RESUMEN
In response to sensory deprivation, the brain adapts according to contemporary demands to efficiently navigate a modified perceptual environment. This reorganization may result in improved processing of the remaining senses-a phenomenon referred to as compensatory crossmodal plasticity. One approach to explore this neuroplasticity is to consider the macrostructural changes in neural tissue that mirror this functional optimization. The current study is the first of its kind to measure MRI-derived gray matter (GM) volumes of control felines (n=30), while additionally identifying volumetric differences in response to perinatal deafness (30 ototoxically-deafened cats). To accomplish this purpose, regional and morphometric methods were performed in parallel. The regional analysis evaluated volumetric alterations of global GM, as well as the volumes of 146 regions of interest (ROIs) and 12 functional subgroupings of these ROIs. Results revealed whole-brain GM preservation; however, somatosensory and visual cortices exhibited an overall increase in volume. On a smaller scale, this analysis uncovered two auditory ROIs (second auditory cortex, A2, and ventral auditory field, VAF) that decreased in volume alongside two visual regions (anteromedial lateral suprasylvian area, AMLS and splenial visual area, SVA) that increased-all localized within the right hemisphere. Comparatively, the findings of tensor-based morphometry (TBM) generally aligned with those of the ROI-based method, as this voxel-wise approach demonstrated clusters of expansion coincident with visual- and somatosensory-related loci; although, it failed to detect any GM reductions following deafness. As distinct differences were identified in each analysis, the current study highlights the importance of employing multiple methods when exploring MRI volumetry. Overall, this study proposes that volumetric alterations within sensory loci allude to a redistribution of cortical space arising from modified perceptual demands following auditory deprivation.
Asunto(s)
Corteza Cerebral , Sordera , Sustancia Gris , Imagen por Resonancia Magnética , Plasticidad Neuronal , Animales , Gatos , Plasticidad Neuronal/fisiología , Sustancia Gris/diagnóstico por imagen , Sustancia Gris/patología , Imagen por Resonancia Magnética/métodos , Sordera/diagnóstico por imagen , Sordera/fisiopatología , Sordera/patología , Corteza Cerebral/diagnóstico por imagen , Corteza Cerebral/patología , Femenino , MasculinoRESUMEN
BACKGROUND: Familial encephalopathy with neuroserpin inclusion bodies (FENIB) is a rare genetic disorder characterized by progressive cognitive decline and myoclonic epilepsy, caused by pathogenic variants of SERPINI1. We reported a case of genetically confirmed FENIB with de novo H338R mutation in the SERPINI1, in which frontal deficits including inattention and disinhibition, and relevant atrophy in the vmPFC on brain MRI were observed in the early stage of the disease. CASE PRESENTATION: A 23-year-old Japanese man presented with progressive inattention and disinhibition over 4 years followed by myoclonic epilepsy. The whole-genome sequencing and filtering analysis showed de novo heterozygous H338R mutation in the SERPINI1, confirming the diagnosis of FENIB. Single-case voxel-based morphometry using brain magnetic resonance imaging obtained at the initial visit revealed focal gray matter volume loss in the ventromedial prefrontal cortices, which is presumed to be associated with inattention and disinhibition. CONCLUSION: Frontal deficits including inattention and disinhibition can be the presenting symptoms of patients with FENIB. Single-case voxel-based morphometry may be useful for detecting regional atrophy of the frontal lobe in FENIB. Detecting these abnormalities in the early stage of disease may be key findings for differentiating FENIB from other causes of progressive myoclonic epilepsy.
Asunto(s)
Epilepsias Mioclónicas , Serpinas , Masculino , Humanos , Adulto Joven , Adulto , Neuroserpina , Epilepsias Mioclónicas/diagnóstico por imagen , Epilepsias Mioclónicas/genética , Epilepsias Mioclónicas/patología , Cuerpos de Inclusión/patología , Imagen por Resonancia Magnética/métodosRESUMEN
OBJECTIVES: We have previously demonstrated difficulties in written production in dementia with Lewy bodies (DLB) patients. We now aim to determine the neural correlates of writing production in DLB, combining clinical data and structural MRI measures. METHOD: Sixteen prodromal to mild DLB patients were selected to participate in the study. The GREMOTS test was used to assess writing production. Using three-dimensional T1 brain MRI images, correlations between the GREMOTS test and grey matter (GM) volume were performed using voxel-based morphometry (VBM; SPM12, XjView and Matlab R2021b softwares). RESULTS: VBM analysis (p < 0.001, uncorrected) revealed a positive and significant correlation between both left anterior insula and left supramarginal gyrus GM volumes and DLB patients' ability to write logatoms using the phonological route. The handwriting deficit was negatively and significantly correlated to the supplementary motor area. The parkinsonism-like characteristics of agraphia were negatively and significantly correlated with both right anterior and right posterior cerebellum GM volumes. Our study also revealed a negative and significant correlation between grammatical spelling impairments and an area of the orbitofrontal gyrus, and a negative and significant correlation between supramarginal gyrus and general slowness in dictation tasks. CONCLUSION: Writing disorders in early DLB patients appears to be GM decreases in several brain regions, such as the left anterior insula, the left supramaginal gyrus, as well as two areas of the right cerebellum.
Asunto(s)
Demencia , Enfermedad por Cuerpos de Lewy , Humanos , Enfermedad por Cuerpos de Lewy/diagnóstico por imagen , Encéfalo/diagnóstico por imagen , Sustancia Gris/diagnóstico por imagen , Imagen por Resonancia Magnética , EscrituraRESUMEN
BACKGROUD: Neurological disorders are common in preterm (PT) born individuals. Diffusion tensor imaging (DTI) studies using tract-based spatial statistics (TBSS) effectively detect microstructural white matter (WM) abnormalities in the brain. We conducted this systematic review to integrate the findings of TBSS studies to determine the most consistent WM alterations in PT born individuals. METHODS: PubMed, Embase, Web of Science and Science Direct were searched. DTI studies using TBSS in PT born individuals were screened up to October 2022. The systematic review included studies reporting alterations in FA values for the entire brain in a stereotactic space, with three coordinates (x, y, z), according to the seed-based d mapping method. RESULTS: The search strategy identified seventeen studies that fulfilled our inclusion criteria, with a total of 911 PT-born individuals and 563 matched controls were analysed. Of the seventeen studies, eight were dedicated to 650 adults, five to 411 children and four to 413 infants. Ten studies recruited 812 individuals born very prematurely (GA <29 weeks), six studies recruited 386 moderately premature individuals (GA = 29-32 weeks) and one study recruited 276 individuals born late prematurely (GA >32 weeks). This meta-analysis of six studies including 388 individuals highlighted four brain regions in which fractional anisotropy (FA) was lower in PT group than in people born at term. The quantitative meta-analysis found that the most robust WM alterations were located in the corpus callosum (CC), the bilateral thalamus and the left superior longitudinal fasciculus (SLF) II. Significant changes in FA reflect WM abnormalities in PT born individuals from infant to young adulthood. CONCLUSIONS: Significant changes in FA reflect WM abnormalities in individuals born PT from infancy to young adulthood. The abnormal development of the CC, bilateral thalamus and left SLF may play a vital role in the neurodevelopment of PT individuals.
Neurological disorders are prevalent in preterm (PT) born individuals. The use of tract-based spatial statistics (TBSS) in diffusion tensor imaging (DTI) studies has proven effective in detecting microstructural abnormalities of the white matter (WM) of the brain. In order to determine the most consistent alterations in WM among those born prematurely, we have screened DTI studies using TBSS in this PT born population up until October 2022. The meta-analysis identified four brain regions where fractional anisotropy (FA) was lower in the PT group than in those born at term. The quantitative meta-analysis identified the corpus callosum, the bilateral thalamus and the left superior longitudinal fasciculus II. As the most robust WM alterations. Various studies have demonstrated the links between PT birth, intelligence quotient, gestational age and subject age.
Asunto(s)
Imagen de Difusión Tensora , Recien Nacido Prematuro , Sustancia Blanca , Humanos , Imagen de Difusión Tensora/métodos , Anisotropía , Recién Nacido , Femenino , Sustancia Blanca/diagnóstico por imagen , Sustancia Blanca/patología , Nacimiento Prematuro , Encéfalo/diagnóstico por imagen , Encéfalo/patología , Adulto , Masculino , Niño , LactanteRESUMEN
A cortical plasticity after long-duration single side deafness (SSD) is advocated with neuroimaging evidence while little is known about the short-duration SSDs. In this case-cohort study, we recruited unilateral sudden sensorineural hearing loss (SSNHL) patients and age-, gender-matched health controls (HC), followed by comprehensive neuroimaging analyses. The primary outcome measures were temporal alterations of varied dynamic functional network connectivity (dFNC) states, neurovascular coupling (NVC) and brain region volume at different stages of SSNHL. The secondary outcome measures were pure-tone audiograms of SSNHL patients before and after treatment. A total of 38 SSNHL patients (21 [55%] male; mean [standard deviation] age, 45.05 [15.83] years) and 44 HC (28 [64%] male; mean [standard deviation] age, 43.55 [12.80] years) were enrolled. SSNHL patients were categorized into subgroups based on the time from disease onset to the initial magnetic resonance imaging scan: early- (n = 16; 1-6 days), intermediate- (n = 9; 7-13 days), and late- stage (n = 13; 14-30 days) groups. We first identified slow state transitions between varied dFNC states at early-stage SSNHL, then revealed the decreased NVC restricted to the auditory cortex at the intermediate- and late-stage SSNHL. Finally, a significantly decreased volume of the left medial superior frontal gyrus (SFGmed) was observed only in the late-stage SSNHL cohort. Furthermore, the volume of the left SFGmed is robustly correlated with both disease duration and patient prognosis. Our study offered neuroimaging evidence for the evolvement from functional to structural brain alterations of SSNHL patients with disease duration less than 1 month, which may explain, from a neuroimaging perspective, why early-stage SSNHL patients have better therapeutic responses and hearing recovery.
Asunto(s)
Pérdida Auditiva Sensorineural , Pérdida Auditiva Súbita , Humanos , Masculino , Persona de Mediana Edad , Adulto , Femenino , Estudios de Cohortes , Pérdida Auditiva Sensorineural/diagnóstico por imagen , Pérdida Auditiva Súbita/diagnóstico por imagen , Pérdida Auditiva Súbita/complicaciones , Pérdida Auditiva Súbita/terapia , Audición , Neuroimagen , Estudios RetrospectivosRESUMEN
Spinocerebellar ataxia type 3/Machado-Joseph disease (SCA3/MJD) is the most common SCA worldwide and comprises about 70% of SCA patients in Brazil. Magnetic resonance imaging (MRI) sequences have been used to describe microstructural abnormalities in many neurodegenerative diseases and helped to reveal the excessive iron accumulation in many of these conditions. This study aimed to characterize brain changes in gray matter (GM) and white matter (WM), detected by voxel-based morphometry (VBM) and relaxometry in patients with SCA3/MJD. A group of consecutive individuals, older than 18 years of age, with symptomatic and genetically proven SCA3/MJD diagnosed, and a control group, were submitted to clinical evaluation and MRI. The images were analyzed using VBM technique and relaxometry. The global assessment of brain volume by region of interest showed a significant difference in GM between SCA3/MJD and normal controls. VBM was used to locate these volumetric changes and it revealed a noticeable difference in the GM of the cerebellum and the brainstem. The global assessment of the brain by relaxometry also showed a significant difference in the comparison of GM between SCA3/MJD and normal controls, detecting noticeable prolongation of T2 time in the medulla oblongata (p < 0.001) and in the pontine tegmentum (p = 0.009) in SCA3/MJD compared to control group. Our study suggests that SCA3/MJD affects the macrostructure of the cerebellum and brainstem and microstructure of pons and medulla oblongata GM, as already demonstrated in the pathological study.
Asunto(s)
Enfermedad de Machado-Joseph , Ataxias Espinocerebelosas , Humanos , Enfermedad de Machado-Joseph/diagnóstico , Ataxias Espinocerebelosas/diagnóstico , Cerebelo/diagnóstico por imagen , Cerebelo/patología , Encéfalo/diagnóstico por imagen , Encéfalo/patología , Tronco EncefálicoRESUMEN
Visual working memory (VWM) refers to our ability to selectively maintain visual information in a mental representation. While cognitive limits of VWM greatly influence a variety of mental operations, it remains controversial whether the quantity or quality of representations in mind constrains VWM. Here, we examined behavior-to-brain anatomical relations as well as brain activity to brain anatomy associations with a "neural" marker specific to the retention interval of VWM. Our results consistently indicated that individuals who maintained a larger number of items in VWM tended to have a larger gray matter (GM) volume in their left lateral occipital region. In contrast, individuals with a superior ability to retain with high precision tended to have a larger GM volume in their right parietal lobe. These results indicate that individual differences in quantity and quality of VWM may be associated with regional GM volumes in a dissociable manner, indicating willful integration of information in VWM may recruit separable cortical subsystems.
Asunto(s)
Atención/fisiología , Corteza Cerebral/fisiología , Sustancia Gris/fisiología , Memoria a Corto Plazo/fisiología , Percepción Visual/fisiología , Adulto , Femenino , Humanos , Masculino , Estimulación LuminosaRESUMEN
INTRODUCTION: Mild cognitive impairment (MCI) is common in Parkinson's disease (PD), but the underlying pathological mechanism has not been fully understood. Voxel-based morphometry could be used to evaluate regional atrophy and its relationship with cognitive performances in early PD-MCI. PATIENTS AND METHODS: One hundred and six patients with PD were recruited from a larger cohort of patients, the Parkinson's Disease Cognitive Impairment Study (PaCoS). Subject underwent a T1-3D MRI and a complete clinical and neuropsychological evaluation. Patients were divided into PD with normal cognition (PD-NC) and PD-MCI according to the MDS level II criteria-modified for PD-MCI. A subgroup of early patients with short disease duration (≤ 2 years) was also identified. VBM analysis between PD-NC and PD-MCI and between early PD-NC and PD-MCI was performed using two-sample t tests with whole-brain statistical threshold of p < 0.001 uncorrected in the entire PD group and p < 0.05 FWE inside ROIs, in the early PD. RESULTS: Forty patients were diagnosed with MCI and 66 were PD-NC. PD-MCI patients showed significant gray matter (GM) reduction in several brain regions, including frontal gyrus, precuneus, angular gyrus, temporal lobe, and cerebellum. Early PD-MCI showed reduction in GM density in superior frontal gyrus and cerebellum. Moreover, correlation analysis between neuropsychological performances and GM volume of early PD-MCI patients showed associations between performances of Raven and superior frontal gyrus volume, Stroop time and inferior frontal gyrus volume, accuracy of Barrage and volume of precuneus. CONCLUSION: The detection of frontal and cerebellar atrophy, even at an early stage, could be used as an early marker of PD-related cognitive impairment.
Asunto(s)
Disfunción Cognitiva , Enfermedad de Parkinson , Encéfalo/diagnóstico por imagen , Disfunción Cognitiva/diagnóstico por imagen , Disfunción Cognitiva/etiología , Sustancia Gris/diagnóstico por imagen , Humanos , Imagen por Resonancia Magnética , Pruebas Neuropsicológicas , Enfermedad de Parkinson/complicaciones , Enfermedad de Parkinson/diagnóstico por imagenRESUMEN
Maternal breastfeeding has an impact on motor and emotional development in children of the next generation. Elucidating how breastfeeding during infancy affects brain regional structural development in early adolescence will be helpful for promoting healthy development. However, previous studies that have shown relationships between breastfeeding during infancy and cortical brain regions in adolescence are usually based on maternal retrospective recall of breastfeeding, and the accuracy of the data is unclear. In this study, we investigated the association between breastfeeding duration and brain regional volume in a population-neuroimaging study of early adolescents in Japan (N â= â207; 10.5-13.4 years) using voxel-based morphometry, which enabled us to analyze the whole brain. We evaluated breastfeeding duration as indexed by maternal and child health handbook records during infancy. The results showed a significant positive correlation between the duration of breastfeeding and gray matter volume in the dorsal and ventral striatum and the medial orbital gyrus. Post hoc exploratory analyses revealed that the duration of breastfeeding was significantly correlated with emotional behavior. Additionally, the volume in the medial orbital gyrus mediated an association between breastfeeding duration and emotional behavior. This is the first study to evaluate the effect of breastfeeding during infancy on regional brain volumes in early adolescence based on maternal and child health handbook records. Our findings shed light upon the importance of maternal breastfeeding for brain development related to emotional and motivational processing in early adolescence.
Asunto(s)
Lactancia Materna , Cuerpo Estriado/diagnóstico por imagen , Sustancia Gris/diagnóstico por imagen , Corteza Prefrontal/diagnóstico por imagen , Adolescente , Niño , Femenino , Humanos , Procesamiento de Imagen Asistido por Computador , Imagen por Resonancia Magnética , Masculino , Tamaño de los Órganos/fisiología , Estudios Retrospectivos , Factores de TiempoRESUMEN
BACKGROUND: Recent data suggest that musical practice prevents age-related cognitive decline. But experimental evidence remains sparse and no concise information on the neurophysiological bases exists, although cognitive decline represents a major impediment to healthy aging. A challenge in the field of aging is developing training regimens that stimulate neuroplasticity and delay or reverse symptoms of cognitive and cerebral decline. To be successful, these regimens should be easily integrated in daily life and intrinsically motivating. This study combines for the first-time protocolled music practice in elderly with cutting-edge neuroimaging and behavioral approaches, comparing two types of musical education. METHODS: We conduct a two-site Hannover-Geneva randomized intervention study in altogether 155 retired healthy elderly (64-78) years, (63 in Geneva, 92 in Hannover), offering either piano instruction (experimental group) or musical listening awareness (control group). Over 12 months all participants receive weekly training for 1 hour, and exercise at home for ~ 30 min daily. Both groups study different music styles. Participants are tested at 4 time points (0, 6, and 12 months & post-training (18 months)) on cognitive and perceptual-motor aptitudes as well as via wide-ranging functional and structural neuroimaging and blood sampling. DISCUSSION: We aim to demonstrate positive transfer effects for faculties traditionally described to decline with age, particularly in the piano group: executive functions, working memory, processing speed, abstract thinking and fine motor skills. Benefits in both groups may show for verbal memory, hearing in noise and subjective well-being. In association with these behavioral benefits we anticipate functional and structural brain plasticity in temporal (medial and lateral), prefrontal and parietal areas and the basal ganglia. We intend exhibiting for the first time that musical activities can provoke important societal impacts by diminishing cognitive and perceptual-motor decline supported by functional and structural brain plasticity. TRIAL REGISTRATION: The Ethikkomission of the Leibniz Universität Hannover approved the protocol on 14.08.17 (no. 3604-2017), the neuroimaging part and blood sampling was approved by the Hannover Medical School on 07.03.18. The full protocol was approved by the Commission cantonale d'éthique de la recherche de Genève (no. 2016-02224) on 27.02.18 and registered at clinicaltrials.gov on 17.09.18 ( NCT03674931 , no. 81185).
Asunto(s)
Música , Anciano , Encéfalo/diagnóstico por imagen , Cognición , Alemania , Humanos , Plasticidad Neuronal , SuizaRESUMEN
OBJECTIVES: To explore the possible concurrent brain functional and structural alterations in patients with migraine without aura (MwoA) patients compared to healthy subjects (HS). METHODS: Seventy-two MwoA patients and forty-six HS were recruited. 3D-T1 and resting state fMRI data were collected during the interictal period for MwoA and HS. Voxel-based morphometry (VBM) for structure analysis and regional homogeneity (Reho) for fMRI analysis were applied. The VBM and Reho maps were overlapped to determine a possible brain region with concurrent functional and structural alteration in MwoA patients. Further analysis of resting state functional connectivity (FC) alteration was applied with this brain region as the seed. RESULTS: Compared with HS, MwoA patients showed decreased volume in the bilateral superior and inferior colliculus, periaqueductal gray matter (PAG), locus ceruleus, median raphe nuclei (MRN) and dorsal pons medulla junction. MwoA patients showed decreased Reho values in the middle occipital gyrus and inferior occipital gyrus, and increased Reho values in the MRN. Only a region in the MRN showed both structural and functional alteration in MwoA patients. Pearson correlation analysis showed that there was no association between volume or Reho values of the MRN and headache frequency, headache intensity, disease duration, self-rating anxiety scale or self-rating depression scale in MwoA patients. Resting state functional connectivity (FC) with the MRN as the seed showed that MwoA patients had increased FC between the MRN and PAG. CONCLUSIONS: MRN are involved in the pathophysiology of migraine during the interictal period. This study may help to better understand the migraine symptoms. TRIAL REGISTRATION: NCT01152632 . Registered 27 June 2010.
Asunto(s)
Migraña sin Aura , Encéfalo/diagnóstico por imagen , Mapeo Encefálico , Humanos , Imagen por Resonancia Magnética , Migraña sin Aura/diagnóstico por imagen , Sustancia Gris Periacueductal , Núcleos del RafeRESUMEN
We evaluated white matter microstructure integrity in perinatally HIV-infected (PHIV) youths receiving cART compared to age- and gender-matched healthy youths through DTI metrics using voxel-based morphometry (VBM). We investigated 14 perinatally HIV-infected patients (age 17.9 ± 2.5 years) on cART and 17 healthy youths (HC) (age 18.0 ± 3.0 years) using a 3T MRI scanner. Four DTI-derived metrics were fractional anisotropy (FA), mean diffusivity (MD), axial diffusivity (AD), and radial diffusivity (RD). Statistical analysis was done with voxel-based analysis of covariance (ANCOVA), with age and gender as covariates. Region-of-interest secondary analyses in statistically significant regions were also performed. Regional increases in FA in the PHIV youths were found in left middle frontal gyrus, right precuneus, right lingual gyrus, and left supramarginal gyrus. Increased MD was found in the right precentral gyrus while decreased MD was found in the white matter of the right superior parietal lobule and right inferior temporal gyrus/fusiform gyrus. Regions of increased/decreased RD overlapped with regions of increased/decreased MD. Both increased and decreased AD were found in three to four regions respectively. The regional FA, MD, RD, and AD values were consistent with the voxel-based analysis findings. The findings are mostly consistent with previous literature, but increased FA has not been previously reported for perinatally HIV-infected youths. Potentially early and prolonged therapy in our population may have contributed to this new finding. Both toxicity of antiretroviral therapy and indolent infection must be considered as causative factors in the DTI metric changes that we have observed.
Asunto(s)
Encéfalo/diagnóstico por imagen , Infecciones por VIH/diagnóstico por imagen , Sustancia Blanca/diagnóstico por imagen , Adolescente , Antirretrovirales/uso terapéutico , Encéfalo/patología , Encéfalo/virología , Imagen de Difusión Tensora/métodos , Femenino , Infecciones por VIH/tratamiento farmacológico , Infecciones por VIH/patología , Humanos , Procesamiento de Imagen Asistido por Computador , Transmisión Vertical de Enfermedad Infecciosa , Masculino , Sustancia Blanca/patología , Sustancia Blanca/virologíaRESUMEN
BACKGROUND: Frontotemporal dementia (FTD) and Alzheimer's disease (AD) are associated with divergent differences in grey matter volume, white matter diffusion, and functional connectivity. However, it is unknown at what disease stage these differences emerge. Here, we investigate whether divergent differences in grey matter volume, white matter diffusion, and functional connectivity are already apparent between cognitively healthy carriers of pathogenic FTD mutations, and cognitively healthy carriers at increased AD risk. METHODS: We acquired multimodal magnetic resonance imaging (MRI) brain scans in cognitively healthy subjects with (n=39) and without (n=36) microtubule-associated protein Tau (MAPT) or progranulin (GRN) mutations, and with (n=37) and without (n=38) apolipoprotein E ε4 (APOE4) allele. We evaluated grey matter volume using voxel-based morphometry, white matter diffusion using tract-based spatial statistics (TBSS), and region-to-network functional connectivity using dual regression in the default mode network and salience network. We tested for differences between the respective carriers and controls, as well as for divergence of those differences. For the divergence contrast, we additionally performed region-of-interest TBSS analyses in known areas of white matter diffusion differences between FTD and AD (i.e., uncinate fasciculus, forceps minor, and anterior thalamic radiation). RESULTS: MAPT/GRN carriers did not differ from controls in any modality. APOE4 carriers had lower fractional anisotropy than controls in the callosal splenium and right inferior fronto-occipital fasciculus, but did not show grey matter volume or functional connectivity differences. We found no divergent differences between both carrier-control contrasts in any modality, even in region-of-interest analyses. CONCLUSIONS: Concluding, we could not find differences suggestive of divergent pathways of underlying FTD and AD pathology in asymptomatic risk mutation carriers. Future studies should focus on asymptomatic mutation carriers that are closer to symptom onset to capture the first specific signs that may differentiate between FTD and AD.
Asunto(s)
Enfermedad de Alzheimer/diagnóstico por imagen , Demencia Frontotemporal/diagnóstico por imagen , Sustancia Gris/diagnóstico por imagen , Vías Nerviosas/diagnóstico por imagen , Sustancia Blanca/diagnóstico por imagen , Anciano , Enfermedad de Alzheimer/genética , Enfermedad de Alzheimer/patología , Encéfalo/diagnóstico por imagen , Encéfalo/patología , Diagnóstico Precoz , Femenino , Demencia Frontotemporal/genética , Demencia Frontotemporal/patología , Predisposición Genética a la Enfermedad , Sustancia Gris/patología , Humanos , Imagen por Resonancia Magnética/métodos , Masculino , Persona de Mediana Edad , Mutación , Vías Nerviosas/patología , Sustancia Blanca/patologíaRESUMEN
The recent studies in Morphometric Magnetic Resonance Imaging (MRI) have investigated the abnormalities in the brain volume that have been associated diagnosing of the Alzheimer's Disease (AD) by making use of the Voxel-Based Morphometry (VBM). The system permits the evaluation of the volumes of grey matter in subjects such as the AD or the conditions related to it and are compared in an automated manner with the healthy controls in the entire brain. The article also reviews the findings of the VBM that are related to various stages of the AD and also its prodrome known as the Mild Cognitive Impairment (MCI). For this work, the Ada Boost classifier has been proposed to be a good selector of feature that brings down the classification error's upper bound. A Principal Component Analysis (PCA) had been employed for the dimensionality reduction and for improving efficiency. The PCA is a powerful, as well as a reliable, tool in data analysis. Calculating fitness scores will be an independent process. For this reason, the Genetic Algorithm (GA) along with a greedy search may be computed easily along with some high-performance systems of computing. The primary goal of this work was to identify better collections or permutations of the classifiers that are weak to build stronger ones. The results of the experiment prove that the GAs is one more alternative technique used for boosting the permutation of weak classifiers identified in Ada Boost which can produce some better solutions compared to the classical Ada Boost.
Asunto(s)
Enfermedad de Alzheimer/diagnóstico , Encéfalo/patología , Diagnóstico por Computador/métodos , Imagen por Resonancia Magnética/métodos , Análisis de Componente Principal , Algoritmos , Enfermedad de Alzheimer/patología , Disfunción Cognitiva/patología , Sustancia Gris/patología , Humanos , Índice de Severidad de la EnfermedadRESUMEN
BACKGROUND: Prenatal exposure to undernutrition is widespread in both developing and industrialized countries, causing irreversible damage to the developing brain, resulting in altered brain structure and decreased cognitive function during adulthood. The Dutch famine in 1944/45 was a humanitarian disaster, now enabling studies of the effects of prenatal undernutrition during gestation on brain aging in late adulthood. METHODS: We hypothesized that study participants prenatally exposed to maternal nutrient restriction (MNR) would demonstrate altered brain structure resembling premature brain aging in late adulthood, expecting the effect being stronger in men. Utilizing the Dutch famine birth cohort (n = 118; mean age: 67.5 ± 0.9 years), this study implements an innovative biomarker for individual brain aging, using structural neuroimaging. BrainAGE was calculated using state-of-the-art pattern recognition methods, trained on an independent healthy reference sample, then applied to the Dutch famine MRI sample, to evaluate the effects of prenatal undernutrition during early gestation on individual brain aging in late adulthood. RESULTS: Exposure to famine in early gestation was associated with BrainAGE scores indicative of an older-appearing brain in the male sample (mean difference to subjects born before famine: 4.3 years, p < 0.05). Furthermore, in explaining the observed variance in individual BrainAGE scores in the male sample, maternal age at birth, head circumference at birth, medical treatment of hypertension, history of cerebral incidences, actual heart rate, and current alcohol intake emerged to be the most influential variables (adjusted R2 = 0.63, p < 0.01). INTERPRETATION: The findings of our study on exposure to prenatal undernutrition being associated with a status of premature brain aging during late adulthood, as well as individual brain structure being shaped by birth- and late-life health characteristics, are strongly supporting the critical importance of sufficient nutrient supply during pregnancy. Interestingly, the status of premature brain aging in participants exposed to the Dutch famine during early gestation occurred in the absence of fetal growth restriction at birth as well as vascular pathology in late-life. Additionally, the neuroimaging brain aging biomarker presented in this study will further enable tracking effects of environmental influences or (preventive) treatments on individual brain maturation and aging in epidemiological and clinical studies.
Asunto(s)
Envejecimiento/patología , Encéfalo/crecimiento & desarrollo , Encéfalo/patología , Efectos Tardíos de la Exposición Prenatal/patología , Anciano , Estudios de Cohortes , Femenino , Humanos , Imagen por Resonancia Magnética , Masculino , Desnutrición/complicaciones , Países Bajos , Neuroimagen , Embarazo , Inanición/complicacionesRESUMEN
The neuroanatomical bases of episodic memory (EM) and executive functions (EFs) have been widely addressed in patients with brain damage and in individuals with neurologic disorders. These studies reported that larger brain structures support better outcomes in both cognitive domains, thereby supporting the "bigger is better" account. However, relatively few studies have explored the cerebral morphological properties underlying EM and EFs in cognitively healthy individuals and current findings indicate no unitary theoretical explanation for the structure-function relationship. Moreover, existing studies have typically restricted the analyses to a priori defined regions of interest. Here we conducted unbiased voxel-wise analysis of the associations between regional gray as well as white matter volumes (GMv; WMv) and performance in both cognitive domains in a sample of 463 cognitively intact individuals. We found that efficiency in EM was predicted by lower GMv in brain areas belonging to the default-mode network (DMN). By contrast, EFs performance was predicted by larger GMv in a distributed set of regions, which overlapped with the executive control network (ECN). Volume of white matter bundles supporting both cross-cortical and interhemispheric connections was positively related to processing speed. Furthermore, aging modulated the relationship between regional volumes and cognitive performance in several areas including the hippocampus and frontal cortex. Our data extend the critical role of the DMN and ECN by showing that variability in their morphological properties, and not only their activation patterns, affects EM and EFs, respectively. Moreover, our finding that aging reverts these associations supports previously advanced theories of cognitive neurodevelopment.
Asunto(s)
Envejecimiento/patología , Envejecimiento/psicología , Encéfalo/anatomía & histología , Encéfalo/diagnóstico por imagen , Función Ejecutiva , Memoria Episódica , Encéfalo/fisiología , Estudios Transversales , Función Ejecutiva/fisiología , Femenino , Humanos , Masculino , Persona de Mediana Edad , Tamaño de los ÓrganosRESUMEN
Psychotic bipolar disorder (P-BD) is a specific subset that presents greater risk of relapse and worse outcomes than nonpsychotic bipolar disorder (NP-BD). To explore the neuroanatomical bases of psychotic dimension in bipolar disorder (BD), a systematic review was carried out based on the gray matter volume (GMV) among P-BD and NP-BD patients and healthy controls (HC). Further, we conducted a meta-analysis of GMV differences between P-BD patients and HC using a whole-brain imaging approach. Our review revealed that P-BD patients exhibited smaller GMVs mainly in the prefronto-temporal and cingulate cortices, the precentral gyrus, and insula relative to HC both qualitatively and quantitatively. Qualitatively the comparison between P-BD and NP-BD patients suggested inconsistent GMV alterations mainly involving the prefrontal cortex, while NP-BD patients showed GMV deficits in local regions compared with HC. The higher proportions of female patients and patients taking psychotropic medication in P-BD and P-BD type I were associated with smaller GMV in the right precentral gyrus, and the right insula, respectively. In conclusions, psychosis in BD might be associated with specific cortical GMV deficits. Gender and psychotropic medication might have effects on the regional GMVs in P-BD patients. It is necessary to distinguish psychotic dimension in neuroimaging studies of BD.
Asunto(s)
Trastornos Psicóticos Afectivos/patología , Trastorno Bipolar/patología , Sustancia Gris/patología , Neuroimagen , Adulto , Trastornos Psicóticos Afectivos/diagnóstico por imagen , Trastornos Psicóticos Afectivos/fisiopatología , Trastorno Bipolar/diagnóstico por imagen , Trastorno Bipolar/fisiopatología , Sustancia Gris/diagnóstico por imagen , Humanos , Neuroimagen/métodos , Neuroimagen/estadística & datos numéricosRESUMEN
PURPOSE: The purpose of this study was to evaluate longitudinal changes in brain gray matter density (GMD) before and after adjuvant chemotherapy in older women with breast cancer. METHODS: We recruited 16 women aged ≥ 60 years with stage I-III breast cancers receiving adjuvant chemotherapy (CT) and 15 age- and sex-matched healthy controls (HC). The CT group underwent brain MRI and the NIH Toolbox for Cognition testing prior to adjuvant chemotherapy (time point 1, TP1) and within 1 month after chemotherapy (time point 2, TP2). The HC group underwent the same assessments at matched intervals. GMD was evaluated with the voxel-based morphometry. RESULTS: The mean age was 67 years in the CT group and 68.5 years in the HC group. There was significant GMD reduction within the chemotherapy group from TP1 to TP2. Compared to the HC group, the CT group displayed statistically significantly greater GMD reductions from TP1 to TP2 in the brain regions involving the left anterior cingulate gyrus, right insula, and left middle temporal gyrus (pFWE(family-wise error)-corrected < 0.05). The baseline GMD in left insula was positively correlated with the baseline list-sorting working memory score in the HC group (pFWE-corrected < 0.05). No correlation was observed for the changes in GMD with the changes in cognitive testing scores from TP1 to TP2 (pFWE-corrected < 0.05). CONCLUSIONS: Our findings indicate that GMD reductions were associated with adjuvant chemotherapy in older women with breast cancer. Future studies are needed to understand the clinical significance of the neuroimaging findings. This study is registered on ClinicalTrials.gov (NCT01992432).
Asunto(s)
Neoplasias de la Mama/tratamiento farmacológico , Cognición/efectos de los fármacos , Sustancia Gris/diagnóstico por imagen , Memoria a Corto Plazo/fisiología , Anciano , Anciano de 80 o más Años , Neoplasias de la Mama/diagnóstico por imagen , Neoplasias de la Mama/fisiopatología , Quimioterapia Adyuvante/efectos adversos , Femenino , Sustancia Gris/fisiopatología , Humanos , Imagen por Resonancia Magnética , Persona de Mediana Edad , NeuroimagenRESUMEN
Sensory processing (i.e., the manner in which the nervous system receives, modulates, integrates, and organizes sensory stimuli) is critical when humans are deciding how to react to environmental demands. Although behavioral studies have shown that there are stable individual differences in sensory processing, the neural substrates that implement such differences remain unknown. To investigate this issue, structural magnetic resonance imaging scans were acquired from 51 healthy adults and individual differences in sensory processing were assessed using the Sensory Profile questionnaire (Brown et al.: Am J Occup Ther 55 (2001) 75-82). There were positive relationships between the Sensory Profile modality-specific subscales and gray matter volumes in the primary or secondary sensory areas for the visual, auditory, touch, and taste/smell modalities. Thus, the present results suggest that individual differences in sensory processing are implemented by the early sensory regions. Hum Brain Mapp 38:6206-6217, 2017. © 2017 Wiley Periodicals, Inc.
Asunto(s)
Encéfalo/diagnóstico por imagen , Sustancia Gris/diagnóstico por imagen , Percepción , Adulto , Encéfalo/anatomía & histología , Femenino , Sustancia Gris/anatomía & histología , Humanos , Individualidad , Imagen por Resonancia Magnética , Masculino , Tamaño de los Órganos , Encuestas y Cuestionarios , Adulto JovenRESUMEN
Anger is a common negative emotion in social life. Behavioral research suggests that unsatisfied relatedness, autonomy, and competence are related to anger. However, it remains unclear whether these unsatisfied needs all contribute to anger or just a particular unsatisfied need is the main source of anger. In addition, little is known about the neural substrate between unsatisfied needs and anger. To address these two questions, we used voxel-based morphometry (VBM) to explore the neural substrate underlying the relation between unsatisfied needs and trait anger. Behaviorally, we found that although all three unsatisfied needs were correlated with trait anger, unsatisfied relatedness was the only factor that was uniquely related to trait anger. Neurally, the gray matter volume of the right amygdala was correlated with trait anger, which fits nicely with the role of the amygdala as a core region for processing anger. Importantly, the right amygdala mediated the total effect of unsatisfied relatedness on trait anger, even after controlling for general personality dispositions. Our results contribute to the theoretical conceptualization of anger by elucidating the unique role of unsatisfied relatedness in anger and the neural substrate underlying such relation.