Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 20 de 79
Filtrar
1.
Ecotoxicol Environ Saf ; 275: 115858, 2024 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-38537476

RESUMEN

BACKGROUND: From 2020 to 2023 many people around the world were forced to wear masks for large proportions of the day based on mandates and laws. We aimed to study the potential of face masks for the content and release of inanimate toxins. METHODS: A scoping review of 1003 studies was performed (database search in PubMed/MEDLINE, qualitative and quantitative evaluation). RESULTS: 24 studies were included (experimental time 17 min to 15 days) evaluating content and/or release in 631 masks (273 surgical, 228 textile and 130 N95 masks). Most studies (63%) showed alarming results with high micro- and nanoplastics (MPs and NPs) release and exceedances could also be evidenced for volatile organic compounds (VOCs), xylene, acrolein, per-/polyfluoroalkyl substances (PFAS), phthalates (including di(2-ethylhexyl)-phthalate, DEHP) and for Pb, Cd, Co, Cu, Sb and TiO2. DISCUSSION: Of course, masks filter larger dirt and plastic particles and fibers from the air we breathe and have specific indications, but according to our data they also carry risks. Depending on the application, a risk-benefit analysis is necessary. CONCLUSION: Undoubtedly, mask mandates during the SARS-CoV-2 pandemic have been generating an additional source of potentially harmful exposition to toxins with health threatening and carcinogenic properties at population level with almost zero distance to the airways.


Asunto(s)
COVID-19 , Humanos , COVID-19/epidemiología , Máscaras , SARS-CoV-2 , Pandemias
2.
Environ Sci Technol ; 57(26): 9683-9692, 2023 07 04.
Artículo en Inglés | MEDLINE | ID: mdl-37327457

RESUMEN

Air quality policies have made substantial gains by reducing pollutant emissions from the transportation sector. In March 2020, New York City's activities were severely curtailed in response to the COVID-19 pandemic, resulting in 60-90% reductions in human activity. We continuously measured major volatile organic compounds (VOCs) during January-April 2020 and 2021 in Manhattan. Concentrations of many VOCs decreased significantly during the shutdown with variations in daily patterns reflective of human activity perturbations, resulting in a temporary ∼28% reduction in chemical reactivity. However, the limited effect of these dramatic measures was outweighed by larger increases in VOC-related reactivity during the anomalously warm spring 2021. This emphasizes the diminishing returns from transportation-focused policies alone and the risk of increased temperature-dependent emissions undermining policy-related gains in a warming climate.


Asunto(s)
Contaminantes Atmosféricos , Contaminación del Aire , COVID-19 , Compuestos Orgánicos Volátiles , Humanos , Contaminantes Atmosféricos/análisis , Pandemias , COVID-19/epidemiología , Contaminación del Aire/análisis , Estaciones del Año , Compuestos Orgánicos Volátiles/análisis , Monitoreo del Ambiente , Emisiones de Vehículos/análisis
3.
Environ Sci Technol ; 57(35): 13193-13204, 2023 09 05.
Artículo en Inglés | MEDLINE | ID: mdl-37611137

RESUMEN

Volatile organic compounds (VOCs) emitted from biomass burning impact air quality and climate. Laboratory studies have shown that the variability in VOC speciation is largely driven by changes in combustion conditions and is only modestly impacted by fuel type. Here, we report that emissions of VOCs measured in ambient smoke emitted from western US wildfires can be parameterized by high- and low-temperature pyrolysis VOC profiles and are consistent with previous observations from laboratory simulated fires. This is demonstrated using positive matrix factorization (PMF) constrained by high- and low-temperature factors using VOC measurements obtained with a proton-transfer reaction time-of-flight mass spectrometer (PTR-ToF-MS) on board the NASA DC-8 during the FIREX-AQ (Fire Influence on Regional and Global Environments and Air Quality) project in 2019. A linear combination of high- and low-temperature factors described more than 70% of the variability of VOC emissions of long-lived VOCs in all sampled wildfire plumes. An additional factor attributable to atmospheric aging was required to parameterize short-lived and secondarily produced VOCs. The relative contribution of the PMF-derived high-temperature factor for a given fire plume was strongly correlated with the fire radiative power (FRP) at the estimated time of emission detected by satellite measurements. By combining the FRP with the fraction of the high-temperature PMF factor, the emission ratios (ERs) of VOCs to carbon monoxide (CO) in fresh wildfires were estimated and agree well with measured ERs (r2 = 0.80-0.93).


Asunto(s)
Incendios , Compuestos Orgánicos Volátiles , Incendios Forestales , Biomasa
4.
Ecotoxicol Environ Saf ; 267: 115621, 2023 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-37879201

RESUMEN

A method of preparing heated tobacco product aerosol condensate (HTPAC) was developed to expedite HTP toxicity evaluation, and the effectiveness was assessed. To prepare HTPAC, HTP aerosol was generated and collected using a Cambridge filter (particulate phase) and Dulbecco's phosphate buffered saline (DPBS; gaseous phase). The aerosol collected on the Cambridge filter was extracted using methanol, which was thereafter removed by nitrogen purging. The HTP aerosol residue was mixed with DPBS loaded with the collected HTP vapor, ultimately yielding HTPAC. Nicotine and formaldehyde, key harmful compounds in HTP aerosol, were detected in HTPAC (901 ± 224 and 22.2 ± 3.90 µg stick-1, respectively, comparable to those in HTP aerosol (990-1350 (nicotine) and 2.33-21.9 µg stick-1 (formaldehyde)). Propylene glycol and vegetable glycerin, which influence the amount of HTP aerosol, were detected at similar levels in HTPAC and HTP aerosol (propylene glycol = 616 ± 57.1 (HTPAC) and 320-630 µg stick-1 (aerosol) and vegetable glycerin = 2418 ± 224 (HTPAC) and 1667-4000 µg stick-1 (aerosol)). Known components of HTP aerosol (hydroxyacetone, acetic acid, triacetin, and 2-furanmethanol) were also detected in HTPAC. Consequently, HTPAC offers an effective method for concentrating harmful compounds found in HTP aerosols. This, in turn, facilitates comprehensive toxicity assessments, paving the way for guidelines ensuring the safe utilization of HTP.


Asunto(s)
Glicerol , Productos de Tabaco , Nicotina , Aerosoles , Formaldehído , Gases , Propilenglicol
5.
Sensors (Basel) ; 23(18)2023 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-37765971

RESUMEN

A non-invasive optical fiber sensor for detecting volatile organic compounds (VOCs) as biomarkers of diabetes is proposed and experimentally demonstrated. It offers a low-cost and straightforward fabrication approach by implementing a one-step spray coating of a ZnO colloidal solution on a glass optical fiber. The structure of the optical fiber sensor is based on a single-mode fiber-coreless silica fiber-single-mode fiber (SMF-CSF-SMF) structure, where the CSF is the sensor region spliced between two SMFs. The ZnO layer of a higher refractive index coated over the sensing region improves the light interaction with the surrounding medium, leading to sensitivity enhancement. The optical properties, morphology, and elemental composition of the ZnO layer were analyzed. The sensing mechanism of the developed sensor is based on a wavelength interrogation technique showing wavelength shifts when the sensor is exposed to various VOC vapor concentration levels. Various concentrations of the three VOCs (including acetone, isopropanol, and ethanol) ranging from 20% to 100% were tested and analyzed. The sensor noticeably shows a significant response towards acetone vapor, with a better sensitivity of 0.162 nm/% vapor than for isopropanol (0.082 nm/% vapor) and ethanol (0.075 nm/% vapor) vapors. The high sensitivity and selectivity towards acetone, a common biomarker for diabetes, offers the potential for further development of this sensor as a smart healthcare system for monitoring diabetic conditions.


Asunto(s)
Diabetes Mellitus , Compuestos Orgánicos Volátiles , Óxido de Zinc , Humanos , 2-Propanol , Acetona , Fibras Ópticas , Diabetes Mellitus/diagnóstico , Biomarcadores , Etanol , Gases
6.
Int J Mol Sci ; 24(2)2023 Jan 16.
Artículo en Inglés | MEDLINE | ID: mdl-36675314

RESUMEN

Brown planthopper (BPH), a monophagous phloem feeder, consumes a large amount of photoassimilates in rice and causes wilting. A near-isogenic line 'TNG71-Bph45' was developed from the Oryza sativa japonica variety 'Tainung 71 (TNG71) carrying a dominant BPH-resistance locus derived from Oryza nivara (IRGC 102165) near the centromere of chromosome 4. We compared the NIL (TNG71-Bph45) and the recurrent parent to explore how the Bph45 gene confers BPH resistance. We found that TNG71-Bph45 is less attractive to BPH at least partially because it produces less limonene. Chiral analysis revealed that the major form of limonene in both rice lines was the L-form. However, both L- and D-limonene attracted BPH when applied exogenously to TNG71-Bph45 rice. The transcript amounts of limonene synthase were significantly higher in TNG71 than in TNG71-Bph45 and were induced by BPH infestation only in the former. Introgression of the Bph45 gene into another japonica variety, Tainan 11, also resulted in a low limonene content. Moreover, several dominantly acting BPH resistance genes introduced into the BPH-sensitive IR24 line compromised its limonene-producing ability and concurrently decreased its attractiveness to BPH. These observations suggest that reducing limonene production may be a common resistance strategy against BPH in rice.


Asunto(s)
Hemípteros , Oryza , Animales , Genes de Plantas , Hemípteros/genética , Limoneno , Oryza/genética , Enfermedades de las Plantas/genética
7.
Molecules ; 28(11)2023 Jun 03.
Artículo en Inglés | MEDLINE | ID: mdl-37299010

RESUMEN

Volatile organic compounds (VOCs) are byproducts from metabolic pathways that can be detected in exhaled breath and have been reported as biomarkers for different diseases. The gold standard for analysis is gas chromatography-mass spectrometry (GC-MS), which can be coupled with various sampling methods. The current study aims to develop and compare different methods for sampling and preconcentrating VOCs using solid-phase microextraction (SPME). An in-house sampling method, direct-breath SPME (DB-SPME), was developed to directly extract VOCs from breath using a SPME fiber. The method was optimized by exploring different SPME types, the overall exhalation volume, and breath fractionation. DB-SPME was quantitatively compared to two alternative methods involving the collection of breath in a Tedlar bag. In one method, VOCs were directly extracted from the Tedlar bag (Tedlar-SPME) and in the other, the VOCs were cryothermally transferred from the Tedlar bag to a headspace vial (cryotransfer). The methods were verified and quantitatively compared using breath samples (n = 15 for each method respectively) analyzed by GC-MS quadrupole time-of-flight (QTOF) for compounds including but not limited to acetone, isoprene, toluene, limonene, and pinene. The cryotransfer method was the most sensitive, demonstrating the strongest signal for the majority of the VOCs detected in the exhaled breath samples. However, VOCs with low molecular weights, including acetone and isoprene, were detected with the highest sensitivity using the Tedlar-SPME. On the other hand, the DB-SPME was less sensitive, although it was rapid and had the lowest background GC-MS signal. Overall, the three breath-sampling methods can detect a wide variety of VOCs in breath. The cryotransfer method may be optimal when collecting a large number of samples using Tedlar bags, as it allows the long-term storage of VOCs at low temperatures (-80 °C), while Tedlar-SPME may be more effective when targeting relatively small VOCs. The DB-SPME method may be the most efficient when more immediate analyses and results are required.


Asunto(s)
Compuestos Orgánicos Volátiles , Cromatografía de Gases y Espectrometría de Masas/métodos , Compuestos Orgánicos Volátiles/análisis , Acetona/análisis , Microextracción en Fase Sólida , Tereftalatos Polietilenos/análisis , Pruebas Respiratorias/métodos , Biopsia
8.
Molecules ; 28(5)2023 Mar 02.
Artículo en Inglés | MEDLINE | ID: mdl-36903576

RESUMEN

Many life-threatening diseases remain obscure in their early disease stages. Symptoms appear only at the advanced stage when the survival rate is poor. A non-invasive diagnostic tool may be able to identify disease even at the asymptotic stage and save lives. Volatile metabolites-based diagnostics hold a lot of promise to fulfil this demand. Many experimental techniques are being developed to establish a reliable non-invasive diagnostic tool; however, none of them are yet able to fulfil clinicians' demands. Infrared spectroscopy-based gaseous biofluid analysis demonstrated promising results to fulfil clinicians' expectations. The recent development of the standard operating procedure (SOP), sample measurement, and data analysis techniques for infrared spectroscopy are summarized in this review article. It has also outlined the applicability of infrared spectroscopy to identify the specific biomarkers for diseases such as diabetes, acute gastritis caused by bacterial infection, cerebral palsy, and prostate cancer.


Asunto(s)
Gastritis , Masculino , Humanos , Espectrofotometría Infrarroja , Biomarcadores/análisis , Gases
9.
Respir Res ; 23(1): 12, 2022 Jan 20.
Artículo en Inglés | MEDLINE | ID: mdl-35057817

RESUMEN

BACKGROUND: Fibrotic Interstitial lung diseases (ILD) are a heterogeneous group of chronic lung diseases characterized by diverse degrees of lung inflammation and remodeling. They include idiopathic ILD such as idiopathic pulmonary fibrosis (IPF), and ILD secondary to chronic inflammatory diseases such as connective tissue disease (CTD). Precise differential diagnosis of ILD is critical since anti-inflammatory and immunosuppressive drugs, which are beneficial in inflammatory ILD, are detrimental in IPF. However, differential diagnosis of ILD is still difficult and often requires an invasive lung biopsy. The primary aim of this study is to identify volatile organic compounds (VOCs) patterns in exhaled air to non-invasively discriminate IPF and CTD-ILD. As secondary aim, the association between the IPF and CTD-ILD discriminating VOC patterns and functional impairment is investigated. METHODS: Fifty-three IPF patients, 53 CTD-ILD patients and 51 controls donated exhaled air, which was analyzed for its VOC content using gas chromatograph- time of flight- mass spectrometry. RESULTS: By applying multivariate analysis, a discriminative profile of 34 VOCs was observed to discriminate between IPF patients and healthy controls whereas 11 VOCs were able to distinguish between CTD-ILD patients and healthy controls. The separation between IPF and CTD-ILD could be made using 16 discriminating VOCs, that also displayed a significant correlation with total lung capacity and the 6 min' walk distance. CONCLUSIONS: This study reports for the first time that specific VOC profiles can be found to differentiate IPF and CTD-ILD from both healthy controls and each other. Moreover, an ILD-specific VOC profile was strongly correlated with functional parameters. Future research applying larger cohorts of patients suffering from a larger variety of ILDs should confirm the potential use of breathomics to facilitate fast, non-invasive and proper differential diagnosis of specific ILDs in the future as first step towards personalized medicine for these complex diseases.


Asunto(s)
Aire/análisis , Pruebas Respiratorias/métodos , Espiración , Enfermedades Pulmonares Intersticiales/metabolismo , Capacidad Vital/fisiología , Adulto , Anciano , Anciano de 80 o más Años , Diagnóstico Diferencial , Femenino , Humanos , Enfermedades Pulmonares Intersticiales/diagnóstico , Masculino , Persona de Mediana Edad , Proyectos Piloto , Estudios Prospectivos , Tomografía Computarizada por Rayos X
10.
Ann Bot ; 127(6): 737-747, 2021 05 07.
Artículo en Inglés | MEDLINE | ID: mdl-33555338

RESUMEN

BACKGROUND AND AIMS: The transition from outcrossing to selfing is a frequent evolutionary shift in flowering plants and is predicted to result in reduced allocation to pollinator attraction if plants can self-pollinate autonomously. The evolution of selfing is associated with reduced visual floral signalling in many systems, but effects on floral scent have received less attention. We compared multiple populations of the arctic-alpine herb Arabis alpina (Brassicaceae), and asked whether the transition from self-incompatibility to self-compatibility has been associated with reduced visual and chemical floral signalling. We further examined whether floral signalling differ between self-compatible populations with low and high capacity for autonomous self-pollination, as would be expected if benefits of signalling decrease with reduced dependence on pollinators for pollen transfer. METHODS: In a common garden we documented flower size and floral scent emission rate and composition in eight self-compatible and nine self-incompatible A. alpina populations. These included self-compatible Scandinavian populations with high capacity for autonomous self-pollination, self-compatible populations with low capacity for autonomous self-pollination from France and Spain, and self-incompatible populations from Italy and Greece. KEY RESULTS: The self-compatible populations produced smaller and less scented flowers than the self-incompatible populations. However, flower size and scent emission rate did not differ between self-compatible populations with high and low capacity for autonomous self-pollination. Floral scent composition differed between self-compatible and self-incompatible populations, but also varied substantially among populations within the two categories. CONCLUSIONS: Our study demonstrates extensive variation in floral scent among populations of a geographically widespread species. Contrary to expectation, floral signalling did not differ between self-compatible populations with high and low capacity for autonomous self-pollination, indicating that dependence on pollinator attraction can only partly explain variation in floral signalling. Additional variation may reflect adaptation to other aspects of local environments, genetic drift, or a combination of these processes.


Asunto(s)
Arabis , Polinización , Flores , Francia , Grecia , Italia , Odorantes , Reproducción , España
11.
Environ Res ; 200: 111463, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-34111436

RESUMEN

The Chinese government has developed an ambitious project to promote the application of ethanol gasoline (E10) on a national scale since 2017. Given the difference in fuel properties between E10 and traditional gasoline, it is necessary to evaluate the volatile organic compound (VOC) emissions from E10-fuelled vehicles. In this study, a two-week sampling campaign was conducted in an urban tunnel, in which E10-fuelled vehicles were dominant, to evaluate the characteristics of VOC emissions from the mixed fleet. In total, 105 VOC species were identified, and the ozone formation potential (OFP) and secondary organic aerosol formation potential (SOAFP) were estimated. The results showed that for vehicular VOC concentrations in the tunnel, alkanes, oxygenated VOCs (OVOCs) and alkenes were the most abundant VOC groups, with the average proportion being more than 80% of the total VOCs. The fleet-average VOC emission factor (EF) was 14.8 mg/km/veh, which was much lower than that from traditional gasoline-fuelled vehicle fleets, and alkanes, OVOCs, alkenes and aromatics were the major VOC groups. Because of the large number of E10-fuelled vehicles in the mixed fleet, a high proportion of OVOCs among the vehicular VOC emissions was observed. Ethane, acrolein, ethanol, ethylene and toluene were the top five VOC species with the largest EF in VOC emissions from the fleet. Alkenes were the main contributors with an average contribution of 43.9% of the total OFP, whereas aromatics dominated the total SOAFP by 95.8% on average. These results may provide a reference for the extensive application of ethanol gasoline and the development of vehicular emission models.


Asunto(s)
Contaminantes Atmosféricos , Ozono , Compuestos Orgánicos Volátiles , Aerosoles/análisis , Contaminantes Atmosféricos/análisis , China , Monitoreo del Ambiente , Ozono/análisis , Emisiones de Vehículos/análisis , Compuestos Orgánicos Volátiles/análisis
12.
Sensors (Basel) ; 21(10)2021 May 14.
Artículo en Inglés | MEDLINE | ID: mdl-34069067

RESUMEN

This work is a comprehensive review of sensing materials, which interact with several target gases pertinent to agricultural monitoring applications. Sensing materials which interact with carbon dioxide, water vapor (relative humidity), hydrogen sulfide, ethylene and ethanol are the focus of this work. Performance characteristics such as dynamic range, recovery time, operating temperature, long-term stability and method of deposition are discussed to determine the commercial viability of the sensing materials considered in this work. In addition to the sensing materials, deposition methods are considered to obtain the desired sensing material thickness based on the sensor's mechanism of operation. Various material classes including metal oxides, conductive polymers and carbon allotropes are included in this review. By implementing multiple sensing materials to detect a single target analyte, the issue of selectivity due to cross sensitivity can be mitigated. For this reason, where possible, it is desirable to utilize more than one sensing material to monitor a single target gas. Among those considered in this work, it is observed that PEDOT PSS/graphene and TiO2-coated g-C3N4 NS are best suited for CO2 detection, given their wide dynamic range and modest operating temperature. To monitor the presence of ethylene, BMIM-NTf2, SWCNTs and PtTiO2 offer a dynamic range most suitable for the application and require no active heating. Due to the wide dynamic range offered by SiO2/Si nanowires, this material is best suited for the detection of ethanol; a gas artificially introduced to prolong the shelf life of the harvested crop. Finally, among all other sensing materials investigated, it observed that both SWCNTs and CNTs/SnO2/CuO are most suitable for H2S detection in the given application.

13.
Molecules ; 26(10)2021 May 11.
Artículo en Inglés | MEDLINE | ID: mdl-34064882

RESUMEN

Paratuberculosis is an important disease of ruminants caused by Mycobacterium avium ssp. paratuberculosis (MAP). Early detection is crucial for successful infection control, but available diagnostic tests are still dissatisfying. Methods allowing a rapid, economic, and reliable identification of animals or herds affected by MAP are urgently required. This explorative study evaluated the potential of volatile organic compounds (VOCs) to discriminate between cattle with and without MAP infections. Headspaces above fecal samples and alveolar fractions of exhaled breath of 77 cows from eight farms with defined MAP status were analyzed in addition to stable air samples. VOCs were identified by GC-MS and quantified against reference substances. To discriminate MAP-positive from MAP-negative samples, VOC feature selection and random forest classification were performed. Classification models, generated for each biological specimen, were evaluated using repeated cross-validation. The robustness of the results was tested by predicting samples of two different sampling days. For MAP classification, the different biological matrices emitted diagnostically relevant VOCs of a unique but partly overlapping pattern (fecal headspace: 19, alveolar gas: 11, stable air: 4-5). Chemically, relevant compounds belonged to hydrocarbons, ketones, alcohols, furans, and aldehydes. Comparing the different biological specimens, VOC analysis in fecal headspace proved to be most reproducible, discriminatory, and highly predictive.


Asunto(s)
Aire , Heces/química , Gases/análisis , Odorantes/análisis , Paratuberculosis/diagnóstico , Alveolos Pulmonares/metabolismo , Animales , Bovinos , Mycobacterium avium subsp. paratuberculosis , Paratuberculosis/microbiología , Curva ROC , Reproducibilidad de los Resultados , Compuestos Orgánicos Volátiles/análisis
14.
Beilstein J Org Chem ; 17: 1698-1711, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34367348

RESUMEN

Plant volatiles play a major role in plant-insect interactions as defense compounds or attractants for insect herbivores. Recent studies have shown that endophytic fungi are also able to produce volatiles and this raises the question of whether these fungal volatiles influence plant-insect interactions. Here, we qualitatively investigated the volatiles released from 13 endophytic fungal species isolated from leaves of mature black poplar (Populus nigra) trees. The volatile blends of these endophytes grown on agar medium consist of typical fungal compounds, including aliphatic alcohols, ketones and esters, the aromatic alcohol 2-phenylethanol and various sesquiterpenes. Some of the compounds were previously reported as constituents of the poplar volatile blend. For one endophyte, a species of Cladosporium, we isolated and characterized two sesquiterpene synthases that can produce a number of mono- and sesquiterpenes like (E)-ß-ocimene and (E)-ß-caryophyllene, compounds that are dominant components of the herbivore-induced volatile bouquet of black poplar trees. As several of the fungus-derived volatiles like 2-phenylethanol, 3-methyl-1-butanol and the sesquiterpene (E)-ß-caryophyllene, are known to play a role in direct and indirect plant defense, the emission of volatiles from endophytic microbial species should be considered in future studies investigating tree-insect interactions.

15.
New Phytol ; 227(1): 244-259, 2020 07.
Artículo en Inglés | MEDLINE | ID: mdl-32155672

RESUMEN

Volatile organic compounds (VOCs) play vital roles in the interaction of fungi with plants and other organisms. A systematic study of the global fungal VOC profiles is still lacking, though it is a prerequisite for elucidating the mechanisms of VOC-mediated interactions. Here we present a versatile system enabling a high-throughput screening of fungal VOCs under controlled temperature. In a proof-of-principle experiment, we characterized the volatile metabolic fingerprints of four Trichoderma spp. over a 48 h growth period. The developed platform allows automated and fast detection of VOCs from up to 14 simultaneously growing fungal cultures in real time. The comprehensive analysis of fungal odors is achieved by employing proton transfer reaction-time of flight-MS and GC-MS. The data-mining strategy based on multivariate data analysis and machine learning allows the volatile metabolic fingerprints to be uncovered. Our data revealed dynamic, development-dependent and extremely species-specific VOC profiles from the biocontrol genus Trichoderma. The two mass spectrometric approaches were highly complementary to each other, together revealing a novel, dynamic view to the fungal VOC release. This analytical system could be used for VOC-based chemotyping of diverse small organisms, or more generally, for any in vivo and in vitro real-time headspace analysis.


Asunto(s)
Trichoderma , Compuestos Orgánicos Volátiles , Cromatografía de Gases y Espectrometría de Masas , Espectrometría de Masas , Odorantes/análisis , Compuestos Orgánicos Volátiles/análisis
16.
Sensors (Basel) ; 20(23)2020 Nov 29.
Artículo en Inglés | MEDLINE | ID: mdl-33260465

RESUMEN

In this review article, attention is paid towards the formation of various nanostructured stoichiometric titanium dioxide (TiO2), non-stoichiometric titanium oxide (TiO2-x) and Magnéli phase (TinO2n-1)-based layers, which are suitable for the application in gas and volatile organic compound (VOC) sensors. Some aspects related to variation of sensitivity and selectivity of titanium oxide-based sensors are critically overviewed and discussed. The most promising titanium oxide-based hetero- and nano-structures are outlined. Recent research and many recently available reviews on TiO2-based sensors and some TiO2 synthesis methods are discussed. Some promising directions for the development of TiO2-based sensors, especially those that are capable to operate at relatively low temperatures, are outlined. The applicability of non-stoichiometric titanium oxides in the development of gas and VOC sensors is foreseen and transitions between various titanium oxide states are discussed. The presence of non-stoichiometric titanium oxide and Magnéli phase (TinO2n-1)-based layers in 'self-heating' sensors is predicted, and the advantages and limitations of 'self-heating' gas and VOC sensors, based on TiO2 and TiO2-x/TiO2 heterostructures, are discussed.

17.
Plant J ; 96(5): 910-920, 2018 12.
Artículo en Inglés | MEDLINE | ID: mdl-30156351

RESUMEN

Plants can eavesdrop on volatile cues emitted from neighboring plants to boost their defense responses. When 10 categories of mints were tested for their effects on Glycine max (soybean) plants cultivated nearby, candy mint (Mentha × piperita cv. Candy) and peppermint (Mentha × piperita L.) induced the strongest enhancement in RNA levels of defense genes in the soybean leaves. The mechanism by which the mint volatiles enhanced these transcript levels was based on histone acetylation within the promoter regions of defense genes. These increases in transcript levels were induced when receiver plants were cultivated near to candy mint, but the priming of the defense responses was instead induced when receiver plants were cultivated at mid-length intervals. Field assays revealed that anti-herbivore ability of soy was strengthened both by co-cultivation and by pre-incubation of receiver plants with candy mint. The same held true for another receiver, Brassica rapa, when the receiver was co-cultivated or pre-incubated with peppermint. Exposure to mint volatiles resulted in lower damage to receiver plants, although ecological effects on the herbivores and predators probably also contributed. Together, our findings indicate that pest management systems relying on mint as companion plants might be commercially useful for reducing herbivore damage in crops.


Asunto(s)
Glycine max/efectos de los fármacos , Mentha piperita/química , Control Biológico de Vectores/métodos , Compuestos Orgánicos Volátiles/farmacología , Animales , Producción de Cultivos/métodos , Femenino , Herbivoria , Larva , Glycine max/metabolismo , Glycine max/fisiología , Spodoptera
18.
J Toxicol Environ Health A ; 82(11): 678-695, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31328663

RESUMEN

Disposable sanitary pads are a necessity for women's health, but safety concerns regarding the use of these products have created anxiety. The aim of this study was to conduct a risk assessment of 74 volatile organic compounds (VOCs), which were expected to be contained within sanitary pads. Of the 74 VOCs, 50 were found in sanitary pads retailed in Korea at concentrations ranging from 0.025 to 3548.09 µg/pad. In order to undertake a risk assessment of the VOCs, the toxicological database of these compounds in the United States Environmental Protection Agency (USEPA), Agency for Toxic Substances and Disease Registry (ATSDR), National Toxicology Program (NTP) and World Health Organization (WHO) was searched. Ethanol was found to exhibit the highest reference dose (RfD) while 1,2-dibromo-3-chloro-propane displayed the lowest RfD. Consequently, a worst-case exposure scenario was applied in this study. It was assumed that there was the use of 7.5 sanitary napkins/day for 7 days/month. In the case of panty liners or overnight sanitary napkins, the utilization of 90 panty liners/month or 21 overnight sanitary napkins/month was assumed, respectively. In addition, 43 kg, the body weight of 12 to 13-year-old young women, and 100% VOCs skin absorption were employed for risk assessment. The systemic exposure dose (SED) values were calculated ranging from 1.74 (1,1,2-trichloroethane) ng/kg/day to 144.4 (ethanol, absolute) µg/kg/day. Uncertainty factors (UFs) were applied ranging from 10 to 100,000 in accordance with the robustness of animal or human experiments. The margin of exposure (MOE) of 34 VOCs was more than 1 (acceptable MOE > 1). Applicable carcinogenic references reported that the cancer risk of five VOCs was below 10-6. Based on our findings, evidence indicates that the non-cancer and cancer risks associated with VOCs detected in sanitary pads currently used in South Korea do not pose an adverse health risk in women.


Asunto(s)
Contaminantes Atmosféricos/análisis , Seguridad de Productos para el Consumidor , Exposición a Riesgos Ambientales/análisis , Compuestos Orgánicos Volátiles/toxicidad , Monitoreo del Ambiente , Humanos , Medición de Riesgo , Factores de Riesgo , Salud de la Mujer
19.
Sensors (Basel) ; 19(6)2019 Mar 14.
Artículo en Inglés | MEDLINE | ID: mdl-30875734

RESUMEN

Micro- and nano-sensors lie at the heart of critical innovation in fields ranging from medical to environmental sciences. In recent years, there has been a significant improvement in sensor design along with the advances in micro- and nano-fabrication technology and the use of newly designed materials, leading to the development of high-performance gas sensors. Advanced micro- and nano-fabrication technology enables miniaturization of these sensors into micro-sized gas sensor arrays while maintaining the sensing performance. These capabilities facilitate the development of miniaturized integrated gas sensor arrays that enhance both sensor sensitivity and selectivity towards various analytes. In the past, several micro- and nano-gas sensors have been proposed and investigated where each type of sensor exhibits various advantages and limitations in sensing resolution, operating power, response, and recovery time. This paper presents an overview of the recent progress made in a wide range of gas-sensing technology. The sensing functionalizing materials, the advanced micro-machining fabrication methods, as well as their constraints on the sensor design, are discussed. The sensors' working mechanisms and their structures and configurations are reviewed. Finally, the future development outlook and the potential applications made feasible by each category of the sensors are discussed.


Asunto(s)
Sistemas Microelectromecánicos , Compuestos Orgánicos Volátiles/química
20.
Molecules ; 24(13)2019 Jun 29.
Artículo en Inglés | MEDLINE | ID: mdl-31261889

RESUMEN

In response to insect herbivory, poplar releases a blend of volatiles that plays important roles in plant defense. Although the volatile bouquet is highly complex and comprises several classes of compounds, it is dominated by mono- and sesquiterpenes. The most common precursors for mono- and sesquiterpenes, geranyl diphosphate (GPP) and (E,E)-farnesyl diphosphate (FPP), respectively, are in general produced by homodimeric or heterodimeric trans-isopentenyl diphosphate synthases (trans-IDSs) that belong to the family of prenyltransferases. To understand the molecular basis of herbivory-induced terpene formation in poplar, we investigated the trans-IDS gene family in the western balsam poplar Populus trichocarpa. Sequence comparisons suggested that this species possesses a single FPP synthase gene (PtFPPS1) and four genes encoding two large subunits (PtGPPS1.LSU and PtGPPS2.LSU) and two small subunits (PtGPPS.SSU1 and PtGPPS.SSU2) of GPP synthases. Transcript accumulation of PtGPPS1.LSU and PtGPPS.SSU1 was significantly upregulated upon leaf herbivory, while the expression of PtFPPS1, PtGPPS2.LSU, and PtGPPS.SSU2 was not influenced by the herbivore treatment. Heterologous expression and biochemical characterization of recombinant PtFPPS1, PtGPPS1.LSU, and PtGPPS2.LSU confirmed their respective IDS activities. Recombinant PtGPPS.SSU1 and PtGPPS.SSU2, however, had no enzymatic activity on their own, but PtGPPS.SSU1 enhanced the GPP synthase activities of PtGPPS1.LSU and PtGPPS2.LSU in vitro. Altogether, our data suggest that PtGPPS1.LSU and PtGPPS2.LSU in combination with PtGPPS.SSU1 may provide the substrate for herbivory-induced monoterpene formation in P. trichocarpa. The sole FPP synthase PtFPPS1 likely produces FPP for both primary and specialized metabolism in this plant species.


Asunto(s)
Dimetilaliltranstransferasa/genética , Insectos/fisiología , Populus/química , Animales , Dimetilaliltranstransferasa/metabolismo , Regulación Enzimológica de la Expresión Génica , Regulación de la Expresión Génica de las Plantas , Herbivoria , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Populus/enzimología , Populus/genética , Terpenos/química , Regulación hacia Arriba , Compuestos Orgánicos Volátiles/química
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda