Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 20 de 557
Filtrar
Más filtros

Publication year range
1.
Yeast ; 41(7): 437-447, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38850070

RESUMEN

Four yeast isolates were obtained from rotting wood and galleries of passalid beetles collected in different sites of the Brazilian Amazonian Rainforest in Brazil. This yeast produces unconjugated allantoid asci each with a single elongated ascospore with curved ends. Sequence analysis of the internal transcribed spacer-5.8 S region and the D1/D2 domains of the large subunit ribosomal RNA (rRNA) gene showed that the isolates represent a novel species of the genus Spathaspora. The novel species is phylogenetically related to a subclade containing Spathaspora arborariae and Spathaspora suhii. Phylogenomic analysis based on 1884 single-copy orthologs for a set of Spathaspora species whose whole genome sequences are available confirmed that the novel species represented by strain UFMG-CM-Y285 is phylogenetically close to Sp. arborariae. The name Spathaspora marinasilvae sp. nov. is proposed to accommodate the novel species. The holotype of Sp. marinasilvae is CBS 13467 T (MycoBank 852799). The novel species was able to accumulate xylitol and produce ethanol from d-xylose, a trait of biotechnological interest common to several species of the genus Spathaspora.


Asunto(s)
Escarabajos , Filogenia , Bosque Lluvioso , Saccharomycetales , Madera , Xilosa , Animales , Madera/microbiología , Escarabajos/microbiología , Brasil , Saccharomycetales/genética , Saccharomycetales/clasificación , Saccharomycetales/aislamiento & purificación , Saccharomycetales/metabolismo , Xilosa/metabolismo , Fermentación , ADN de Hongos/genética , Análisis de Secuencia de ADN
2.
Artículo en Inglés | MEDLINE | ID: mdl-38936832

RESUMEN

d-Xylose is a metabolizable carbon source for several non-Saccharomyces species, but not for native strains of S. cerevisiae. For the potential application of xylose-assimilating yeasts in biotechnological processes, a deeper understanding of pentose catabolism is needed. This work aimed to investigate the traits behind xylose utilization in diverse yeast species. The performance of 9 selected xylose-metabolizing yeast strains was evaluated and compared across 3 oxygenation conditions. Oxygenation diversely impacted growth, xylose consumption, and product accumulation. Xylose utilization by ethanol-producing species such as Spathaspora passalidarum and Scheffersomyces stipitis was less affected by oxygen restriction compared with other xylitol-accumulating species such as Meyerozyma guilliermondii, Naganishia liquefaciens, and Yamadazyma sp., for which increased aeration stimulated xylose assimilation considerably. Spathaspora passalidarum exhibited superior conversion of xylose to ethanol and showed the fastest growth and xylose consumption in all 3 conditions. By performing assays under identical conditions for all selected yeasts, we minimize bias in comparisons, providing valuable insight into xylose metabolism and facilitating the development of robust bioprocesses. ONE-SENTENCE SUMMARY: This work aims to expand the knowledge of xylose utilization in different yeast species, with a focus on how oxygenation impacts xylose assimilation.


Asunto(s)
Etanol , Fermentación , Oxígeno , Xilosa , Xilosa/metabolismo , Etanol/metabolismo , Oxígeno/metabolismo , Levaduras/metabolismo , Levaduras/crecimiento & desarrollo , Cinética , Saccharomycetales/metabolismo , Saccharomycetales/crecimiento & desarrollo , Aerobiosis
3.
Prep Biochem Biotechnol ; 54(1): 61-72, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37149784

RESUMEN

Areca nut husk is the most promising alternative source of low-cost raw materials because it contains a considerable amount of five-carbon monosaccharide sugar in the form of xylose. This polymeric sugar can be isolated and transformed into a value-added chemical using fermentation. To extract sugars from areca nut husk fibers, preliminary pretreatment, such as dilute acid hydrolysis (H2SO4), was performed. The hemicellulosic hydrolysate of areca nut husk can produce xylitol through fermentation, but toxic components inhibit the growth of microorganisms. To overcome this, a series of detoxification treatments, including pH adjustment, activated charcoal, and ion exchange resin, were carried out to reduce the concentration of inhibitors in the hydrolysate. This study reports a remarkable 99% removal of inhibitors in the hemicellulosic hydrolysate. Subsequently, a fermentation process using Candida tropicalis (MTCC6192) was executed with the detoxified hemicellulosic hydrolysate of areca nut husk, yielding an optimum xylitol yield of 0.66 g/g. This study concludes that detoxification techniques like pH adjustment, activated charcoal, and ion exchange resins are the most economical and effective methods for eliminating toxic compounds in hemicellulosic hydrolysates. Therefore, the medium derived after detoxification from areca nut hydrolysate may be considered to have significant potential for xylitol production.


Asunto(s)
Candida tropicalis , Xilitol , Areca , Carbón Orgánico , Nueces , Zea mays/química , Polisacáridos , Carbohidratos , Fermentación , Xilosa , Hidrólisis
4.
Prep Biochem Biotechnol ; 54(2): 207-217, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37184497

RESUMEN

The present study examines the impact of nitrogen sources (yeast extract, ammonium sulfate peptone, ammonium nitrate, urea, and sodium nitrate), salt solution (0.5 g/L MgSO4, 0.5 g/L KH2PO4, 0.3 g/L CaCl2), trace elements solution (0.1 g/L CuSO4, 0.1 g/L FeSO4, 0.02 g/L MnCl2, 0.02 g/L ZnSO4), operational parameters (temperature, aeration, agitation, initial pH and xylose concentration) and co- substrate supplementation (glucose, fructose, maltose, sucrose, and glycerol) on xylitol biosynthesis by Candida tropicalis ATCC 13803 using synthetic xylose. The significant medium components were identified using the Plackett Burman design followed by central composite designs to obtain the optimal concentration for the critical medium components in shaker flasks. Subsequently, the effect of operational parameters was examined using the One Factor At a Time method, followed by the impact of five co-substrates on xylitol biosynthesis in a 1 L bioreactor. The optimal media components and process parameters are as follows: peptone: 12.68 g/L, yeast extract: 6.62 g/L, salt solution (0.5 g/L MgSO4, 0.5 g/L KH2PO4, and 0.3 g/L CaCl2): 1.23 X (0.62 g/L, 0.62 g/L, and 0.37 g/L respectively), temperature: 30 °C, pH: 6, agitation: 400 rpm, aeration: 1 vvm, and xylose: 50 g/L. Optimization studies resulted in xylitol yield and productivity of 0.71 ± 0.004 g/g and 1.48 ± 0.018 g/L/h, respectively. Glycerol supplementation (2 g/L) further improved xylitol yield (0.83 ± 0.009 g/g) and productivity (1.87 ± 0.020 g/L/h) by 1.66 and 3.12 folds, respectively, higher than the unoptimized conditions thus exhibiting the potential of C. tropicalis ATCC 13803 being used for commercial xylitol production.


Asunto(s)
Candida tropicalis , Xilitol , Fermentación , Xilosa , Glicerol , Peptonas/metabolismo , Cloruro de Calcio , Suplementos Dietéticos
5.
Molecules ; 29(5)2024 Feb 29.
Artículo en Inglés | MEDLINE | ID: mdl-38474585

RESUMEN

Ribitol (C5H12O5) is an acyclic sugar alcohol that was recently identified in O-mannose glycan on mammalian α-dystroglycan. The conformation and dynamics of acyclic sugar alcohols such as ribitol are dependent on the stereochemistry of the hydroxyl groups; however, the dynamics are not fully understood. To gain insights into the conformation and dynamics of sugar alcohols, we carried out comparative analyses of ribitol, d-arabitol and xylitol by a crystal structure database search, solution NMR analysis and molecular dynamics (MD) simulations. The crystal structures of the sugar alcohols showed a limited number of conformations, suggesting that only certain stable conformations are prevalent among all possible conformations. The three-bond scholar coupling constants and exchange rates of hydroxyl protons were measured to obtain information on the backbone torsion angle and possible hydrogen bonding of each hydroxyl group. The 100 ns MD simulations indicate that the ribitol backbone has frequent conformational transitions with torsion angles between 180∘ and ±60∘, while d-arabitol and xylitol showed fewer conformational transitions. Taking our experimental and computational data together, it can be concluded that ribitol is more flexible than d-arabitol or xylitol, and the flexibility is at least in part defined by the configuration of the OH groups, which may form intramolecular hydrogen bonds.


Asunto(s)
Ribitol , Xilitol , Simulación de Dinámica Molecular , Alcoholes del Azúcar
6.
J Sci Food Agric ; 104(6): 3306-3319, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38086615

RESUMEN

BACKGROUND: It is crucial to reduce the high sugar content of fruit yoghurts in response to the excessive weight gain epidemic. The use of alternative sweeteners in yoghurts is often associated with the negative sensory attributes that can have an impact on yoghurt liking. The main objective of this research was to investigate the effect of alternative sweeteners and strawberry puree addition on the temporal sensory profile of yoghurt using multiple-intake temporal check all that apply (TCATA). A novel approach to the statical analysis of the temporal sensory data was employed by using aligned rank transformation-analysis of variance to investigate the differences between sensory attributes within different products and within different intakes. RESULTS: Results showed that the attributes sweet and fruity decreased when the concentration of fruit puree was increased at low concentration of sucrose. Interestingly, when the concentration of fruit puree was increased, fruitiness increased and mouthcoating decreased at low concentration of stevia. With successive intakes, the attributes sweet, sour, creamy and fruity significantly decreased in yoghurts sweetened with sucrose, xylitol and stevia. Yoghurts containing low concentrations of sucrose or xylitol and fruit puree were liked the most. However, stevia-sweetened yoghurts varying in sweetener and puree concentration were not significantly different in liking. In order to investigate the consumer acceptance of yoghurts, a novel approach was used - that is, utilizing TCATA temporal data to investigate temporal drivers of liking for each yoghurt type. CONCLUSION: The use of multiple statistical analysis to analyse temporal data suggested that both sweetener and puree concentration need to be considered when developing products using alternative sweeteners. © 2023 The Authors. Journal of The Science of Food and Agriculture published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.


Asunto(s)
Fragaria , Stevia , Edulcorantes/análisis , Xilitol/análisis , Yogur , Stevia/química , Sacarosa/análisis , Gusto
7.
Biochem Biophys Res Commun ; 682: 21-26, 2023 11 19.
Artículo en Inglés | MEDLINE | ID: mdl-37793321

RESUMEN

Glucose isomerase (GI) is extensively used in the food industry for production of high-fructose corn syrup and for the production of biofuels and other renewable chemicals. Structure-based studies on GI inhibitors are important for improving its efficiency in industrial applications. Here, we report the subatomic crystal structure of Streptomyces rubiginosus GI (SruGI) complexed with its inhibitor, xylitol, at 0.99 Å resolution. Electron density map and temperature factor analysis showed partial binding of xylitol to the M1 metal binding site of SruGI, providing two different conformations of the metal binding site and the substrate binding channel. The xylitol molecule induced a conformational change in the M2 metal ion-interacting Asp255 residue, which subsequently led to a conformational change in the side chain of Asp181 residue. This led to the positional shift of Pro25 by 1.71 Å and side chain rotation of Phe26 by 21°, where located on the neighboring protomer in tetrameric SruGI. The conformation change of these two residues affect the size of the substrate-binding channel of GI. Therefore, xylitol binding to M1 site of SruGI induces not only a conformational changes of the metal-binding site, but also conformational change of substrate-binding channel of the tetrameric SruGI. These results expand our knowledge about the mechanism underlying the inhibitory effect of xylitol on GI.


Asunto(s)
Isomerasas Aldosa-Cetosa , Xilitol , Xilitol/química , Xilitol/farmacología , Sitios de Unión , Conformación Proteica , Metales/metabolismo , Isomerasas Aldosa-Cetosa/química , Glucosa/metabolismo
8.
Crit Rev Biotechnol ; : 1-18, 2023 Nov 06.
Artículo en Inglés | MEDLINE | ID: mdl-37932016

RESUMEN

The circular economy is anticipated to bring a disruptive transformation in manufacturing technologies. Robust and industrial scalable microbial strains that can simultaneously assimilate and valorize multiple carbon substrates are highly desirable, as waste bioresources contain substantial amounts of renewable and fermentable carbon, which is diverse. Lignocellulosic biomass (LCB) is identified as an inexhaustible and alternative resource to reduce global dependence on oil. Glucose, xylose, and arabinose are the major monomeric sugars in LCB. However, primary research has focused on the use of glucose. On the other hand, the valorization of pentose sugars, xylose, and arabinose, has been mainly overlooked, despite possible assimilation by vast microbial communities. The present review highlights the research efforts that have explicitly proven the suitability of arabinose as the starting feedstock for producing various chemical building blocks via biological routes. It begins by analyzing the availability of various arabinose-rich biorenewable sources that can serve as potential feedstocks for biorefineries. The subsequent section outlines the current understanding of arabinose metabolism, biochemical routes prevalent in prokaryotic and eukaryotic systems, and possible products that can be derived from this sugar. Further, currently, exemplar products from arabinose, including arabitol, 2,3-butanediol, 1,2,3-butanetriol, ethanol, lactic acid, and xylitol are discussed, which have been produced by native and non-native microbial strains using metabolic engineering and genome editing tools. The final section deals with the challenges and obstacles associated with arabinose-based production, followed by concluding remarks and prospects.

9.
Microb Cell Fact ; 22(1): 201, 2023 Oct 06.
Artículo en Inglés | MEDLINE | ID: mdl-37803395

RESUMEN

BACKGROUND: Xylitol has a wide range of applications in the pharmaceuticals, cosmetic, food and beverage industry. Microbial xylitol production reduces the risk of contamination and is considered as environment friendly and sustainable compared to the chemical method. In this study, random mutagenesis and genetic engineering approaches were employed to develop Candida tropicalis strains with reduced xylitol dehydrogenase (XDH) activity to eliminate co-substrate requirement for corn cob-based xylitol-ethanol biorefinery. RESULTS: The results suggest that when pure xylose (10% w/v) was fermented in bioreactor, the Ethyl methane sulfonate (EMS) mutated strain (C. tropicalis K2M) showed 9.2% and XYL2 heterozygous (XYL2/xyl2Δ::FRT) strain (C. tropicalis K21D) showed 16% improvement in xylitol production compared to parental strain (C. tropicalis K2). Furthermore, 1.5-fold improvement (88.62 g/L to 132 g/L) in xylitol production was achieved by C. tropicalis K21D after Response Surface Methodology (RSM) and one factor at a time (OFAT) applied for media component optimization. Finally, corncob hydrolysate was tested for xylitol production in biorefinery mode, which leads to the production of 32.6 g/L xylitol from hemicellulosic fraction, 32.0 g/L ethanol from cellulosic fraction and 13.0 g/L animal feed. CONCLUSIONS: This work, for the first time, illustrates the potential of C. tropicalis K21D as a microbial cell factory for efficient production of xylitol and ethanol via an integrated biorefinery framework by utilising lignocellulosic biomass with minimum waste generation.


Asunto(s)
Candida tropicalis , Xilitol , Candida tropicalis/genética , Zea mays , Fermentación , Etanol , Hidrólisis , Xilosa
10.
Microb Cell Fact ; 22(1): 145, 2023 Aug 03.
Artículo en Inglés | MEDLINE | ID: mdl-37537595

RESUMEN

R. toruloides is an oleaginous yeast, with diverse metabolic capacities and high tolerance for inhibitory compounds abundant in plant biomass hydrolysates. While R. toruloides grows on several pentose sugars and alcohols, further engineering of the native pathway is required for efficient conversion of biomass-derived sugars to higher value bioproducts. A previous high-throughput study inferred that R. toruloides possesses a non-canonical L-arabinose and D-xylose metabolism proceeding through D-arabitol and D-ribulose. In this study, we present a combination of genetic and metabolite data that refine and extend that model. Chiral separations definitively illustrate that D-arabitol is the enantiomer that accumulates under pentose metabolism. Deletion of putative D-arabitol-2-dehydrogenase (RTO4_9990) results in > 75% conversion of D-xylose to D-arabitol, and is growth-complemented on pentoses by heterologous xylulose kinase expression. Deletion of putative D-ribulose kinase (RTO4_14368) arrests all growth on any pentose tested. Analysis of several pentose dehydrogenase mutants elucidates a complex pathway with multiple enzymes mediating multiple different reactions in differing combinations, from which we also inferred a putative L-ribulose utilization pathway. Our results suggest that we have identified enzymes responsible for the majority of pathway flux, with additional unknown enzymes providing accessory activity at multiple steps. Further biochemical characterization of the enzymes described here will enable a more complete and quantitative understanding of R. toruloides pentose metabolism. These findings add to a growing understanding of the diversity and complexity of microbial pentose metabolism.


Asunto(s)
Arabinosa , Xilosa , Xilosa/metabolismo , Arabinosa/metabolismo , Pentosas/metabolismo
11.
Lett Appl Microbiol ; 76(2)2023 Feb 16.
Artículo en Inglés | MEDLINE | ID: mdl-36764670

RESUMEN

Human saliva contains natural antimicrobial enzymes. In this in-vitro study, we evaluate the antimicrobial activity of a dentifrice containing a salivary enzyme complex (SEC) with xylitol versus a standard 0.12% chlorhexidine (CHX) dentifrice. Adherent cells of Streptococcus gordonii, Strep. mutans, Actinomyces naeslundii, Fusobacterium nucleatum subsp polymorphum, and Corynebacterium matruchotii were exposed to SEC-xylitol and CHX dentifrices for 2 min and viable CFUs were enumerated. Exposure to the SEC-xylitol dentifrice resulted in a significant reduction in bacterial viability, which was greater than that shown by the CHX dentifrice, against all organisms tested. The SEC-xylitol dentifrice also exhibited greater antimicrobial activity against all organsims in well diffusion assays compared to CHX. Dentifrice activity was also evaluated against a three species community of Strep. gordonii, Strep. mutans, and Coryne. matruchotii using bacterial live/dead stain. The SEC-xylitol dentifrice was at least as effective as CHX in removal of the multispecies community. The combination of SEC and xylitol generates a highly effective antimicrobial dentifrice with greater antibacterial activity than a standard 0.12% CHX formulations. SEC and xylitol combinations are worthy of further investigation for routine use and in the management of gingivitis and periodontal disease.


Asunto(s)
Antiinfecciosos , Dentífricos , Infecciones Estreptocócicas , Humanos , Clorhexidina , Streptococcus mutans , Xilitol , Complejos Multienzimáticos
12.
Biotechnol Lett ; 45(2): 263-272, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-36586052

RESUMEN

The yeast Cyberlindnera xylosilytica UFMG-CM-Y309 has been identified as a promising new xylitol producer from sugarcane bagasse hemicellulosic hydrolysate (SCHH). However, SCHH pretreatment process generates byproducts, which are toxic to cell metabolism, including furans, phenolic compounds, and carboxylic acids, such as acetic acid, typically released at high concentrations. This research aims to reduce acetic acid in sugarcane hemicellulose hydrolysate concomitantly with xylitol production by yeast strain Cy. xylosilytica UFMG-CM-Y309 in a bioreactor by strategically evaluating the influence of volumetric oxygen transfer coefficient (kLa) (21 and 35 h-1). Experiments were conducted on a bench bioreactor (2 L volumetric capacity) at different initial kLa values (21 and 35 h-1). SCHH medium was supplemented with rice bran extract (10 g L-1) and yeast extract (1 g L-1). Cy. xylosilytica showed high xylitol production performance (19.56 g L-1), xylitol yield (0.56 g g-1) and, maximum xylitol-specific production rate (µpmáx 0.20 gxylitol·g-1 h-1) at kLa value of 21 h-1, concomitantly slowing the rate of acetic acid consumption. A faster acetic acid consumption (100%) by Cy. xylosilytica was observed at kLa of 35 h-1, concomitantly with an increase in maximum cellular growth (14.60 g L-1) and reduction in maximum xylitol production (14.56 g L-1 and Yp/s 0.34 g g-1). This study contributes to pioneering research regarding this yeast performance in bioreactors, emphasizing culture medium detoxification and xylitol production.


Asunto(s)
Celulosa , Saccharum , Celulosa/metabolismo , Xilitol , Ácido Acético/metabolismo , Hidrólisis , Reactores Biológicos , Levaduras/metabolismo , Fermentación
13.
Biotechnol Lett ; 45(11-12): 1529-1539, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37831286

RESUMEN

PURPOSE: Erythritol is a valuable compound as sweetener and chemical material however cannot be fermented from the abundant substrate xylose. METHODS: The strain Trichosporonoides oedocephalis ATCC 16958 was employed to produce polyols including xylitol and erythritol by metabolic engineering approaches. RESULTS: The introduction of a substrate-specific ribose-5-phosphate isomerase endowed T. oedocephalis with xylose-assimilation activity to produce xylitol, and eliminated glycerol production simultaneously. A more value-added product, erythritol was produced by further introducing a homologous xylulose kinase. The carbon flux was redirected from xylitol to erythritol by adding high osmotic pressure. The production of erythritol was improved to 46.5 g/L in flasks by fermentation adjustment, and the process was scaled up in a 5-L fermentor, with a 40 g/L erythritol production after 120 h, and a time-space yield of 0.56 g/L/h. CONCLUSION: This study demonstrated the potential of T. oedocephalis in the synthesis of multiple useful products from xylose.


Asunto(s)
Eritritol , Xilitol , Xilosa/metabolismo , Fermentación , Redes y Vías Metabólicas
14.
Int J Mol Sci ; 24(16)2023 Aug 18.
Artículo en Inglés | MEDLINE | ID: mdl-37629091

RESUMEN

Although the association of polyols/polyphosphates/fluoride has been demonstrated to promote remarkable effects on dental enamel, little is known on their combined effects on biofilms. This study assessed the effects of solutions containing fluoride/sodium trimetaphosphate (TMP)/xylitol/erythritol on dual-species biofilms of Streptococcus mutans and Candida albicans. Biofilms were grown in the continuous presence of these actives alone or in different associations. Quantification of viable plate counts, metabolic activity, biofilm biomass, and extracellular matrix components were evaluated. Overall, fluoride and TMP were the main actives that significantly influenced most of the variables analyzed, with a synergistic effect between them for S. mutans CFUs, biofilm biomass, and protein content of the extracellular matrix (p < 0.05). A similar trend was observed for biofilm metabolic activity and carbohydrate concentrations of the extracellular matrix, although without statistical significance. Regarding the polyols, despite their modest effects on most of the parameters analyzed when administered alone, their co-administration with fluoride and TMP led to a greater reduction in S. mutans CFUs and biofilm biomass compared with fluoride alone at the same concentration. It can be concluded that fluoride and TMP act synergistically on important biofilm parameters, and their co-administration with xylitol/erythritol significantly impacts S. mutans CFUs and biomass reduction.


Asunto(s)
Fluoruros , Xilitol , Fluoruros/farmacología , Xilitol/farmacología , Polifosfatos/farmacología , Biopelículas , Eritritol/farmacología
15.
J Environ Manage ; 326(Pt A): 116623, 2023 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-36368200

RESUMEN

The wine industry produces significant amounts of by-products and residues that are not properly managed, posing an environmental problem. Grape must surplus, vine shoots, and wine lees have the potential to be used as renewable resources for the production of energy and chemicals. Metabolic engineering efforts have established Saccharomyces cerevisiae as an efficient microbial cell factory for biorefineries. Current biorefineries designed for producing multiple products often rely on just one feedstock, but the bioeconomy would clearly benefit if these biorefineries could efficiently convert multiple feedstocks. Moreover, to reduce the environmental impact of fossil fuel consumption and maximize production economics, a biorefinery should be capable to supplement the manufacture of biofuel with the production of high-value products. This study proposes an integrated approach for the valorization of diverse wastes resulting from winemaking processes through the biosynthesis of xylitol and ethanol. Using genetically modified S. cerevisiae strains, the xylose-rich hemicellulosic fraction of hydrothermally pretreated vine shoots was converted into xylitol, and the cellulosic fraction was used to produce bioethanol. In addition, grape must, enriched in sugars, was efficiently used as a low-cost source for yeast propagation. The production of xylitol was optimized, in a Simultaneous Saccharification and Fermentation process configuration, by adjusting the inoculum size and enzyme loading. Furthermore, a yeast strain displaying cellulases in the cell surface was applied for the production of bioethanol from the glucan-rich cellulosic. With the addition of grape must and/or wine lees, high ethanol concentrations were reached, which are crucial for the economic feasibility of distillation. This integrated multi-feedstock valorization provides a synergistic alternative for converting a range of winery wastes and by-products into biofuel and an added-value chemical while decreasing waste released to the environment.


Asunto(s)
Saccharomyces cerevisiae , Vitis , Saccharomyces cerevisiae/metabolismo , Biocombustibles , Xilitol/metabolismo , Xilosa/metabolismo , Fermentación , Etanol/metabolismo
16.
Molecules ; 28(4)2023 Feb 06.
Artículo en Inglés | MEDLINE | ID: mdl-36838538

RESUMEN

Before fermentation with hemicellulosic hydrolysate as a substrate, it is generally necessary to detoxify the toxic substances that are harmful to microorganism growth. Cyclic AMP receptor protein (CRP) is a global regulator, and mutation of its key sites may have an important impact on E. coli virulence tolerance. Using corncob hydrolysate without ion-exchange or lime detoxification as the substrate, shake flask fermentation experiments showed that CRP mutant IS5-dG (I112L, T127G, A144T) produced 18.4 g/L of xylitol within 34 h, and the OD600 was 9.7 at 24 h; these values were 41.5% and 21.3% higher than those of the starting strain, IS5-d, respectively. This mutant produced 82 g/L of xylitol from corncob hydrolysate without ion-exchange or lime detoxification during fed-batch fermentation in a 15-L bioreactor, with a productivity of 1.04 g/L/h; these values were 173% and 174% higher than the starting strain, respectively. To our knowledge, this is the highest xylitol concentration and productivity produced by microbial fermentation using completely non-detoxified hemicellulosic hydrolysate as the substrate to date. This study also showed that alkali neutralization, high temperature sterilization, and fermentation of the hydrolysate had important effects on the xylose loss rate and xylitol production.


Asunto(s)
Escherichia coli , Xilitol , Escherichia coli/metabolismo , Zea mays/química , Fermentación , Xilosa/metabolismo , Hidrólisis
17.
Artículo en Inglés | MEDLINE | ID: mdl-37124158

RESUMEN

Aqueous solubility is one of the key parameters for achieving the desired drug concentration in systemic circulation for better therapeutic outcomes. Carbamazepine (CBZ) is practically insoluble in water, is a BCS class II drug, and exhibits dissolution-dependent oral bioavailability. This study explored a novel application of hot-melt extrusion in the manufacture and development of a thermodynamically stable solid crystal suspension (SCS) to improve the solubility and dissolution rate of CBZ. The SCSs were prepared using sugar alcohols, such as mannitol or xylitol, as crystalline carriers. The drug-sugar blend was processed by hot melt extrusion up to 40 % (w/w) drug loading. The extruded SCS was evaluated for drug content, saturation solubility, differential scanning calorimetry (DSC), Fourier-transform infrared (FTIR) spectroscopy, powder X-ray diffraction (PXRD), scanning electron microscopy (SEM), in vitro release, and stability studies. The physicochemical characterization revealed the highly crystalline existence of pure drug, pure carriers, and extruded SCS. FTIR analysis did not reveal any physical or chemical incompatibilities between the drug and sugar alcohols and showed a homogeneous CBZ distribution within respective crystalline carriers. The SEM micrographs of the solidified SCS revealed the presence of approximately 100 µm crystalline agglomerates. In vitro dissolution and solubility studies showed that the CBZ dissolution rate and solubility were improved significantly from both crystalline carriers for all tested drug loads. The SCSs showed no significant changes in drug content, in vitro release profiles, and thermal characteristics over 3 months of storage at accelerated stability conditions (40±2°C/75±5% RH). As a result, it can be inferred that the SCS strategy can be employed as a contemporary alternative technique to improve the dissolution rate of BCS class II drugs via HME technology.

18.
World J Microbiol Biotechnol ; 39(4): 102, 2023 Feb 17.
Artículo en Inglés | MEDLINE | ID: mdl-36797527

RESUMEN

Xylitol, a sugar substitute, is widely used in various food formulations and finds a steady global market. In this study, xylitol crystals were produced from corncob by fermentation (as an alternative to the chemical catalytic process) by a GRAS yeast Pichia caribbica MTCC 5703 and characterized in detail for their purity and presence of any possible contaminant that may adversely affect mammalian cell growth and proliferation. The acute and chronic oral toxicity trials demonstrated no gross pathological changes with average weekly weight gain in female Wistar rats at high xylitol loading (LD50 > 10,000 mg/kg body weight). The clinical chemistry analysis supported the evidence of no dose-dependent effect by analyzing blood biochemical parameters. The finding suggests the possible application of the crystals (> 98% purity) as a food-grade ingredient for commercial manufacture pending human trials.


Asunto(s)
Xilitol , Zea mays , Ratas , Humanos , Animales , Xilitol/toxicidad , Zea mays/química , Biomasa , Ratas Wistar , Fermentación , Xilosa , Mamíferos
19.
J Clin Pediatr Dent ; 47(5): 73-80, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37732439

RESUMEN

The American Academy of Pediatric Dentistry (AAPD) affirms that the use of fluoride, as an adjunct in the prevention of caries, is safe and effective. The AAPD encourages dentists, other healthcare providers, and parents to optimize fluoride exposures to reduce the risk of caries and to enhance the remineralization of affected teeth. However, there is resistance amongst patients towards fluoride overexposure and despite there being research on other effective remineralizing agents, most pediatric dentists primarily cater their practice to fluoride-based products. The objective of the study is to survey pediatric dentists' acceptance and awareness of fluoride-free remineralizing agents. A listserv of the southeastern and western private practice pediatric dentists was obtained from the AAPD consisting of 6490 email addresses. A questionnaire consisting of 15 questions was sent to each address using Qualtrics. Different trends in fluoride-free acceptance and awareness were seen based on region of practice, region of training and age of practitioner. Region of practice, residency training and age can be contributing factors toward fluoride-free remineralizing agent opinion. The data gathered trends towards western-trained pediatric dentists are more likely to recommend a fluoride-free toothpaste than a southeastern-trained dentist.


Asunto(s)
Caries Dental , Pastas de Dientes , Niño , Humanos , Odontólogos , Fluoruros , Atención Odontológica , Caries Dental/prevención & control , Práctica Privada
20.
Indian J Microbiol ; 63(1): 84-90, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-37179578

RESUMEN

Saccharomyces cerevisiae (S. cerevisiae) is the most widely used yeast in biotechnology in the world because its well-known metabolism and physiology as well as its recognized ability to ferment sugars such as hexoses. However, it does not metabolize pentoses such as arabinose and xylose, which are present in lignocellulosic biomass. Lignocellulose is a widely available raw material, with xylose content of approximately 35% of total sugars. This xylose fraction could be used to obtain high added-value chemical products such as xylitol. One of these yeasts isolated from a Colombian locality, designated as 202-3, showed interesting properties. 202-3 was identified through different approaches as a strain of S. cerevisiae, with an interesting consumption of xylose metabolizing into xylitol, in addition with excellent ability as a hexose fermenter with high ethanol yields and shows resistance to inhibitors present in lignocellulosic hydrolysates. The xylose metabolization by the 202-3 strain and their kinetics parameters had not been previously reported for any other natural strain of S. cerevisiae. These results suggest the great potential of natural strains for obtaining high value-added chemical products using sugars available in lignocellulosic biomass. Supplementary Information: The online version contains supplementary material available at 10.1007/s12088-023-01054-z.

SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda