Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
1.
Mol Genet Genomics ; 299(1): 81, 2024 Aug 22.
Artículo en Inglés | MEDLINE | ID: mdl-39172257

RESUMEN

Autosomal-recessive cutis laxa type 2 (ARCL2) is a rare genetic disorder caused by pyrroline-5-carboxylate reductase 1 (PYCR1) mutations and characterized by loose and sagging skin, typical facial features, intrauterine growth retardation, and developmental delay. To study the effect of PYCR1 mutations on protein function and clinical features, we identified a homozygous missense mutation c.559G > A (p.Ala187Thr) in PYCR1 in a Chinese child with typical clinical features, especially severe developmental delays. The three-dimensional (3D) model showed the modification of the hydrogen bonds produce a misfolding in the mutant PYCR1 protein. Mutagenesis and enzyme assay study revealed decreased activity of the mutant protein in vitro, indicating that this mutation impairs PYCR1 function. Our findings confirmed abnormal enzymatic activity and neurodevelopmental trajectory of this PYCR1 mutation.


Asunto(s)
Cutis Laxo , Mutación Missense , Pirrolina Carboxilato Reductasas , delta-1-Pirrolina-5-Carboxilato Reductasa , Humanos , Cutis Laxo/genética , Cutis Laxo/patología , Pirrolina Carboxilato Reductasas/genética , Pirrolina Carboxilato Reductasas/metabolismo , Masculino , Femenino , Preescolar , Modelos Moleculares , Discapacidades del Desarrollo/genética , Discapacidades del Desarrollo/patología , Homocigoto , Genes Recesivos , Mutación
2.
Arch Microbiol ; 205(12): 382, 2023 Nov 16.
Artículo en Inglés | MEDLINE | ID: mdl-37973623

RESUMEN

Vibrio parahaemolyticus, the causative agent of seafood-associated gastroenteritis, undergoes wrinkly and smooth colony switching on the plate. The wrinkly spreader grew faster, had stronger motility and biofilm capacity when compared with the smooth one. However, whether the two phenotypes differ in their virulence still needs to be further investigated. In this study, the data showed that the smooth spreader had stronger virulence phenotypes, including the cytotoxicity against HeLa cells, antibacterial activity against E. coli, adhesive capacity toward HeLa cells, and lethality in zebrafish, relative to the wrinkly one. However, the colony morphology variation had no influence on the haemolytic activity. The mRNA levels of major virulence genes including T3SS1, T6SS1, and T6SS2 were significantly enhanced in the smooth colonies relative to those in the wrinkly colonies. Taken together, the presented work highlighted the different virulence profiles of the wrinkly and smooth colony phenotypes.


Asunto(s)
Vibrio parahaemolyticus , Humanos , Animales , Virulencia , Vibrio parahaemolyticus/genética , Células HeLa , Variación de la Fase , Pez Cebra , Escherichia coli , Factores de Virulencia/genética , Fenotipo , Proteínas Bacterianas/genética
3.
Appl Environ Microbiol ; 88(4): e0227021, 2022 02 22.
Artículo en Inglés | MEDLINE | ID: mdl-34985979

RESUMEN

The exopolysaccharide (EPS) Pea is essential for wrinkly colony morphology, pellicle formation, and robust biofilm production in Pseudomonas putida. The second messenger cyclic diguanylate monophosphate (c-di-GMP) induces wrinkly colony morphology in P. putida through an unknown mechanism(s). Herein, we found that c-di-GMP modulates wrinkly colony morphology via the regulation of expression of eppA (PP_5586), a small individually transcribed gene of 177 bp, and this gene was adjacent to the upstream region of the pea cluster. Phenotype observation revealed that eppA was essential for Pea-dependent phenotypes. The deletion of eppA led to a smooth colony morphology and impaired biofilm, which was analogous to the phenotypes with loss of the entire pea operon. eppA expression was positively regulated by c-di-GMP via the transcriptional effector FleQ, and eppA was essential for the c-di-GMP-induced wrinkly colony morphology. Structure prediction results implied that EppA had two transmembrane regions, and Western blotting revealed that EppA was located on the cell membrane. Transcriptomic analysis indicated that EppA had no significant effect on the transcriptomic profile of P. putida. A bacterial two-hybrid (BTH) assay suggested that there was no direct interaction between EppA and the proteins in the pea cluster and adjacent operons. Overall, these findings reveal that EppA is essential for Pea-dependent phenotypes and that c-di-GMP modulates Pea-dependent phenotypes via regulation of eppA expression in P. putida. IMPORTANCE Microbe-secreted EPSs are high-molecular-weight polysaccharides that have the potential to be used as industrially important biomaterials. The EPS Pea in P. putida is essential for wrinkly colony morphology and pellicle formation. Here, we identified a function-unknown protein, EppA, which was also essential for Pea-dependent wrinkly colony morphology and pellicle formation, and EppA was probably involved in Pea secretion. Meanwhile, our results indicated that the second messenger c-di-GMP positively regulated the expression of EppA, resulting in Pea-dependent wrinkly colony morphology. Our results reveal the relationship of c-di-GMP, EppA, and Pea-dependent phenotypes and provide a possible pathway to construct genetically engineered strains for high Pea production.


Asunto(s)
Pseudomonas putida , Proteínas Bacterianas/metabolismo , Biopelículas , GMP Cíclico/análogos & derivados , GMP Cíclico/metabolismo , Regulación Bacteriana de la Expresión Génica , Pisum sativum , Fenotipo , Regiones Promotoras Genéticas , Pseudomonas putida/genética , Pseudomonas putida/metabolismo , Sistemas de Mensajero Secundario
4.
J Bacteriol ; 203(3)2021 01 11.
Artículo en Inglés | MEDLINE | ID: mdl-33199286

RESUMEN

Vibrio fischeri is a cosmopolitan marine bacterium that oftentimes displays different colony morphologies, switching from a smooth to a wrinkly phenotype in order to adapt to changes in the environment. This wrinkly phenotype has also been associated with increased biofilm formation, an essential characteristic for V. fischeri to adhere to substrates, to suspended debris, and within the light organs of sepiolid squids. Elevated levels of biofilm formation are correlated with increased microbial survival of exposure to environmental stressors and the ability to expand niche breadth. Since V. fischeri has a biphasic life history strategy between its free-living and symbiotic states, we were interested in whether the wrinkly morphotype demonstrated differences in its expression profile in comparison to the naturally occurring and more common smooth variant. We show that genes involved in major biochemical cascades, including those involved in protein sorting, oxidative stress, and membrane transport, play a role in the wrinkly phenotype. Interestingly, only a few unique genes are specifically involved in macromolecule biosynthesis in the wrinkly phenotype, which underlies the importance of other pathways utilized for adaptation under the conditions in which Vibrio bacteria are producing this change in phenotype. These results provide the first comprehensive analysis of the complex form of genetic activation that underlies the diversity in morphologies of V. fischeri when switching between two different colony morphotypes, each representing a unique biofilm ecotype.IMPORTANCE The wrinkly bacterial colony phenotype has been associated with increased squid host colonization in V. fischeri The significance of our research is in identifying the genetic mechanisms that are responsible for heightened biofilm formation in V. fischeri This report also advances our understanding of gene regulation in V. fischeri and brings to the forefront a number of previously overlooked genetic networks. Several loci that were identified in this study were not previously known to be associated with biofilm formation in V. fischeri.


Asunto(s)
Aliivibrio fischeri/genética , Aliivibrio fischeri/metabolismo , Fenotipo , Transcriptoma , Animales , Antioxidantes , Biopelículas/crecimiento & desarrollo , Decapodiformes/microbiología , Regulación Bacteriana de la Expresión Génica , Redes y Vías Metabólicas , Estrés Oxidativo , Simbiosis
5.
Am J Hum Genet ; 102(4): 685-695, 2018 04 05.
Artículo en Inglés | MEDLINE | ID: mdl-29576219

RESUMEN

Biogenesis of the mitochondrial oxidative phosphorylation system, which produces the bulk of ATP for almost all eukaryotic cells, depends on the translation of 13 mtDNA-encoded polypeptides by mitochondria-specific ribosomes in the mitochondrial matrix. These mitoribosomes are dual-origin ribonucleoprotein complexes, which contain mtDNA-encoded rRNAs and tRNAs and ∼80 nucleus-encoded proteins. An increasing number of gene mutations that impair mitoribosomal function and result in multiple OXPHOS deficiencies are being linked to human mitochondrial diseases. Using exome sequencing in two unrelated subjects presenting with sensorineural hearing impairment, mild developmental delay, hypoglycemia, and a combined OXPHOS deficiency, we identified mutations in the gene encoding the mitochondrial ribosomal protein S2, which has not previously been implicated in disease. Characterization of subjects' fibroblasts revealed a decrease in the steady-state amounts of mutant MRPS2, and this decrease was shown by complexome profiling to prevent the assembly of the small mitoribosomal subunit. In turn, mitochondrial translation was inhibited, resulting in a combined OXPHOS deficiency detectable in subjects' muscle and liver biopsies as well as in cultured skin fibroblasts. Reintroduction of wild-type MRPS2 restored mitochondrial translation and OXPHOS assembly. The combination of lactic acidemia, hypoglycemia, and sensorineural hearing loss, especially in the presence of a combined OXPHOS deficiency, should raise suspicion for a ribosomal-subunit-related mitochondrial defect, and clinical recognition could allow for a targeted diagnostic approach. The identification of MRPS2 as an additional gene related to mitochondrial disease further expands the genetic and phenotypic spectra of OXPHOS deficiencies caused by impaired mitochondrial translation.


Asunto(s)
Alelos , Pérdida Auditiva Sensorineural/genética , Hipoglucemia/genética , Enfermedades Mitocondriales/genética , Proteínas Mitocondriales/genética , Mutación/genética , Proteínas Ribosómicas/genética , Secuencia de Aminoácidos , Preescolar , Análisis Mutacional de ADN , ADN Mitocondrial/genética , Femenino , Fibroblastos/metabolismo , Pérdida Auditiva Sensorineural/complicaciones , Humanos , Hipoglucemia/complicaciones , Lactante , Recién Nacido , Masculino , Enfermedades Mitocondriales/complicaciones , Proteínas Mitocondriales/química , Fosforilación Oxidativa , Subunidades de Proteína/genética , ARN Ribosómico/genética , Proteínas Ribosómicas/química
6.
Microbiology (Reading) ; 166(8): 707-716, 2020 08.
Artículo en Inglés | MEDLINE | ID: mdl-32520698

RESUMEN

Model bacterial biofilm systems suggest that bacteria produce one type of biofilm, which is then modified by environmental and physiological factors, although the diversification of developing populations might result in the appearance of adaptive mutants producing altered structures with improved fitness advantage. Here we compare the air-liquid (A-L) interface viscous mass (VM) biofilm produced by Pseudomonas fluorescens SBW25 and the wrinkly spreader (WS) and complementary biofilm-forming strain (CBFS) biofilm types produced by adaptive SBW25 mutants in order to better understand the link between these physical structures and the fitness advantage they provide in experimental microcosms. WS, CBFS and VM biofilms can be differentiated by strength, attachment levels and rheology, as well as by strain characteristics associated with biofilm formation. Competitive fitness assays demonstrate that they provide similar advantages under static growth conditions but respond differently to increasing levels of physical disturbance. Pairwise competitions between biofilms suggest that these strains must be competing for at least two growth-limiting resources at the A-L interface, most probably O2 and nutrients, although VM and CBFS cells located lower down in the liquid column might provide an additional fitness advantage through the colonization of a less competitive zone below the biofilm. Our comparison of different SBW25 biofilm types illustrates more generally how varied biofilm characteristics and fitness advantage could become among adaptive mutants arising from an ancestral biofilm-forming strain and raises the question of how significant these changes might be in a range of medical, biotechnological and industrial contexts where diversification and change may be problematic.


Asunto(s)
Biopelículas , Pseudomonas fluorescens/fisiología , Adaptación Fisiológica/genética , Adhesión Bacteriana , Biopelículas/crecimiento & desarrollo , Evolución Biológica , Interacciones Microbianas , Mutación , Pseudomonas fluorescens/genética , Pseudomonas fluorescens/crecimiento & desarrollo , Reología , Viscosidad
7.
BMC Evol Biol ; 18(1): 155, 2018 10 16.
Artículo en Inglés | MEDLINE | ID: mdl-30326845

RESUMEN

BACKGROUND: Selection for a certain trait in microbes depends on the genetic background of the strain and the selection pressure of the environmental conditions acting on the cells. In contrast to the sessile state in the biofilm, various bacterial cells employ flagellum-dependent motility under planktonic conditions suggesting that the two phenotypes are mutually exclusive. However, flagellum dependent motility facilitates the prompt establishment of floating biofilms on the air-medium interface, called pellicles. Previously, pellicles of B. subtilis were shown to be preferably established by motile cells, causing a reduced fitness of non-motile derivatives in the presence of the wild type strain. RESULTS: Here, we show that lack of active flagella promotes the evolution of matrix overproducers that can be distinguished by the characteristic wrinkled colony morphotype. The wrinkly phenotype is associated with amino acid substitutions in the master repressor of biofilm-related genes, SinR. By analyzing one of the mutations, we show that it alters the tetramerization and DNA binding properties of SinR, allowing an increased expression of the operon responsible for exopolysaccharide production. Finally, we demonstrate that the wrinkly phenotype is advantageous when cells lack flagella, but not in the wild type background. CONCLUSIONS: Our experiments suggest that loss of function phenotypes could expose rapid evolutionary adaptation in bacterial biofilms that is otherwise not evident in the wild type strains.


Asunto(s)
Bacillus subtilis/fisiología , Evolución Biológica , Bacillus subtilis/citología , Bacillus subtilis/genética , Proteínas Bacterianas/genética , ADN Bacteriano/genética , Regulación Bacteriana de la Expresión Génica , Movimiento , Mutación/genética , Tasa de Mutación , Regiones Operadoras Genéticas/genética , Operón , Fenotipo , Selección Genética
8.
Ultrastruct Pathol ; 42(2): 91-96, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29424602

RESUMEN

Geroderma osteodysplasticum (GO) has clinical and histological features that overlap with other causes of wrinkly skin. Here we present the case of a child diagnosed with GO following exome sequencing of a panel of genes covering the wide differential diagnosis. The histological features of the overlapping conditions are presented, highlighting the utility of panel testing for conditions of this type. This is relevant to many genetic conditions and can influence ongoing management as exemplified by this case.


Asunto(s)
Enfermedades Óseas/congénito , Enanismo/diagnóstico , Enanismo/genética , Enanismo/patología , Enfermedades Cutáneas Genéticas/diagnóstico , Enfermedades Cutáneas Genéticas/genética , Enfermedades Cutáneas Genéticas/patología , Enfermedades Óseas/diagnóstico , Enfermedades Óseas/genética , Enfermedades Óseas/patología , Cutis Laxo/diagnóstico , Exoma , Femenino , Humanos , Lactante , Recién Nacido , Mutación
9.
Am J Med Genet A ; 164A(4): 1049-55, 2014 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-24459010

RESUMEN

Cutis laxa (CL) is a connective tissue disorder, characterized by loose, inelastic, sagging skin. Both acquired and inherited (dominant, recessive, and X-linked) forms exist. Here, we describe a new phenotype, which overlaps with other known CL syndromes. Our patient has a unique combination of features in association with sagging, inelastic, wrinkled skin, including cataract, severe cardiomyopathy, abnormal fat distribution, improvement of skin-wrinkling with age, and white matter abnormalities but no significant histologic collagen or elastin abnormalities. Mutation analysis of known CL genes was negative. We suggest that our patient has a novel syndrome, with the main features of CL, intellectual disability, abnormal fat distribution, cardiomyopathy, and cataract.


Asunto(s)
Cardiomiopatías/genética , Catarata/genética , Cutis Laxo/genética , Adolescente , Distribución de la Grasa Corporal , Humanos , Masculino , Mutación , Fenotipo , Envejecimiento de la Piel/genética
10.
Microbiol Spectr ; 10(5): e0218822, 2022 10 26.
Artículo en Inglés | MEDLINE | ID: mdl-36098555

RESUMEN

Vibrio parahaemolyticus, a causative agent of seafood-associated gastroenteritis, undergoes opaque-translucent (OP-TR) colony switching associated with capsular polysaccharide (CPS) production. Here, we showed that V. parahaemolyticus was also able to naturally and reversibly switch between wrinkly and smooth phenotypes. More than 1,000 genes were significantly differentially expressed during colony morphology switching, including the major virulence gene loci and key biofilm-related genes. The genes responsible for type III secretion system 1 (T3SS1), type VI secretion systems (T6SS1 and T6SS2), and flagellar synthesis were downregulated in the wrinkly spreader phenotype, whereas genes located on the pathogenicity island Vp-PAI and those responsible for chitin-regulated pili (ChiRP) and Syp exopolysaccharide synthesis were upregulated. In addition, we showed that the wrinkly spreader grew faster, had greater motility and biofilm capacities, and produced more c-di-GMP than the smooth type. A dozen genes potentially associated with c-di-GMP metabolism were shown to be significantly differentially expressed, which may account for the differences in c-di-GMP levels between the two phenotypes. Most importantly, dozens of putative regulators were significantly differentially expressed, and hundreds of noncoding RNAs were detected during colony morphology switching, indicating that phenotype switching is strictly regulated by a complex molecular regulatory network in V. parahaemolyticus. Taken together, the presented work highlighted the gene expression profiles related to wrinkly-smooth switching, showing that the significantly differentially expressed genes were involved in various biological behaviors, including virulence factor production, biofilm formation, metabolism, adaptation, and colonization. IMPORTANCE We showed that Vibrio parahaemolyticus was able to naturally and reversibly switch between wrinkly and smooth phenotypes and disclosed the gene expression profiles related to wrinkly-smooth switching, showing that the significantly differentially expressed genes between the two colony morphology phenotypes were involved in various biological behaviors, including virulence factor production, biofilm formation, metabolism, adaptation, and colonization.


Asunto(s)
Sistemas de Secreción Tipo VI , Vibrio parahaemolyticus , Vibrio parahaemolyticus/genética , Sistemas de Secreción Tipo III/metabolismo , Regulación Bacteriana de la Expresión Génica , Sistemas de Secreción Tipo VI/metabolismo , Transcriptoma , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Factores de Virulencia/genética , Fenotipo , Biopelículas , Quitina
11.
Chin Herb Med ; 12(3): 265-272, 2020 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-36119006

RESUMEN

Objective: In this study, we aimed to identify the genes involved in leaf margin serration in Perilla frutescens. P. frutescens (Family: Lamiaceae) is widely grown in Asian countries. Perilla leaf is the medicinal part stipulated in the Chinese Pharmacopoeia. There are mainly two types of perilla leaves: one with serrated leaf margin which is the phenotype described in the pharmacopoeia and the other with smooth leaf margin. Methods: Transcriptome sequencing, co-expression analysis, and qRT-PCR analysis of six perilla tissues sampled from two different phenotypes (serrated and smooth leaves) were performed. Results: Forty-three differentially expressed genes (DEGs), which may potentially regulate leaf shape, were identified through de novo transcriptome sequencing between the two groups. Genes involved in leaf shape regulation were identified. Simultaneously, we validated five DEGs by qRT-PCR, and the results were consistent with the transcriptome data. In addition, 1186 transcription factors (TFs) belonging to 45 TF families were identified. Moreover, the co-expression network of DEGs was constructed. Conclusion: The study identified the key genes that control leaf shape by comparing the transcriptomes. Our findings also provide basic data for further exploring P. frutescens, which can help study the mechanism of leaf shape development and molecular breeding.

12.
Elife ; 82019 01 08.
Artículo en Inglés | MEDLINE | ID: mdl-30616716

RESUMEN

Predicting evolutionary change poses numerous challenges. Here we take advantage of the model bacterium Pseudomonas fluorescens in which the genotype-to-phenotype map determining evolution of the adaptive 'wrinkly spreader' (WS) type is known. We present mathematical descriptions of three necessary regulatory pathways and use these to predict both the rate at which each mutational route is used and the expected mutational targets. To test predictions, mutation rates and targets were determined for each pathway. Unanticipated mutational hotspots caused experimental observations to depart from predictions but additional data led to refined models. A mismatch was observed between the spectra of WS-causing mutations obtained with and without selection due to low fitness of previously undetected WS-causing mutations. Our findings contribute toward the development of mechanistic models for forecasting evolution, highlight current limitations, and draw attention to challenges in predicting locus-specific mutational biases and fitness effects.


Asunto(s)
Adaptación Fisiológica/genética , Mutación/genética , Sesgo , Genotipo , Modelos Biológicos , Tasa de Mutación , Fenotipo , Pseudomonas fluorescens/genética , Pseudomonas fluorescens/fisiología
13.
Ann Biomed Eng ; 45(4): 1039-1047, 2017 04.
Artículo en Inglés | MEDLINE | ID: mdl-27913950

RESUMEN

Fingertips wrinkle due to long exposure to water. The biological reason for this morphological change is unclear and still not fully understood. There are two main hypotheses for the underlying mechanism of fingertip wrinkling: the 'shrink' model (in which the wrinkling is driven by the contraction of the lower layers of skin, associated with the shrinking of the underlying vasculature), and the 'swell' model (in which the wrinkling is driven by the swelling of the upper layers of the skin, associated with osmosis). In reality, contraction of the lower layers of the skin and swelling of the upper layers will happen simultaneously. However, the relative importance of these two mechanisms to drive fingertip wrinkling also remains unclear. Simulating the swelling in the upper layers of skin alone, which is associated with neurological disorders, we found that wrinkles appeared above an increase of volume of [Formula: see text] Therefore, the upper layers can not exceed this swelling level in order to not contradict in vivo observations in patients with such neurological disorders. Simulating the contraction of the lower layers of the skin alone, we found that the volume have to decrease a [Formula: see text] to observe wrinkles. Furthermore, we found that the combined effect of both mechanisms leads to pronounced wrinkles even at low levels of swelling and contraction when individually they do not. This latter results indicates that the collaborative effect of both hypothesis are needed to induce wrinkles in the fingertips. Our results demonstrate how models from continuum mechanics can be successfully applied to testing hypotheses for the mechanisms that underly fingertip wrinkling, and how these effects can be quantified.


Asunto(s)
Dedos , Modelos Biológicos , Envejecimiento de la Piel , Piel/metabolismo , Piel/fisiopatología , Humanos , Ósmosis , Piel/patología
14.
Chinese Herbal Medicines ; (4): 265-272, 2020.
Artículo en Zh | WPRIM | ID: wpr-842018

RESUMEN

Objective: In this study, we aimed to identify the genes involved in leaf margin serration in Perilla frutescens. P. frutescens (Family: Lamiaceae) is widely grown in Asian countries. Perilla leaf is the medicinal part stipulated in the Chinese Pharmacopoeia. There are mainly two types of perilla leaves: one with serrated leaf margin which is the phenotype described in the pharmacopoeia and the other with smooth leaf margin. Methods: Transcriptome sequencing, co-expression analysis, and qRT-PCR analysis of six perilla tissues sampled from two different phenotypes (serrated and smooth leaves) were performed. Results: Forty-three differentially expressed genes (DEGs), which may potentially regulate leaf shape, were identified through de novo transcriptome sequencing between the two groups. Genes involved in leaf shape regulation were identified. Simultaneously, we validated five DEGs by qRT-PCR, and the results were consistent with the transcriptome data. In addition, 1186 transcription factors (TFs) belonging to 45 TF families were identified. Moreover, the co-expression network of DEGs was constructed. Conclusion: The study identified the key genes that control leaf shape by comparing the transcriptomes. Our findings also provide basic data for further exploring P. frutescens, which can help study the mechanism of leaf shape development and molecular breeding.

SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda