Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 20 de 168
Filtrar
1.
Mar Drugs ; 22(5)2024 Apr 27.
Artículo en Inglés | MEDLINE | ID: mdl-38786592

RESUMEN

Malnutrition is one of the major factors of bone and cartilage disorders. Pacific cod (Gadus macrocephalus) processing waste is a cheap and highly promising source of bioactive substances, including collagen-derived peptides and amino acids, for bone and cartilage structure stabilization. The addition of these substances to a functional drink is one of the ways to achieve their fast intestinal absorption. Collagen hydrolysate was obtained via enzymatic hydrolysis, ultrafiltration, freeze-drying, and grinding to powder. The lyophilized hydrolysate was a light gray powder with high protein content (>90%), including collagen (about 85% of total protein) and a complete set of essential and non-essential amino acids. The hydrolysate had no observed adverse effect on human mesenchymal stem cell morphology, viability, or proliferation. The hydrolysate was applicable as a protein food supply or a structure-forming food component due to the presence of collagen fiber fragments. An isotonic fitness drink (osmolality 298.1 ± 2.1 mOsm/L) containing hydrolysate and vitamin C as a cofactor in collagen biosynthesis was prepared. The addition of the hydrolysate did not adversely affect its organoleptic parameters. The production of such functional foods and drinks is one of the beneficial ways of fish processing waste utilization.


Asunto(s)
Huesos , Cartílago , Colágeno , Gadiformes , Hidrolisados de Proteína , Animales , Colágeno/metabolismo , Humanos , Cartílago/efectos de los fármacos , Cartílago/metabolismo , Huesos/efectos de los fármacos , Huesos/metabolismo , Hidrolisados de Proteína/farmacología , Hidrolisados de Proteína/química , Células Madre Mesenquimatosas/efectos de los fármacos , Bebidas , Alimentos Funcionales , Hidrólisis
2.
J Environ Manage ; 358: 120857, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38626485

RESUMEN

Secondary alumina dross (SAD) has emerged as an alternative to bauxite in the production of flash setting admixtures (FSA), a critical admixture in shotcrete. However, the presence of hazardous components has hampered its large-scale adoption. This study conducted field tests at an FSA factory, utilizing SAD as the primary raw material, to evaluate the feasibility and environmental risks. The results confirmed that SAD can effectively replace bauxite in FSA production without compromising quality, as it closely resembled the chemical properties of bauxite. Emissions of fluorides, heavy metals, dioxins in flue gases during production met the relevant Chinese standards. The analysis of hazardous component distribution revealed that more than 50% of volatile components, such as Cl, Cd, Pb, and Zn, were directed into fly ash, exhibiting a significant internal accumulation pattern. In contrast, more than 95% of low-volatility components, including Cu, Cr, Mn, and F, were transferred to the FSA, and the introduction of CaCO3 was confirmed to effectively immobilize F. Moreover, the leaching risk of heavy metals and fluorides in FSA applications slightly increased but remained minimal and within acceptable limits. This technology provides an environmentally sound solution for the disposal of SAD.


Asunto(s)
Óxido de Aluminio , Metales Pesados , Óxido de Aluminio/química , Metales Pesados/análisis
3.
J Sci Food Agric ; 2024 Jul 03.
Artículo en Inglés | MEDLINE | ID: mdl-38958028

RESUMEN

BACKGROUND: Poultry processing generates a large amount of industrial waste, which is rich in collagen content. This waste can be utilized for the extraction of valuable components such as gelatin, which can be used as an alternative to mammalian gelatin (porcine and bovine). RESULTS: Gelatins were analyzed for their yield, proximate analysis, pH, color, viscosity, bloom strength, and texture profile analysis. The yield of broiler chicken feet gelatin (BCFG) was slightly higher (7.93%) as compared to native chicken feet gelatin (NCFG) (7.06%). The protein content was 85.92% and 82.53% for BCFG and NCFG. Both gelatin had moisture content in the standard range (< 15) as given by Gelatin Manufacturers of Europe (GME). Both gelatins showed higher bloom strength (326 g for NCFG and 203 g for BCFG) at 6.67% gelatin concentration, classified as high bloom. Fourier-transform infrared (FTIR) analysis showed amide I, amide A, amide B at 1636 cm-1, 3302 cm-1, 2945 cm-1 for NCFG and 1738 cm-1, 3292 cm-1, 2920 cm-1 for BCFG. At 6.67% gelatin concentration, hardness and cohesiveness values were also higher than commercial gelatin previously studied. The pH values for NCFG were 5.43 and BCFG was 5.31. Both NCFG and BCFG viscosities (4.43 and 3.85 cP) were in the optimum range of commercial gelatins (2-7 cP). CONCLUSION: Hence, the present study concluded that both NCFG and BCFG have a huge potential to replace commercial mammalian gelatins (porcine and bovine) in the food industries. However further studies should be done to optimize the extraction process. © 2024 Society of Chemical Industry.

4.
J Food Sci Technol ; 61(6): 1069-1082, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38562595

RESUMEN

Extraction of bioactive compounds for application in nutraceuticals is gaining popularity. For this, there is a search for low-cost substrates that would make the end product and the process more economical. Mushroom waste (stalk, cap, stem etc.) is one such high valued substrate that has received much attention recently due to its rich reserves of terpenoids, polyphenols, sesquiterpenes, alkaloids, lactones, sterols, antioxidative vitamins, anthocyanidins, glycoproteins and polysaccharides, among others. However, there is a need to identify green and hybrid technologies that could make the bioactive extraction process from these substrates safe, efficient and sustainable. To this effect, many emerging technologies (supercritical fluid, ultrasound-, enzyme- and microwave-assisted extraction) have been explored in the last decade which have shown potential for scale-up with high productivity. This review systematically discusses such technologies highlighting the current challenges faced during waste processing and the research directives needed for further advancements in the field.

5.
Crit Rev Food Sci Nutr ; 63(24): 6757-6776, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-35196934

RESUMEN

Nanotechnology is a rapidly growing field with profound applications in different domains, particularly in food science and technology. Nanoparticles (NPs) synthesis, an integral part of nanotechnology-based applications, is broadly classified into chemical, physical and biosynthesis methods. Chemically sensitive and energy-intensive procedures employed for NPs synthesis are some of the limits of traditional chemical approaches. Recent research has focused on developing easy, nontoxic, cost-effective, and environment-friendly NPs synthesis during the last decade. Biosynthesis approaches have been developed to achieve this goal as it is a viable alternative to existing chemical techniques for the synthesis of metallic nanomaterials. Fruit peels contain abundant bioactive compounds including phenols, flavonoids, tannins, triterpenoids, steroids, glycosides, carotenoids, anthocyanins, ellagitannins, vitamin C, and essential oils with substantial health benefits, anti-bacterial and antioxidant properties, generally discarded as byproduct or waste by the fruit processing industry. NPs synthesized using bioactive compounds from fruit peel has futuristic applications for an unrealized market potential for nutraceutical and pharmaceutical delivery. Numerous studies have been conducted for the biosynthesis of metallic NPs such as silver (AgNPs), gold (AuNPs), zinc oxide, iron, copper, palladium and titanium using fruit peel extract, and their synthesis mechanism have been reported in the present review. Additionally, NPs synthesis methods and applications of fruit peel NPs have been discussed.


Asunto(s)
Nanopartículas del Metal , Nanopartículas del Metal/química , Antibacterianos , Frutas/química , Oro/análisis , Oro/química , Antocianinas/análisis , Extractos Vegetales/química
6.
Crit Rev Food Sci Nutr ; : 1-15, 2023 Apr 12.
Artículo en Inglés | MEDLINE | ID: mdl-37042630

RESUMEN

Apple waste (APW) is the residual product after apple processing, including apple peel, apple core, apple seed, and other components. A large quantity of APW produced is abandoned annually, leading to serious resource waste and environmental pollution. APW is rich in natural active compounds, such as pectin, polyphenols, fatty acids, and dietary fiber, which has a good use value. This paper reviewed the current research on recovering active components from APW. The traditional extraction methods (acid, alkali, physical, enzyme, etc.) and the novel extraction methods (SWE, UAE, MAE, RFAE, etc.) for the recovery of pectin, polyphenols, apple seed oil, apple seed protein, and dietary fiber from APW were systematically summarized. The basic principles, advantages, and disadvantages of different extraction methods were introduced. The requirements of different extraction methods on extraction conditions and the effects of different extraction methods on the yield, quality, and functional activity of extracted products were analyzed. The challenges and future study direction of APW extraction have prospected. This paper aims to provide a reference for other researchers interested in APW extraction, improve the utilization rate of APW and extend the value chain of the apple industry.

7.
Environ Res ; 231(Pt 3): 116277, 2023 08 15.
Artículo en Inglés | MEDLINE | ID: mdl-37263468

RESUMEN

This study aimed to evaluate the possibility of P precipitation as struvite from real anaerobic digestion (AD) effluent of tapioca starch processing. The results showed that at a pH of 9, and without Mg:P molar adjustment, P recovery was at 85%. The percentage of P recovery was increased to 90% and P contained in precipitates was at 11.80-14.70 wt% P, which is higher than commercial single superphosphate fertilizer (SSP, 18-22 wt% P2O5). This was achieved by controlling mixing at 200-400 rpm and upflow velocity at 50-200 cm min-1 inside a fluidized bed reactor (FBR). Based on SEM-EDX, powder XRD, phase identification by profile matching, and FT-IR analysis, the results demonstrated that recovered precipitates formed struvite predominantly. In addition, results of the woodchip ash additions and the one-way ANOVA based-RSM analysis revealed that mixing, the solution pH, and the woodchip ash intensely affected P recovery with the optimum condition found at 400 rpm, pH9, 4 g L-1, respectively. Ash addition enhanced P recovery efficiency but decreased the product's purity. Total costs of P recovery varied considerably from 0.28 to 7.82 USD∙(kg P)-1 depending on chemical consumption and %P content in recovered products. Moreover, the total cost was reduced by 57% from 7.82 USD∙(kg P)-1 (profit margin: -4.30 to -2.82) by a single mixing operation to 3.35 USD∙(kg P)-1 (profit margin: +0.17 to +1.65) employing coupling effect of mixing and Vup. The results indicate that P recovery from tapioca starch AD effluent not only provides a good-quality alternative slow-release P fertilizer, but also helps to curtail environmental problems due to excessive P and nitrogen discharge. These findings also demonstrate the ways of recovering nutrients from an abundant renewable resource that are relevant to simultaneous waste utilization during pollution controls.


Asunto(s)
Manihot , Fósforo , Eliminación de Residuos Líquidos , Anaerobiosis , Fertilizantes , Compuestos de Magnesio , Fosfatos , Espectroscopía Infrarroja por Transformada de Fourier , Almidón , Estruvita , Eliminación de Residuos Líquidos/métodos
8.
Environ Res ; 221: 115246, 2023 03 15.
Artículo en Inglés | MEDLINE | ID: mdl-36657595

RESUMEN

Resource utilization of gangue solid waste has become an essential research direction for green development. This study prepared a novel gangue based geopolymer adsorbent (GPA) for the removal of Cd(II) from wastewater using pretreatment gangue (PG) as the main raw material. The ANOVA indicated that the obtained quadratic model of fitness function (R2 > 0.99, P-value <0.0001) was significant and adequate, and the contribution of the three preparation conditions to the removal of Cd(II) was: calcination temperature > Na2CO3:PG ratio > water-glass solid content. The hybrid response surface method and gray wolf optimization (RSM-GWO) algorithm were adopted to acquire the optimum conditions: Na2CO3:PG ratio = 1.05, calcination temperature of 701 °C, solid content of water glass of 22.42%, and the removal efficiency of Cd(II) by GPA obtained under the optimized conditions (GPAC) was 97.84%. Adsorption kinetics, adsorption isotherms and characterization by XRD, FTIR, Zeta potential, FSEM-EDS and BET were utilized to investigate the adsorption mechanism of GPAC on Cd(II). The results showed that the adsorption of Cd(II) from GPAC was consistent with the pseudo-second-order model (R2 = 0.9936) and the Langmuir model (R2 = 0.9988), the adsorption was a monolayer adsorption process and the computed maximum Cd(II) adsorption (50.76 mg g-1) was approximate to experimental results (51.47 mg g-1). Moreover, the surface morphology of GPAC was rough and porous with a specific surface area (SSA) of 18.54 m2 g-1, which provided abundant active sites, and the internal kaolinite was destroyed to produce a zeolite-like structure where surface complexation and ion exchange with Cd(II) through hydroxyl (-OH) and oxygen-containing groups (-SiOH and -AlOH) were the main adsorption mechanisms. Thus, GPAC is a lucrative adsorbent material for effective Cd(II) wastewater treatment, complying with the "high value-added" usage of solid wastes and "waste to cure poison" green sustainable development direction.


Asunto(s)
Aguas Residuales , Contaminantes Químicos del Agua , Cadmio , Contaminantes Químicos del Agua/análisis , Temperatura , Caolín , Adsorción , Cinética , Concentración de Iones de Hidrógeno
9.
Bioprocess Biosyst Eng ; 46(1): 119-128, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-36445480

RESUMEN

The utilization of wastewater in food processing factory has become one of the foremost essential and challengeable problems. In this study, cabbage wastewater was used for a mixed fermentation to obtain a high ester vinegar. The effect of fermentation conditions on the total acid content and total ester content of vinegar was investigated through single-factor experiments and response surface methodology analysis. Under the optimal fermentation conditions of 10.61% inoculation amount, 4.9% initial alcohol content, 29.62 °C fermentation temperature, 75.21 h fermentation time, and the exogenous esterification addition amount of 0.6%. The blending vinegar has a total acid content of 3.80 g 100 mL-1 and a total ester content of 30.52 mg mL-1. The significant flavor components in the blending vinegar of the ethyl lactate with a pleasant aroma accounted for 22.15% and the ethyl acetate with a strong fruit aroma accounted for 11.37%.


Asunto(s)
Ácido Acético , Brassica , Ésteres , Aguas Residuales , Ácidos , Fermentación
10.
J Environ Manage ; 331: 117346, 2023 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-36696762

RESUMEN

Policies directly or indirectly influence the development of industrial symbiosis (IS). Quantitatively analyzing the effects of policies on IS at a national level is necessary, but current research has lagged. Focusing on the symbiotic system that includes the thermal power industry, cement industry, iron and steel industry, and social sector in China, this paper assesses the efficacy of policies on this nationwide IS system between 2015 and 2022. A policy influence framework is proposed, combining a cost-benefit analysis, agent-based model, and comparative analysis. Results show: (1) the symbiosis probability of the nationwide IS system experiences a fluctuating increase. The maximum increments of the symbiosis probability are 5%, and the resulting environmental benefits are equivalent to an emission reduction of 6.99 Mt from blast furnace slag, 20.97 Mt from iron mine tailing, 36.02 Mt from household waste, 25.01 Mt from steel slag, and 22.95 Mt from fly ash. However, the stimulation effects of policies vary across different subsystems. (2) Thermal power-chemical subsystems, thermal power-environmental protection subsystems, iron and steel-environmental protection subsystems, and social sector-cement subsystems need policy support in the future. (3) Approximately 50% of fields in this nationwide IS system is insensitive to current policies; policy approaches should shift from economic stimulation to symbiotic guidance. This paper fills the research gap by quantitatively studying the IS policy efficacy from a national level. The findings can contribute to the improvement of the Chinese IS policy system.


Asunto(s)
Ceniza del Carbón , Simbiosis , Hierro , Industrias , Acero , China , Residuos Industriales
11.
Molecules ; 28(22)2023 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-38005326

RESUMEN

Cistanche deserticola residues are by-products of the industrial production of Cistanche deserticola, which are currently often discarded, resulting in the waste of resources. In order to achieve the efficient utilization of Cistanche deserticola, dietary fiber from Cistanche deserticola residues was extracted chemically and the optimization of the extraction conditions was performed, using the response surface methodology to study the effects of the NaOH concentration, extraction temperature, extraction time, and solid-liquid ratio on the yield of water-soluble dietary fiber (SDF). The structural, physicochemical, and functional properties of the dietary fiber were also investigated. The results showed that the optimal conditions were as follows: NaOH concentration of 3.7%, extraction temperature of 71.7 °C, extraction time of 89.5 min, and solid-liquid ratio of 1:34. The average yield of SDF was 19.56%, which was close to the predicted value of 19.66%. The two dietary fiber types had typical polysaccharide absorption peaks and typical type I cellulose crystal structures, and the surface microstructures of the two dietary fiber types were different, with the surface of SDF being looser and more porous. Both dietary fiber types had good functional properties, with SDF having the strongest water-holding capacity and the strongest adsorption capacity for nitrite, cholesterol, sodium cholate, and glucose, while IDF had a better oil-holding capacity. These results suggest that Cistanche deserticola residues are a good source of dietary fiber and have promising applications in the functional food processing industry.


Asunto(s)
Cistanche , Cistanche/química , Hidróxido de Sodio , Fibras de la Dieta , Extractos Vegetales/química , Agua
12.
Indian J Microbiol ; 63(4): 398-409, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-38031613

RESUMEN

The production of banana peel by the food-processing industry is substantial and the disposal of this waste material has become a matter of concern. However, recent studies have demonstrated that banana peel is a rich source of biologically active compounds that can be transformed into valuable products. This review aims to explore the potential of converting banana peel into valuable products and provides a comprehensive analysis of the physical and chemical composition of banana peel. Additionally, the utilization of banana peel as a substrate to produce animal feed, bio fertilizer, dietary fibers, renewable energy, industrial enzymes, and nanomaterials has been extensively studied. According to the researches that has been done so far, it is clear that banana peel has a broad range of applications and its effective utilization through biorefinery strategies can maximize its economic benefits. Based on previous studies, A plan for feasibility of a banana peel biorefinery has been put up which suggest its potential as a valuable source of renewable energy and high-value products. The utilization of banana peel through biorefinery strategies can provide a sustainable solution for waste management and contribute to the development of a circular economy.

13.
J Food Sci Technol ; 60(3): 1195-1201, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-36908371

RESUMEN

Spent hen meat is considered as a category of waste generated by the poultry sector which can lead to serious environmental concerns if not disposed and utilized properly. In this work, spent hen meat was hydrolysed by 2% Flavourzyme (6.5 pH, 55 °C) followed by ultrafiltration to produce three peptide fractions with molecular weights > 10 kDa, 5-10 kDa and < 5 kDa. These fractions were evaluated for antioxidant potential, SDS PAGE and amino acid profile. The SDS PAGE profile demonstrated bands in the low molecular weight (< 10 kDa) region. Peptide fractions of < 5 kDa exhibited highest antioxidant activity and, essential as well as hydrophobic amino acid composition than whole hydrolysate and other peptide fractions. Incorporation of the identified hydrolysate fraction in food could improve its shelf stability while serving as a preventive component against human degenerative diseases.

14.
J Environ Manage ; 311: 114819, 2022 Mar 02.
Artículo en Inglés | MEDLINE | ID: mdl-35247759

RESUMEN

Cement plants (CPs) are one of the most important anthropogenic sources of mercury (Hg) emissions in China. Over 1000 cement production lines operate in China and use various raw materials; however, little data on Hg emissions is recorded on site. This study investigated a CP in Guizhou Province that uses multiple mining and industrial wastes as part of the circular economy policy. Among the various raw materials, carbide slag had the highest Hg content (2.6 mg/kg) and contributed half of the Hg input. High Hg concentration (27 mg/kg) in the kiln tail dust and a strong Hg enrichment factor (39) was found, which was determined as the ratio of total Hg accumulated within the clinker production process to the daily Hg input from raw materials and fuel. The clinker had negligible Hg (0.001 mg/kg), while the Hg in cement products (0.04 mg/kg) mostly came from additives and retarders. The estimated atmospheric emission factor of Hg from this CP was 161.5 mg Hg/t clinker, which was much higher than those of other CPs in Guizhou that employ low-Hg raw materials. A five-step sequential extraction experiment with kiln tail dust indicates that Hg mainly existed in fraction of F4 (73-96% of the total Hg, possibly as Hg2Cl2) and that some samples had high proportions of water-soluble Hg (up to 21% of the total), which may be easily released into surrounding water bodies and pose high environmental risks. Using low-Hg raw (or alternative raw) materials and conducting proper disposal of kiln tail dust will reduce the environmental risk of Hg from CPs.

15.
J Environ Manage ; 302(Pt A): 114031, 2022 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-34735836

RESUMEN

In order to realize the sustainable utilization of waste oyster shell and develop a targeted removal technology for cadmium. A novel ion-imprinted oyster shell material (IIOS) was prepared by surface imprinting technique. The prepared samples were characterized by scanning electron microscope, Fourier infrared spectrometer, X-ray diffractometer, thermogravimetric analysis and N2 adsorption-desorption. The adsorption performances of IIOS for Cd(II) from aqueous solution were studied by the single factor sequential batch, kinetics, isotherms, selectivity and recycling experiments. The characterization researches showed that IIOS was successfully prepared. The adsorption experiments indicated that the adsorption process reached equilibrium within 240 min; the maximum adsorption capacity was up to 69.1 mg g-1 with the initial Cd(II) concentration of 75 mg L-1 at pH 5; the adsorption process fitted well to the pseudo-second-order model and the Langmuir isotherm model, which revealed the chemisorption characteristic of Cd(II). Moreover, IIOS exhibited a good targeted adsorption of Cd(II) in several binary competition systems owing to the present of these imprinted cavities. The recycling experiment showed that the targeted removal ratio of IIOS for Cd(II) remained above 80% after used six times. The results of this study indicated that it is a promising prospect for waste oyster shell used as IIOS to dispose heavy metals in wastewater.


Asunto(s)
Ostreidae , Contaminantes Químicos del Agua , Adsorción , Animales , Cadmio/análisis , Concentración de Iones de Hidrógeno , Cinética , Espectroscopía Infrarroja por Transformada de Fourier , Contaminantes Químicos del Agua/análisis
16.
Molecules ; 27(2)2022 Jan 14.
Artículo en Inglés | MEDLINE | ID: mdl-35056830

RESUMEN

Carotenoids are characterized by a wide range of health-promoting properties. For example, they support the immune system and wound healing process and protect against UV radiation's harmful effects. Therefore, they are used in the food industry and cosmetics, animal feed, and pharmaceuticals. The main sources of carotenoids are the edible and non-edible parts of fruit and vegetables. Therefore, the extraction of bioactive substances from the by-products of vegetable and fruit processing can greatly reduce food waste. This article describes the latest methods for the extraction of carotenoids from fruit and vegetable byproducts, such as solvent-free extraction-which avoids the costs and risks associated with the use of petrochemical solvents, reduces the impact on the external environment, and additionally increases the purity of the extract-or green extraction using ultrasound and microwaves, which enables a significant improvement in process efficiency and reduction in extraction time. Another method is supercritical extraction with CO2, an ideal supercritical fluid that is non-toxic, inexpensive, readily available, and easily removable from the product, with a high penetration capacity.


Asunto(s)
Carotenoides/aislamiento & purificación , Frutas/química , Tecnología Química Verde/métodos , Extractos Vegetales/aislamiento & purificación , Verduras/química , Microondas , Ondas Ultrasónicas
17.
Molecules ; 27(24)2022 Dec 14.
Artículo en Inglés | MEDLINE | ID: mdl-36558034

RESUMEN

Rigid polyurethane (RPUF) was widely used in external wall insulation materials due to its good thermal insulation performance. In this study, a series of RPUF and RPUF-R composites were prepared using steel slag (SS) and dimelamine pyrophosphate (DMPY) as flame retardants. The RPUF composites were characterized by thermogravimetric (TG), limiting oxygen index (LOI), cone calorimetry (CCT), and thermogravimetric infrared coupling (TG-FTIR). The results showed that the LOI of the RPUF-R composites with DMPY/SS loading all reached the combustible material level (22.0 vol%~27.0 vol%) and passed UL-94 V0. RPUF-3 with DMPY/SS system loading exhibited the lowest pHRR and THR values of 134.9 kW/m2 and 16.16 MJ/m2, which were 54.5% and 42.7% lower than those of unmodified RPUF, respectively. Additionally, PO· and PO2· free radicals produced by pyrolysis of DMPY could capture high energy free radicals, such as H·, O·, and OH·, produced by degradation of RPUF matrix, effectively blocking the free radical chain reaction of composite materials. The metal oxides in SS reacted with the polymetaphosphoric acid produced by the pyrolysis of DMPY in combustion. It covered the surface of the carbon layer, significantly insulating heat and mass transport in the combustion area, endowing RPUF composites with excellent fire performance. This work not only provides a novel strategy for the fabrication of high-performance RPUF composites, but also elucidates a method of utilizing metallurgical solid waste.

18.
Environ Res ; 197: 111059, 2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-33766568

RESUMEN

The concentration of chromium (Cr) in natural water and soil environments has gradually increased in recent decades, owing to intensive use of Cr in industry and its subsequent disposal. In this study, we performed a comparison study on chromate (Cr6+) reduction by tea waste (green tea, black tea, red tea, and chamomile) in water (25 °C) and ice (-20 °C) to develop a new strategy for environmental-friendly stabilization of hazardous Cr6+ by freezing. This study shows that the freezing process can enhance the reduction of Cr6+ by tea waste. The residual Cr6+ concentration ratios (C/C0, where C is the concentration of Cr6+ after the reaction (5 h) and C0 is the initial concentration of Cr6+ (20 µM) in the system) by tea wastes in water were in the range of 0.71 (green tea) to 0.92 (chamomile); however, the ratios dramatically decreased under the freezing process (i.e., 0.06 by green tea, 0.13 by black tea, 0.18 by red tea, and 0.08 by chamomile). According to the results obtained from the fluorescent, chromatographic, and spectroscopic analyses, under the freezing process, the enhanced reduction of Cr6+ could be explained by the freeze concentration of Cr6+, phenolic components in tea extracts, and protons in small liquid pockets in liquid-like layers (LLLs). In addition, the proposed system can efficiently purify the real Cr6+-containing wastewater (i.e., electroplating wastewater), indicating that the system will be economically feasible in cold regions (i.e., polar regions).


Asunto(s)
Cromatos , Contaminantes Químicos del Agua , Cromatos/análisis , Cromo/análisis , Hielo , Oxidación-Reducción , , Aguas Residuales , Agua , Contaminantes Químicos del Agua/análisis
19.
Environ Res ; 192: 110261, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-32997967

RESUMEN

The question of how to reasonably dispose and recycle antibiotic mycelial residues (AMRs), a hazardous waste, is a critical issue. The AMRs containing nitrogen-rich organic matters shows a promising alternative feedstock of nitrogen-doped porous carbons (NPCs). Here, the NPCs with the ultrahigh surface area (2574.9 m2 g-1) were prepared by using the discarded oxytetracycline mycelial residues (OMRs) and further used as an electrode for supercapacitor. A series of experiments including scanning/transmission electron microscope, Brunauer-Emmett-Teller measurement, and electrochemical impedance spectrum revealed that the NPC-2-900 exhibited a high N content, large surface area, and high electrical conductivity. The electrochemical performance of the NPC was tested by cyclic voltammetry, galvanostatic charge/discharge cycling, and rate capability test. The optimized NPC-2-900 displayed distinguish specific capacitance (307 F g-1), cycling stability (over 95% capacitance retention after 2000 cycles even at a high current density of 20 A g-1) and superior rate performance. Of particular interest, the qPCR test indicates the ARGs were reduced in the conversion process from OMRs to NPCs.


Asunto(s)
Carbono , Nitrógeno , Antibacterianos , Farmacorresistencia Microbiana , Porosidad
20.
Phytother Res ; 35(4): 1887-1907, 2021 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-33159390

RESUMEN

Aegle marmelos L. (bael) is a fruit tree of Rutaceae family, widely grown all over the world. This plant is gaining popularity because of its nutrient-rich fruits and immense traditional medicinal usage and pharmacological properties. The health promotive and protective effect of bael fruit is accounted by fibers, carotenoids, phenolics, terpenoids, coumarins, flavonoids, and alkaloids. The curative relevance of these compounds has been assessed by various in vivo and in vitro studies. Fruit shows numerous possible health benefits, namely, radio-protective effects, peroxidation, antibacterial, inhibition of lipid, antidiarrheal, gastroprotective, antiviral, antidiabetic, anti-ulcerative colitis, cardioprotective, free-radical scavenging (antioxidant) and hepatoprotective effects. The health benefits of bael are not only limited to edible portion (fruit), but it also extends to nonedible portion (root, trunk, bark, leaf, flower and seed) having comparable biologically active compounds. Increasing awareness about the role of diet among health-conscious consumers for human well-being has increased the interest in functional foods thereby exploration of the functional attributes of various underutilized plants is being reaffirmed and various sources are emerged out as suitable food material for processing industry. The various scientific reports collected from different bibliometric sources suggested that A. marmelos and its bioactive constituents could play a vital role in the prevention of several chronic and degenerative diseases associated with oxidation stress. This review emphasis on recent scientific evidences on nutrition and bioactive profile of A. marmelos, health benefits along with clinical and nonclinical trials of various phytoconstituents and A. marmelos potential in food processing industry for various food products. Our study suggests that this plant does indeed have pharmacological properties of interest, however, further extensive research is needed to establish a potential strategy that can balance the pharmacological and toxic effects of bael.


Asunto(s)
Aegle/química , Dietoterapia/métodos , Medicina de Hierbas/métodos , Extractos Vegetales/química , Humanos
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda