Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros

Banco de datos
Tipo del documento
Publication year range
1.
Appl Microbiol Biotechnol ; 106(4): 1493-1509, 2022 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-35129654

RESUMEN

In this study, we compared the properties and structures of three fungal GH12 enzymes: the strict endoglucanase Bgh12A and the xyloglucanase Xgh12B from Aspergillus cervinus, and the endoglucanase Egh12 from Thielavia terrestris combining activity on linear ß-glucan and branched xyloglucan. Egh12 from T. terrestris was produced in Pichia pastoris, purified, and characterized as a thermostable enzyme with maximal activity at 70 ºC and a half-life time of 138 min at 65 °C. We for the first time demonstrated that the GH12 endoglucanases Egh12 and Bgh12A, but not the strict xyloglucanase Xgh12B, hydrolyzed (1,3)-ß-linkages in (1,3;1,4)-ß-D-glucooligosaccharides and had transglycosylase activity on (1,3)-ß-D-glucooligosaccharides. Phylogenetic analysis indicated that Egh12 from T. terrestris and Bgh12A from A. cervinus are more related than Bgh12A and Xgh12B isolated from one strain. The X-ray structure of Bgh12A was determined with 2.17 Å resolution and compared with 3D-homology models of Egh12 and Xgh12B. The enzymes have a ß-jelly roll structure with a catalytic cleft running across the protein. Comparative analysis and a docking study demonstrated the importance of endoglucanase-specific loop 1 partly covering the catalytic cleft for correct placement of the linear substrates. Variability in substrate specificity between the GH12 endoglucanases is determined by non-conservative residues in structural loops framing the catalytic cleft. A residue responsible for the thermostability of Egh12 was predicted. The key structural elements and residues described in this study may serve as potential targets for modification aimed at the improvement of enzymatic properties. KEY POINTS: • Thermostable endoglucanase Egh12 from T. terrestris was produced in P. pastoris, purified, and characterized • The X-ray structure of GH12 endoglucanase Bgh12A from A. cervinus was resolved • GH12 endoglucanases, but not GH12 xyloglucanases, hydrolyze (1,3)-ß-linkages in (1,3;1,4)-ß-D-glucooligosaccharides.


Asunto(s)
Celulasa , Sordariales , Aspergillus , Celulasa/metabolismo , Filogenia , Sordariales/metabolismo , Especificidad por Sustrato
2.
Appl Microbiol Biotechnol ; 101(7): 2893-2903, 2017 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-28013403

RESUMEN

Xyloglucan is the most abundant hemicellulose in primary walls of spermatophytes except for grasses. Xyloglucan-degrading enzymes are important in lignocellulosic biomass hydrolysis because they remove xyloglucan, which is abundant in monocot-derived biomass. Fungal genomes encode numerous xyloglucanase genes, belonging to at least six glycoside hydrolase (GH) families. GH74 endo-xyloglucanases cleave xyloglucan backbones with unsubstituted glucose at the -1 subsite or prefer xylosyl-substituted residues in the -1 subsite. In this work, 137 GH74-related genes were detected by examining 293 Eurotiomycete genomes and Ascomycete fungi contained one or no GH74 xyloglucanase gene per genome. Another interesting feature is that the triad of tryptophan residues along the catalytic cleft was found to be widely conserved among Ascomycetes. The GH74 from Aspergillus fumigatus (AfXEG74) was chosen as an example to conduct comprehensive biochemical studies to determine the catalytic mechanism. AfXEG74 has no CBM and cleaves the xyloglucan backbone between the unsubstituted glucose and xylose-substituted glucose at specific positions, along the XX motif when linked to regions deprived of galactosyl branches. It resembles an endo-processive activity, which after initial random hydrolysis releases xyloglucan-oligosaccharides as major reaction products. This work provides insights on phylogenetic diversity and catalytic mechanism of GH74 xyloglucanases from Ascomycete fungi.


Asunto(s)
Aspergillus fumigatus/enzimología , Genoma Fúngico , Glucanos/metabolismo , Glicósido Hidrolasas/química , Glicósido Hidrolasas/metabolismo , Xilanos/metabolismo , Ascomicetos/enzimología , Ascomicetos/genética , Aspergillus fumigatus/genética , Dominio Catalítico/genética , Glicósido Hidrolasas/genética , Glicósidos/metabolismo , Hidrólisis , Filogenia , Especificidad por Sustrato
3.
Biotechnol Bioeng ; 113(12): 2577-2586, 2016 12.
Artículo en Inglés | MEDLINE | ID: mdl-27316782

RESUMEN

Fungal GH12 enzymes are classified as xyloglucanases when they specifically target xyloglucans, or promiscuous endoglucanases when they exhibit catalytic activity against xyloglucan and ß-glucan chains. Several structural and functional studies involving GH12 enzymes tried to explain the main patterns of xyloglucan activity, but what really determines xyloglucanase specificity remains elusive. Here, three fungal GH12 enzymes from Aspergillus clavatus (AclaXegA), A. zonatus (AspzoGH12), and A. terreus (AtEglD) were studied to unveil the molecular basis for substrate specificity. Using functional assays, site-directed mutagenesis, and molecular dynamics simulations, we demonstrated that three main regions are responsible for substrate selectivity: (i) the YSG group in loop 1; (ii) the SST group in loop 2; and (iii) loop A3-B3 and neighboring residues. Functional assays and sequence alignment showed that while AclaXegA is specific to xyloglucan, AtEglD cleaves ß-glucan, and xyloglucan. However, AspzoGH12 was also shown to be promiscuous contrarily to a sequence alignment-based prediction. We find that residues Y111 and R93 in AtEglD harbor the substrate in an adequate orientation for hydrolysis in the catalytic cleft entrance and that residues Y19 in AclaXegA and Y30 in AspzoGH12 partially compensate the absence of the YSG segment, typically found in promiscuous enzymes. The results point out the multiple structural factors underlying the substrate specificity of GH12 enzymes. Biotechnol. Bioeng. 2016;113: 2577-2586. © 2016 Wiley Periodicals, Inc.


Asunto(s)
Proteínas Fúngicas/química , Glucanos/química , Glucanos/ultraestructura , Glicósido Hidrolasas/química , Glicósido Hidrolasas/ultraestructura , Simulación del Acoplamiento Molecular , Xilanos/química , Xilanos/ultraestructura , Sitios de Unión , Activación Enzimática , Proteínas Fúngicas/metabolismo , Proteínas Fúngicas/ultraestructura , Glucanos/metabolismo , Glicósido Hidrolasas/metabolismo , Modelos Químicos , Unión Proteica , Conformación Proteica , Relación Estructura-Actividad , Especificidad por Sustrato , Xilanos/metabolismo
4.
Appl Microbiol Biotechnol ; 100(21): 9133-9144, 2016 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-27245677

RESUMEN

Filamentous fungi are attractive hosts for heterologous protein expression due to their capacity to secrete large amounts of enzymes into the extracellular medium. Xyloglucanases, which specifically hydrolyze xyloglucan, have been recently applied in lignocellulosic biomass degradation and conversion in many other industrial processes. In this context, this work aimed to clone, express, and determine the functional properties of a recombinant xyloglucanase (AtXEG12) from Aspergillus terreus, and also its solid-state (SSF) and submerged (SmF) fermentation in bioreactors. The purified AtXEG12 showed optimum pH and temperature of 5.5 and 65 °C, respectively, demonstrating to be 90 % stable after 24 h of incubation at 50 °C. AtXEG12 activity increased in the presence of 2-mercaptoethanol (65 %) and Zn+2 (45 %), while Cu+2 and Ag+ ions drastically decreased its activity. A substrate assay showed, for the first time for this enzyme's family, xylanase activity. The enzyme exhibited high specificity for tamarind xyloglucan (K M 1.2 mg mL-1) and V max of 17.4 µmol min-1 mg-1 of protein. The capillary zone electrophoresis analysis revealed that AtXEG12 is an endo-xyloglucanase. The heterologous xyloglucanase secretion was greater than the production by wild-type A. terreus cultivated in SmF. On the other hand, AtXEG12 activity reached by SSF was sevenfold higher than values achieved by SmF, showing that the expression of recombinant enzymes can be significantly improved by cultivation under SSF.


Asunto(s)
Aspergillus/enzimología , Glicósido Hidrolasas/metabolismo , Lignina/metabolismo , Proteínas Recombinantes/metabolismo , Reactores Biológicos/microbiología , Clonación Molecular , Activadores de Enzimas/análisis , Inhibidores Enzimáticos/análisis , Estabilidad de Enzimas , Fermentación , Expresión Génica , Glicósido Hidrolasas/química , Glicósido Hidrolasas/genética , Glicósido Hidrolasas/aislamiento & purificación , Concentración de Iones de Hidrógeno , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/aislamiento & purificación , Especificidad por Sustrato , Tamarindus/química , Temperatura
5.
Chembiochem ; 16(4): 575-83, 2015 Mar 02.
Artículo en Inglés | MEDLINE | ID: mdl-25663665

RESUMEN

A series of N-bromoacetylglycosylamines and bromoketone C-glycosides were synthesised from complex xyloglucan oligosaccharide (XyGO) scaffolds as specific active-site affinity labels for endo-xyloglucanases. Compounds based on XXXG (Xyl3 Glc4 ) and XLLG (Xyl3 Glc4 Gal2 ) oligosaccharides exhibited strikingly higher affinities and higher rates of irreversible inhibition than known cellobiosyl and new lactosyl disaccharide congeners when tested with endo-xyloglucanases from two distinct glycoside hydrolase (GH) families. Intact-protein mass spectrometry indicated that inactivation with XyGO derivatives generally resulted in a 1:1 labelling stoichiometry. Together, these results indicate that XyGO-based affinity reagents have significant potential as inhibitors and proteomic reagents for the identification and analysis of diverse xyloglucan-active enzymes in nature, to facilitate industrial enzyme applications.


Asunto(s)
Bacteroides/enzimología , Clostridium thermocellum/enzimología , Glicósido Hidrolasas/antagonistas & inhibidores , Oligosacáridos/química , Oligosacáridos/farmacología , Secuencia de Carbohidratos , Inhibidores Enzimáticos/química , Inhibidores Enzimáticos/farmacología , Glucanos/metabolismo , Glicósido Hidrolasas/metabolismo , Datos de Secuencia Molecular , Especificidad por Sustrato , Xilanos/metabolismo
6.
Biotechnol Bioeng ; 111(8): 1494-505, 2014 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-24578305

RESUMEN

Enzymes that cleave the xyloglucan backbone at unbranched glucose residues have been identified in GH families 5, 7, 12, 16, 44, and 74. Fungi produce enzymes that populate 20 of 22 families that are considered critical for plant biomass deconstruction. We searched for GH12-encoding genes in 27 Eurotiomycetes genomes. After analyzing 50 GH12-related sequences, the conserved variations of the amino acid sequences were examined. Compared to the endoglucanases, the endo-xyloglucanase-associated YSG deletion at the negative subsites of the catalytic cleft with a SST insertion at the reducing end of the substrate-binding crevice is highly conserved. In addition, a highly conserved alanine residue was identified in all xyloglucan-specific enzymes, and this residue is substituted by arginine in more promiscuous glucanases. To understand the basis for the xyloglucan specificity displayed by certain GH12 enzymes, two fungal GH12 endoglucanases were chosen for mutagenesis and functional studies: an endo-xyloglucanase from Aspergillus clavatus (AclaXegA) and an endoglucanase from A. terreus (AtEglD). Comprehensive molecular docking studies and biochemical analyses were performed, revealing that mutations at the entrance of the catalytic cleft in AtEglD result in a wider binding cleft and the alteration of the substrate-cleavage pattern, implying that a trio of residues coordinates the interactions and binding to linear glycans. The loop insertion at the crevice-reducing end of AclaXegA is critical for catalytic efficiency to hydrolyze xyloglucan. The understanding of the structural elements governing endo-xyloglucanase activity on linear and branched glucans will facilitate future enzyme modifications with potential applications in industrial biotechnology.


Asunto(s)
Aspergillus/metabolismo , Celulasa/metabolismo , Proteínas Fúngicas/metabolismo , Glucanos/metabolismo , Glicósido Hidrolasas/metabolismo , Xilanos/metabolismo , Secuencia de Aminoácidos , Aspergillus/química , Aspergillus/genética , Dominio Catalítico , Celulasa/química , Celulasa/genética , Proteínas Fúngicas/química , Proteínas Fúngicas/genética , Glicósido Hidrolasas/química , Glicósido Hidrolasas/genética , Simulación del Acoplamiento Molecular , Datos de Secuencia Molecular , Mutagénesis Sitio-Dirigida , Filogenia , Pliegue de Proteína , Eliminación de Secuencia , Especificidad por Sustrato
7.
Artículo en Inglés | MEDLINE | ID: mdl-24316824

RESUMEN

Here, a 1.82 Šresolution X-ray structure of a glycoside hydrolase family 74 (GH74) enzyme from Acidothermus cellulolyticus is reported. The resulting structure was refined to an R factor of 0.150 and an Rfree of 0.196. Structural analysis shows that five related structures have been reported with a secondary-structure similarity of between 75 and 89%. The five similar structures were all either Clostridium thermocellum or Geotrichum sp. M128 GH74 xyloglucanases. Structural analysis indicates that the A. cellulolyticus GH74 enzyme is an endoxyloglucanase, as it lacks a characteristic loop that blocks one end of the active site in exoxyloglucanases. Superimposition with the C. thermocellum GH74 shows that Asp451 and Asp38 are the catalytic residues.


Asunto(s)
Actinomycetales/química , Proteínas Bacterianas/química , Glicósido Hidrolasas/química , Modelos Moleculares , Actinomycetales/enzimología , Actinomycetales/genética , Secuencia de Aminoácidos , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Clostridium thermocellum/química , Clostridium thermocellum/enzimología , Clostridium thermocellum/genética , Cristalografía por Rayos X , Escherichia coli/genética , Escherichia coli/metabolismo , Expresión Génica , Geotrichum/química , Geotrichum/enzimología , Geotrichum/genética , Glicósido Hidrolasas/genética , Glicósido Hidrolasas/metabolismo , Datos de Secuencia Molecular , Dominios y Motivos de Interacción de Proteínas , Estructura Secundaria de Proteína , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Alineación de Secuencia , Homología Estructural de Proteína
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda