mean age was 35.6+/-7.3 years. Median gastric volume in the RLD was lower in GP vs GERD (927+/-208 ml vs. 1115+/-163 ml; p = 0.046) while it was similar for LLD30 (1053+/-228 ml vs. 1054+/-193 ml; p = 0.603). GP patients had significantly more pain and discomfort during the procedure: pain VAS for GP was 6[0-9] versus 0[0-2] for GERD, p = 0.004, discomfort VAS for GP was 7[4-10] versus 4[0-5] for GERD, p = 0.007. 66.7% of GERD patients felt no pain vs. 14.3% in GP, p = 0.053. CONCLUSION: This pilot study suggests that GP could be associated with a reduced gastric volume compared to GERD in RLD after gaseous distension. In contrast, patient self-assessment of pain related to gastric distension was greater int GP patients. A lack of fundus accommodation and visceral hypersensitivity could explain some mechanisms in the genesis of GP symptoms.


Gastroparesis is associated with lower volumes in right lateral decubitus suggesting a lower distensibility of the fundus.Gastric volumetry is more painful in patients with gastroparesis than GERD controls, suggesting visceral hypersensitivity to mechanical distension.


Asunto(s)
Reflujo Gastroesofágico , Gastroparesia , Humanos , Adulto , Gastroparesia/diagnóstico por imagen , Gastroparesia/etiología , Estudios Retrospectivos , Vaciamiento Gástrico , Proyectos Piloto , Reflujo Gastroesofágico/complicaciones , Reflujo Gastroesofágico/diagnóstico por imagen , Dolor
9.
Neuromodulation ; 27(2): 284-294, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37191611

RESUMEN

OBJECTIVES: The aims of this study were to investigate analgesic effects of vagus nerve stimulation (VNS) on visceral hypersensitivity (VH) in a rodent model of functional dyspepsia (FD) and to compare invasive VNS with noninvasive auricular VNS (aVNS). MATERIALS AND METHODS: Eighteen ten-day-old male rats were gavaged with 0.1% iodoacetamide (IA) or 2% sucrose solution for six days. After eight weeks, IA-treated rats were implanted with electrodes for VNS or aVNS (n = 6 per group). Different parameters, varying in frequency and stimulation duty cycle, were tested to find the best parameter based on the improvement of VH assessed by electromyogram (EMG) during gastric distension. RESULTS: Compared with sucrose-treated rats, visceral sensitivity was increased significantly in IA-treated "FD" rats and ameliorated remarkably by VNS (at 40, 60, and 80 mm Hg; p ≤ 0.02, respectively) and aVNS (at 60 and 80 mm Hg; p ≤ 0.05, respectively) with the parameter of 100 Hz and 20% duty cycle. There was no significant difference in area under the curve of EMG responses between VNS and aVNS (at 60 and 80 mm Hg, both p > 0.05). Spectral analysis of heart rate variability revealed a significant enhancement in vagal efferent activity while applying VNS/aVNS compared with sham stimulation (p < 0.01). In the presence of atropine, no significant differences were noted in EMG after VNS/aVNS. Naloxone blocked the analgesic effects of VNS/aVNS. CONCLUSIONS: VNS/aVNS with optimized parameter elicits ameliorative effects on VH, mediated by autonomic and opioid mechanisms. aVNS is as effective as direct VNS and has great potential for treating visceral pain in patients with FD.


Asunto(s)
Dispepsia , Estimulación del Nervio Vago , Humanos , Ratas , Animales , Masculino , Ratas Sprague-Dawley , Estimulación del Nervio Vago/métodos , Dispepsia/terapia , Nervio Vago , Yodoacetamida , Analgésicos , Sacarosa
10.
J Neurosci ; 42(33): 6313-6324, 2022 08 17.
Artículo en Inglés | MEDLINE | ID: mdl-35790401

RESUMEN

While effective in treating abdominal pain, opioids have significant side effects. Recent legalization of cannabis will likely promote use of cannabinoids as an adjunct or alternative to opioids, despite a lack of evidence. We aimed to investigate whether cannabinoids inhibit mouse colonic nociception, alone or in combination with opioids at low doses. Experiments were performed on C57BL/6 male and female mice. Visceral nociception was evaluated by measuring visceromotor responses (VMR), afferent nerve mechanosensitivity in flat-sheet colon preparations, and excitability of isolated DRG neurons. Blood oxygen saturation, locomotion, and defecation were measured to evaluate side effects. An agonist of cannabinoid 1 receptor (CB1R), arachidonyl-2'-chloroethylamide (ACEA), dose-dependently decreased VMR. ACEA and HU-210 (another CB1R agonist) also attenuated colonic afferent nerve mechanosensitivity. Additionally, HU-210 concentration-dependently decreased DRG neuron excitability, which was reversed by the CB1R antagonist AM-251. Conversely, cannabinoid 2 receptor (CB2R) agonists did not attenuate VMR, afferent nerve mechanosensitivity, or DRG neuron excitability. Combination of subanalgesic doses of CB1R and µ-opioid receptor agonists decreased VMR; importantly, this analgesic effect was preserved after 6 d of twice daily treatment. This combination also attenuated afferent nerve mechanosensitivity and DRG neuron excitability, which was inhibited by neuronal nitric oxide synthase and guanylate cyclase inhibitors. This combination avoided side effects (decreased oxygen saturation and colonic transit) caused by analgesic dose of morphine. Activation of CB1R, but not CB2R, decreased colonic nociception both alone and in synergy with µ-opioid receptor. Thus, CB1R agonists may enable opioid dose reduction and avoid opioid-related side effects.SIGNIFICANCE STATEMENT One of the most cited needs for patients with abdominal pain are safe and effective treatment options. The effectiveness of opioids in the management of abdominal pain is undermined by severe adverse side effects. Therefore, strategies to replace opioids or reduce the doses of opioids to suppress abdominal pain is needed. This study in mice demonstrates that cannabinoid 1 receptor (CB1R) agonists inhibit visceral sensation. Furthermore, a combination of subanalgesic doses of µ-opioid receptor agonist and CB1R agonist markedly reduce abdominal pain without causing the side effects of high-dose opioids. Thus, CB1R agonists, alone or in combination with low-dose opioids, may be a novel and safe treatment strategy for abdominal pain.


Asunto(s)
Dolor Abdominal , Agonistas de Receptores de Cannabinoides , Cannabinoides , Receptores Opioides , Dolor Abdominal/tratamiento farmacológico , Analgésicos/farmacología , Analgésicos/uso terapéutico , Analgésicos Opioides/farmacología , Analgésicos Opioides/uso terapéutico , Animales , Agonistas de Receptores de Cannabinoides/farmacología , Agonistas de Receptores de Cannabinoides/uso terapéutico , Cannabinoides/farmacología , Cannabinoides/uso terapéutico , Femenino , Masculino , Ratones , Ratones Endogámicos C57BL , Receptor Cannabinoide CB1 , Receptores Opioides/agonistas
11.
J Neurosci ; 42(43): 8154-8168, 2022 10 26.
Artículo en Inglés | MEDLINE | ID: mdl-36100399

RESUMEN

Chronic visceral pain is a major challenge for both patients and health providers. Although the central sensitization of the brain is thought to play an important role in the development of visceral pain, the detailed neural circuits remain largely unknown. Using a well-established chronic visceral hypersensitivity model induced by neonatal maternal deprivation (NMD) in male mice, we identified a distinct pathway whereby the claustrum (CL) glutamatergic neuron projecting to the anterior cingulate cortex (ACC) is critical for visceral pain but not for CFA-evoked inflammatory pain. By a combination of in vivo circuit-dissecting extracellular electrophysiological approaches and visceral pain related electromyographic (EMG) recordings, we demonstrated that optogenetic inhibition of CL glutamatergic activity suppressed the ACC neural activity and visceral hypersensitivity of NMD mice whereas selective activation of CL glutamatergic activity enhanced the ACC neural activity and evoked visceral pain of control mice. Further, optogenetic studies demonstrate a causal link between such neuronal activity and visceral pain behaviors. Chemogenetic activation or inhibition of ACC neural activities reversed the effects of optogenetic manipulation of CL neural activities on visceral pain responses. Importantly, molecular detection showed that NMD significantly enhances the expression of NMDA receptors and activated CaMKIIα in the ACC postsynaptic density (PSD) region. Together, our data establish a functional role for CL→ACC glutamatergic neurons in gating visceral pain, thus providing a potential treatment strategy for visceral pain.SIGNIFICANCE STATEMENT Studies have shown that sensitization of anterior cingulate cortex (ACC) plays an important role in chronic pain. However, it is as yet unknown whether there is a specific brain region and a distinct neural circuit that helps the ACC to distinguish visceral and somatic pain. The present study demonstrates that claustrum (CL) glutamatergic neurons maybe responding to colorectal distention (CRD) rather than somatic stimulation and that a CL glutamatergic projection to ACC glutamatergic neuron regulates visceral pain in mice. Furthermore, excessive NMDA receptors and overactive CaMKIIα in the ACC postsynaptic density (PSD) region were observed in mice with chronic visceral pain. Together, these findings reveal a novel neural circuity underlying the central sensitization of chronic visceral pain.


Asunto(s)
Claustro , Dolor Visceral , Ratas , Masculino , Ratones , Animales , Giro del Cíngulo/fisiología , Dolor Visceral/metabolismo , Receptores de N-Metil-D-Aspartato/metabolismo , Ratas Sprague-Dawley
12.
Am J Physiol Renal Physiol ; 325(6): F779-F791, 2023 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-37823199

RESUMEN

Patients with urinary tract infections (UTIs) suffer from urinary frequency, urgency, dysuria, and suprapubic pain, but the mechanisms by which bladder afferents sense the presence of uropathogens and encode this information is not well understood. Calcitonin gene-related peptide (CGRP) is a 37-mer neuropeptide found in a subset of bladder afferents that terminate primarily in the lamina propria. Here, we report that the CGRP receptor antagonist BIBN4096BS lessens lower urinary tract symptoms and prevents the development of pelvic allodynia in mice inoculated with uropathogenic Escherichia coli (UPEC) without altering urine bacterial loads or the host immune response to the infection. These findings indicate that CGRP facilitates the processing of noxious/inflammatory stimuli during UPEC infection. Using fluorescent in situ hybridization, we identified a population of suburothelial fibroblasts in the lamina propria, a region where afferent fibers containing CGRP terminate, that expresses the canonical CGRP receptor components Calcrl and Ramp1. We propose that these fibroblasts, in conjunction with CGRP+ afferents, form a circuit that senses substances released during the infection and transmit this noxious information to the central nervous system.NEW & NOTEWORTHY Afferent C fibers release neuropeptides including calcitonin gene-related peptide (CGRP). Here, we show that the specific CGRP receptor antagonist, BIBN409BS, ameliorates lower urinary tract symptoms and pelvic allodynia in mice inoculated with uropathogenic E. coli. Using fluorescent in situ hybridization, we identified a population of suburothelial fibroblasts in the lamina propria that expresses the canonical CGRP receptor. Our findings indicate that CGRP contributes to the transmission of nociceptive information arising from the bladder.


Asunto(s)
Cistitis , Síntomas del Sistema Urinario Inferior , Ratones , Humanos , Animales , Receptores de Péptido Relacionado con el Gen de Calcitonina/fisiología , Péptido Relacionado con Gen de Calcitonina , Antagonistas del Receptor Peptídico Relacionado con el Gen de la Calcitonina/farmacología , Antagonistas del Receptor Peptídico Relacionado con el Gen de la Calcitonina/uso terapéutico , Hiperalgesia , Escherichia coli , Hibridación Fluorescente in Situ
13.
J Neurochem ; 2023 Mar 12.
Artículo en Inglés | MEDLINE | ID: mdl-36906887

RESUMEN

Visceral hypersensitivity, a hallmark of disorders of the gut-brain axis, is associated with exposure to early-life stress (ELS). Activation of neuronal ß3-adrenoceptors (AR) has been shown to alter central and peripheral levels of tryptophan and reduce visceral hypersensitivity. In this study, we aimed to determine the potential of a ß3-AR agonist in reducing ELS-induced visceral hypersensitivity and possible underlying mechanisms. Here, ELS was induced using the maternal separation (MS) model, where Sprague Dawley rat pups were separated from their mother in early life (postnatal day 2-12). Visceral hypersensitivity was confirmed in adult offspring using colorectal distension (CRD). CL-316243, a ß3-AR agonist, was administered to determine anti-nociceptive effects against CRD. Distension-induced enteric neuronal activation as well as colonic secretomotor function were assessed. Tryptophan metabolism was determined both centrally and peripherally. For the first time, we showed that CL-316243 significantly ameliorated MS-induced visceral hypersensitivity. Furthermore, MS altered plasma tryptophan metabolism and colonic adrenergic tone, while CL-316243 reduced both central and peripheral levels of tryptophan and affected secretomotor activity in the presence of tetrodotoxin. This study supports the beneficial role of CL-316243 in reducing ELS-induced visceral hypersensitivity, and suggests that targeting the ß3-AR can significantly influence gut-brain axis activity through modulation of enteric neuronal activation, tryptophan metabolism, and colonic secretomotor activity which may synergistically contribute to offsetting the effects of ELS.

14.
J Neurochem ; 167(6): 719-732, 2023 12.
Artículo en Inglés | MEDLINE | ID: mdl-38037432

RESUMEN

While visceral pain is commonly associated with disorders of the gut-brain axis, underlying mechanisms are not fully understood. Dorsal root ganglion (DRG) neurons innervate visceral structures and undergo hypersensitization in inflammatory models. The characterization of peripheral DRG neuron terminals is an active area of research, but recent work suggests that they communicate with enteroendocrine cells (EECs) in the gut. EECs sense stimuli in the intestinal lumen and communicate information to the brain through hormonal and electrical signaling. In that context, EECs are a target for developing therapeutics to treat visceral pain. Linaclotide is an FDA-approved treatment for chronic constipation that activates the intestinal membrane receptor guanylyl cyclase C (GUCY2C). Clinical trials revealed that linaclotide relieves both constipation and visceral pain. We recently demonstrated that the analgesic effect of linaclotide reflects the overexpression of GUCY2C on neuropod cells, a specialized subtype of EECs. While this brings some clarity to the relationship between linaclotide and visceral analgesia, questions remain about the intracellular signaling mechanisms and neurotransmitters mediating this communication. In this Fundamental Neurochemistry Review, we discuss what is currently known about visceral nociceptors, enteroendocrine cells, and the gut-brain axis, and ongoing areas of research regarding that axis and visceral pain.


Asunto(s)
Neuroquímica , Dolor Visceral , Humanos , Estreñimiento/tratamiento farmacológico , Transducción de Señal , Células Enteroendocrinas , Receptores de Enterotoxina
15.
Mol Pain ; 19: 17448069221149834, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36550612

RESUMEN

Irritable bowel syndrome (IBS) related chronic visceral pain affects 20% of people worldwide. The treatment options are very limited. Although the scholarly reviews have appraised the potential effects of the intestinal microbiota on intestinal motility and sensation, the exact mechanism of intestinal microbiota in IBS-like chronic visceral pain remains largely unclear. The purpose of this study is to investigate whether Folic Acid (FA) attenuated visceral pain and its possible mechanisms. Chronic visceral hyperalgesia was induced in rats by neonatal colonic inflammation (NCI). 16S rDNA analysis of fecal samples from human subjects and rats was performed. Patch clamp recording was used to determine synaptic transmission of colonic-related spinal dorsal horn. Alpha diversity of intestinal flora was increased in patients with IBS, as well as the obviously increased abundance of Clostridiales order (a main bacteria producing hydrogen sulfide). The hydrogen sulfide content was positive correlation with visceral pain score in patients with IBS. Consistently, NCI increased Clostridiales frequency and hydrogen sulfide content in feces of adult rats. Notably, the concentration of FA was markedly decreased in peripheral blood of IBS patients compared with non-IBS human subjects. FA supplement alleviated chronic visceral pain and normalized the Clostridiales frequency in NCI rats. In addition, FA supplement significantly reduced the frequency of sEPSCs of neurons in the spinal dorsal horn of NCI rats. Folic Acid treatment attenuated chronic visceral pain of NCI rats through reducing hydrogen sulfide production from Clostridiales in intestine.


Asunto(s)
Sulfuro de Hidrógeno , Síndrome del Colon Irritable , Dolor Visceral , Humanos , Adulto , Ratas , Animales , Sulfuro de Hidrógeno/farmacología , Sulfuro de Hidrógeno/uso terapéutico , Ratas Sprague-Dawley , Clostridiales , Ácido Fólico/farmacología , Ácido Fólico/uso terapéutico , Hidrógeno , Dolor Visceral/tratamiento farmacológico , Inflamación , Sulfuros
16.
Mol Pain ; 19: 17448069231170072, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37002193

RESUMEN

BACKGROUND: Irritable bowel syndrome (IBS) is a common functional gastrointestinal disorder, and its specific pathogenesis is still unclear. We have previously reported that TTX-resistant (TTX-R) sodium channels in colon-specific dorsal root ganglion (DRG) neurons were sensitized in a rat model of visceral hypersensitivity induced by neonatal colonic inflammation (NCI). However, the detailed molecular mechanism for activation of sodium channels remains unknown. This study was designed to examine roles for melatonin (MT) in sensitization of sodium channels in NCI rats. METHODS: Colorectal distention (CRD) in adult male rats as a measure of visceral hypersensitivity. Colon-specific dorsal root ganglion (DRG) neurons were labeled with DiI and acutely dissociated for measuring excitability and sodium channel current under whole-cell patch clamp configurations. Western blot and Immunofluorescence were employed to detect changes in expression of Nav1.8 and MT2. RESULTS: The results showed that rats exhibited visceral hypersensitivity after NCI treatment. Intrathecal application of melatonin significantly increased the threshold of CRD in NCI rats with a dose-dependent manner, but has no role in the control group. Whole-cell patch clamp recording showed that melatonin remarkably decreased the excitability and the density of TTX-R sodium channel in DRG neurons from NCI rats. The expression of MT2 receptor at the protein level was markedly lower in NCI rats. 8MP, an agonist of MT2 receptor, enhanced the distention threshold in NCI rats. Application of 8MP reversed the enhanced hypersensitivity of DRG neurons from NCI rats. 8MP also reduced TTX-R sodium current density and modulated dynamics of TTX-R sodium current activation. CONCLUSIONS: These data suggest that sensitization of sodium channels of colon DRG neurons in NCI rats is most likely mediated by MT2 receptor, thus identifying a potential target for treatment for chronic visceral pain in patients with IBS.


Asunto(s)
Síndrome del Colon Irritable , Melatonina , Dolor Visceral , Ratas , Animales , Masculino , Síndrome del Colon Irritable/complicaciones , Síndrome del Colon Irritable/tratamiento farmacológico , Síndrome del Colon Irritable/metabolismo , Ratas Sprague-Dawley , Melatonina/farmacología , Melatonina/uso terapéutico , Melatonina/metabolismo , Dolor Visceral/metabolismo , Nocicepción , Receptor de Melatonina MT2/metabolismo , Ganglios Espinales/metabolismo , Tetrodotoxina , Canal de Sodio Activado por Voltaje NAV1.8/metabolismo
17.
Am J Physiol Gastrointest Liver Physiol ; 325(4): G356-G367, 2023 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-37529842

RESUMEN

Chronic visceral pain is a common symptom of irritable bowel syndrome (IBS). Exosomes are involved in the development of pain. Rab27a can mediate the release of exosomes. The purpose of this study is to investigate how Rab27a-mediated exosome secretion in the anterior cingulate cortex (ACC) regulates visceral hyperalgesia induced with neonatal maternal deprivation (NMD) in adult mice. The colorectal distension method was adopted to measure visceral pain. The BCA protein assay kit was applied to detect the exosome protein concentration. Western blotting, quantitative PCR, and immunofluorescence technique were adopted to detect the expression of Rab27a and the markers of exosomes. Exosomes extracted from ACC were more in NMD mice than in control (CON) mice. Injection of the exosome-specific inhibitor GW4869 in ACC attenuated colorectal visceral pain of NMD mice. Injection of NMD-derived exosomes produced colorectal visceral pain in CON mice. Rab27a was upregulated in ACC of NMD mice. Rab27a was highly expressed in ACC neurons of NMD mice, rather than astrocytes and microglia. Injection of Rab27a-siRNA reduced the release of exosomes and attenuated the colorectal visceral pain in NMD mice. This study suggested that overexpression of Rab27a increased exosome secretion in ACC neurons, thus contributing to visceral hyperalgesia in NMD mice.NEW & NOTEWORTHY This work demonstrated that the expression of Rab27a in the anterior cingulate cortex was upregulated, which mediated multivesicular bodies trafficking to the plasma membrane and led to the increased release of neuronal exosomes, thus contributing to colorectal visceral pain in neonatal maternal deprivation (NMD) mice. Blocking the release of exosomes or downregulation of Rab27a could alleviate colorectal visceral pain in NMD mice. These data may provide a promising strategy for the treatment of visceral pain in irritable bowel syndrome patients.


Asunto(s)
Neoplasias Colorrectales , Exosomas , Síndrome del Colon Irritable , Dolor Visceral , Ratones , Animales , Giro del Cíngulo , Dolor Visceral/metabolismo , Hiperalgesia/etiología , Privación Materna , Exosomas/metabolismo , Proteínas rab27 de Unión a GTP/genética , Proteínas rab27 de Unión a GTP/metabolismo
18.
Am J Physiol Gastrointest Liver Physiol ; 325(5): G436-G445, 2023 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-37667839

RESUMEN

In numerous subtypes of central and peripheral neurons, small and intermediate conductance Ca2+-activated K+ (SK and IK, respectively) channels are important regulators of neuronal excitability. Transcripts encoding SK channel subunits, as well as the closely related IK subunit, are coexpressed in the soma of colonic afferent neurons with receptors for the algogenic mediators ATP and bradykinin, P2X3 and B2, highlighting the potential utility of these channels as drug targets for the treatment of abdominal pain in gastrointestinal diseases such as irritable bowel syndrome. Despite this, pretreatment with the dual SK/IK channel opener SKA-31 had no effect on the colonic afferent response to ATP, bradykinin, or noxious ramp distention of the colon. Inhibition of SK or IK channels with apamin or TRAM-34, respectively, yielded no change in spontaneous baseline afferent activity, indicating these channels are not tonically active. In contrast to its lack of effect in electrophysiological experiments, comparable concentrations of SKA-31 abolished ongoing peristaltic activity in the colon ex vivo. Treatment with the KV7 channel opener retigabine blunted the colonic afferent response to all applied stimuli. Our data therefore highlight the potential utility of KV7, but not SK/IK, channel openers as analgesic agents for the treatment of abdominal pain.NEW & NOTEWORTHY Despite marked coexpression of small (Kcnn1, Kcnn2) and intermediate (Kcnn4) conductance calcium-activated potassium channel transcripts with P2X3 (P2rx3) or bradykinin B2 (Bdkrb2) receptors in colonic sensory neurons, pharmacological activation of these channels had no effect on the colonic afferent response to ATP, bradykinin or luminal distension of the colon. This is in contrast to the robust inhibitory effect of the KV7 channel opener, retigabine.


Asunto(s)
Bradiquinina , Carbamatos , Fenilendiaminas , Humanos , Bradiquinina/farmacología , Dolor Abdominal , Adenosina Trifosfato/farmacología , Canales de Potasio de Pequeña Conductancia Activados por el Calcio
19.
Brain Behav Immun ; 112: 132-137, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37302437

RESUMEN

BACKGROUND: Inflammation and depressed mood constitute clinically relevant vulnerability factors for enhanced interoceptive sensitivity and chronic visceral pain, but their putative interaction remains untested in human mechanistic studies. We tested interaction effects of acute systemic inflammation and sad mood on the expectation and experience of visceral pain by combining experimental endotoxemia with a mood induction paradigm. METHODS: The double-blind, placebo-controlled, balanced crossover fMRI-trial in N = 39 healthy male and female volunteers involved 2 study days with either intravenous administration of low-dose lipopolysaccharide (LPS, 0.4 ng/kg body weight; inflammation condition) or saline (placebo condition). On each study, day two scanning sessions were conducted in an experimentally induced negative (i.e., sad) and in a neutral mood state, accomplished in balanced order. As a model of visceral pain, rectal distensions were implemented, which were initially calibrated to be moderately painful. In all sessions, an identical series of visceral pain stimuli was accomplished, signaled by predictive visual conditioning cues to assess pain anticipation. We assessed neural activation during the expectation and experience of visceral pain, along with unpleasantness ratings in a condition combining an inflammatory state with sad mood and in control conditions. All statistical analyses were accomplished using sex as covariate. RESULTS: LPS administration led to an acute systemic inflammatory response (inflammation X time interaction effects for TNF-α, IL-6, and sickness symptoms, all p <.001). The mood paradigm effectively induced distinct mood states (mood X time interaction, p <.001), with greater sadness in the negative mood conditions (both p <.001) but no difference between LPS and saline conditions. Significant main and interaction effects of inflammation and negative mood were observed for pain unpleasantness (all p <.05). During cued pain anticipation, a significant inflammation X mood interaction emerged for activation of the bilateral caudate nucleus and right hippocampus (all pFWE < 0.05). Main effects of both inflammation and mood were observed in multiple regions, including insula, midcingulate cortex, prefrontal gyri, and hippocampus for inflammation, and midcingulate, caudate, and thalamus for mood (all pFWE < 0.05). CONCLUSIONS: Results support an interplay of inflammation and sad mood on striatal and hippocampal circuitry engaged during visceral pain anticipation as well as on pain experience. This may reflect a nocebo mechanism, which may contribute to altered perception and interpretation of bodily signals. At the interface of affective neuroscience and the gut-brain axis, concurrent inflammation and negative mood may be vulnerability factors for chronic visceral pain.


Asunto(s)
Dolor Visceral , Femenino , Humanos , Masculino , Afecto , Encéfalo/fisiología , Voluntarios Sanos , Inflamación , Lipopolisacáridos , Imagen por Resonancia Magnética , Dolor Visceral/psicología , Estudios Cruzados
20.
Am J Obstet Gynecol ; 229(5): 530.e1-530.e17, 2023 11.
Artículo en Inglés | MEDLINE | ID: mdl-37516398

RESUMEN

BACKGROUND: Central sensitization is frequently associated with chronic pelvic pain and requires specific management. The pain is described as hypersensitivity to an innocuous stimulus that is both widespread and persistent. However, no study has evaluated if central sensitization can be measured objectively with neurophysiological tests in the pelvic and perineal area to prove this concept in women with chronic pelvic pain. OBJECTIVE: This study aimed to evaluate nociceptive thresholds (primary objective) and spatial and temporal diffusion of pain among women with chronic pelvic pain and high or low scores of central sensitization. STUDY DESIGN: This prospective, assessor-blinded, comparative study compared a cohort of women with chronic pelvic pain and a high (>5/10; n=29) vs low (<5/10; n=24) score of sensitization according to the Convergences PP criteria. Participants underwent a noninvasive bladder sensory test, a rectal barostat test, and a muscular (algometer) and a vulvar (vulvagesiometer) sensory test. Poststimulation pain (minutes), quality of life (Medical Outcomes Study 36-Item Short Form Survey), and psychological state, comprising anxiety (State-Trait Anxiety Inventory), depression (Beck Depression Inventory Short Form), and catastrophizing (Pain Catastrophizing Scale), were assessed. RESULTS: The participants mostly suffered from endometriosis (35.8%), irritable bowel syndrome (35.8%), bladder pain syndrome (32.1%), and vestibulodynia (28.3%). Baseline characteristics were similar. Women with a high sensitization score had more painful diseases diagnosed (2.7±1.3 vs 1.6±0.8; P=.002) and suffered for longer (11±8 vs 6±5 years; P=.028) than participants with a low score. The bladder maximum capacity was equivalent between participants (399±168 vs 465±164 mL; P=.18). However, the pain felt at each cystometric threshold was significantly increased in women with a high sensitization score. No difference was identified for the rectal pain pressure step (29.3±5.5 vs 30.7±6.5 mm Hg; P=.38). Rectal compliance was decreased in women with a high sensitization score with a considerable increase in pain felt. The average of pain pressure thresholds at the 5 vulvar sites tested was decreased in these participants (162.5±90.5 vs 358.7±196.5 g; P=.0003). Similar results were found for the average of the pain pressure thresholds at 6 muscles tested (1.34±0.41 vs 2.63±1.52 kg/m2; P=.0002). A longer period was needed for patients with high sensitization score to obtain a VAS <3 out of 10 after the stimulation of the bladder (4.52±5.26 vs 1.27±2.96 minutes; P=.01), the rectum (3.75±3.81 vs 1.19±1.23 minutes; P=.009), and the muscles (1.46±1.69 vs 0.64±0.40 minutes; P=.002). The psychological state was equivalent between groups. No association was found between the sensory thresholds and the psychological state results. The physical component of the quality of life score was reduced in women with high sensitization score (P=.0005), with no difference in the mental component. CONCLUSION: Using neurophysiological tests, this study showed that there are objective elements to assess for the presence of central sensitization, independently of psychological factors.


Asunto(s)
Sensibilización del Sistema Nervioso Central , Dolor Crónico , Humanos , Femenino , Estudios Prospectivos , Calidad de Vida , Dimensión del Dolor , Dolor Pélvico/diagnóstico , Dolor Pélvico/psicología
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda