Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 20 de 429
Filtrar
1.
FASEB J ; 37(12): e23286, 2023 12.
Artículo en Inglés | MEDLINE | ID: mdl-37950623

RESUMEN

Drug-induced liver injury (DILI) is frequently induced by high dose of acetaminophen (APAP) and is concomitant with disturbances of gut flora. Akkermansia muciniphila is beneficial for the repair of liver injury. Lycium barbarum polysaccharide, yam polysaccharide, and chrysanthemum polysaccharide all have anti-inflammatory and antioxidation effects. The objective of this study is to investigate the potential of lycium barbarum polysaccharide, yam polysaccharide, and chrysanthemum polysaccharide (LYC) in improving DILI by increasing the abundance of A. muciniphila. Initially, screening for the optimal concentrations of wolfberry, yam, and chrysanthemum (WYC) or LYC to promote A. muciniphila proliferation in vitro and validated in antibiotic (ATB)-treated KM mice. Subsequently, APAP-induced DILI model in BALB/c mice were constructed to examine the treatment effects of LYC. Our findings indicate that the optimal concentration ratio of WYC was 2:3:2, and LYC was 1:1:1. WYC increased A. muciniphila proliferation in vitro and in ATB-treated mice under this ratio. Meanwhile, LYC increased A. muciniphila abundance in vitro and the combination LYC with A. muciniphila promoted the proliferation of A. muciniphila in ATB-treated mice. The overdose of APAP resulted in the impairment of the intestinal barrier function and subsequent leakage of lipopolysaccharide (LPS). Moreover, LYC increased A. muciniphila abundance, reduced intestinal inflammation and permeability, and upregulated the expression of the tight junction protein zonula occludens protein 1 (ZO-1) and occludin contents in the gut. Lastly, LYC inhibited LPS leakage and upregulated hepatic YAP1 expression, ultimately leading to the repair of DILI.


Asunto(s)
Enfermedad Hepática Inducida por Sustancias y Drogas , Chrysanthemum , Dioscorea , Lycium , Ratones , Animales , Lipopolisacáridos , Acetaminofén , Verrucomicrobia , Polisacáridos/farmacología , Enfermedad Hepática Inducida por Sustancias y Drogas/tratamiento farmacológico
2.
Virus Genes ; 60(4): 423-433, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38833150

RESUMEN

White yam (Dioscorea rotundata) plants collected from farmers' fields and planted at the Areka Agricultural Research Center, Southern Ethiopia, displayed mosaic, mottling, and chlorosis symptoms. To determine the presence of viral pathogens, an investigation for virome characterization was conducted by Illumina high-throughput sequencing. The bioinformatics analysis allowed the assembly of five viral genomes, which according to the ICTV criteria were assigned to a novel potyvirus (3 genome sequences) and a novel crinivirus (2 genome sequences). The potyvirus showed ~ 66% nucleotide (nt) identity in the polyprotein sequence to yam mosaic virus (NC004752), clearly below the demarcation criteria of 76% identity. For the crinivirus, the RNA 1 and RNA 2 shared the highest sequence identity to lettuce chlorosis virus, and alignment of the aa sequence of the RdRp, CP and HSP70h (~ 49%, 45% and 76% identity), considered for the demarcation criteria, revealed the finding of a novel virus species. The names Ethiopian yam virus (EYV) and Yam virus 1 (YV-1) are proposed for the two tentative new virus species.


Asunto(s)
Crinivirus , Dioscorea , Genoma Viral , Filogenia , Enfermedades de las Plantas , Potyvirus , Dioscorea/virología , Potyvirus/genética , Potyvirus/aislamiento & purificación , Potyvirus/clasificación , Etiopía , Enfermedades de las Plantas/virología , Crinivirus/genética , Crinivirus/aislamiento & purificación , Crinivirus/clasificación , Genoma Viral/genética , ARN Viral/genética , Secuenciación de Nucleótidos de Alto Rendimiento , Coinfección/virología
3.
Lipids Health Dis ; 23(1): 28, 2024 Jan 25.
Artículo en Inglés | MEDLINE | ID: mdl-38273354

RESUMEN

BACKGROUND: As independent and correctable risk factors, disturbances in lipid metabolism are significantly associated with type 2 diabetes mellitus (T2DM). This research investigated the mechanism underlying the lipid-regulating effects of Yam Gruel in diabetic rats. METHODS: First, rats in the control group were given a normal diet, and a diabetic rat model was established via the consumption of a diet that was rich in both fat and sugar for six weeks followed by the intraperitoneal injection of streptozotocin (STZ). After the model was established, the rats were divided into five distinct groups: the control group, model group, Yam Gruel (SYZ) group, metformin (MET) group, and combined group; each treatment was administered for six weeks. The fasting blood glucose (FBG), body and liver weights as well as liver index of the rats were determined. Total cholesterol (TC), triglyceride (TG), high-density lipoprotein cholesterol (HDL-C), low-density lipoprotein cholesterol (LDL-C), aspartic acid transaminase (AST), alanine aminotransferase (ALT), and nonesterified fatty acid (NEFA) levels were measured. Oil Red O staining was used to assess hepatic steatosis. In addition, the levels of Phospho-acetyl-CoA carboxylase (p-ACC), acetyl coenzyme A carboxylase (ACC), AMP-activated protein kinase (AMPK), Phospho-AMPK (p-AMPK), carnitine palmitoyl transferase I (CPT-1), and Malonyl-CoA decarboxylase (MLYCD) in liver tissues were measured by real-time PCR (q-PCR) and western blotting. RESULTS: After 6 weeks of treatment, Yam Gruel alone or in combination with metformin significantly reduced FBG level, liver weight and index. The concentrations of lipid indices (TG, TC, NEFA, and LDL-C), the levels of liver function indices (ALT and AST) and the degree of hepatic steatosis was improved in diabetic rats that were treated with Yam Gruel with or without metformin. Furthermore, Yam Gruel increased the protein levels of p-ACC/ACC, p-AMPK/AMPK, MLYCD, and CPT-1, which was consistent with the observed changes in gene expression. Additionally, the combination of these two agents was significantly more effective in upregulating the expression of AMPK pathway-related genes and proteins. CONCLUSIONS: These results demonstrated that Yam Gruel may be a potential diet therapy for improving lipid metabolism in T2DM patients and that it may exert its effects via AMPK/ACC/CPT-1 pathway activation. In some respects, the combination of Yam Gruel and metformin exerted more benefits effects than Yam Gruel alone.


Asunto(s)
Diabetes Mellitus Experimental , Diabetes Mellitus Tipo 2 , Dioscorea , Hígado Graso , Trastornos del Metabolismo de los Lípidos , Metformina , Humanos , Ratas , Animales , Proteínas Quinasas Activadas por AMP/genética , Proteínas Quinasas Activadas por AMP/metabolismo , Dioscorea/metabolismo , Metabolismo de los Lípidos , Metformina/farmacología , Metformina/uso terapéutico , Diabetes Mellitus Tipo 2/metabolismo , Diabetes Mellitus Experimental/tratamiento farmacológico , Diabetes Mellitus Experimental/metabolismo , Carnitina O-Palmitoiltransferasa/genética , Carnitina O-Palmitoiltransferasa/metabolismo , Ácidos Grasos no Esterificados/metabolismo , LDL-Colesterol/metabolismo , Hígado/metabolismo , Hígado Graso/metabolismo , Trastornos del Metabolismo de los Lípidos/metabolismo , Triglicéridos/metabolismo , Dieta Alta en Grasa/efectos adversos
4.
Plant Dis ; 2024 Apr 23.
Artículo en Inglés | MEDLINE | ID: mdl-38654538

RESUMEN

The cultivated variety of Chinese yam (Dioscorea polystachya Turcz. cv. Tiegun) is an economically important plant, capable of producing tubers that are used as food and traditional Chinese medicine. The basal stem rot was found on approximately 65% of yam (tuber expansion stage) in a total of 10 ha field in Wuzhi, Wen, and Hua counties, Henan, China (Sep 2021). Dark brown fusiform lesions initially occurred at the stems basal, irregularly extending to join together and leading to loop-stem necrotic indentation. Three diseased samples from Wuzhi county were collected, cut into 5 × 5 mm pieces, surface sterilized in 75% ethanol (30 s) and 1% NaClO (1 min), washed in sterile water 3 times, and placed on PDA in the dark for 3 days at 28℃. A total of 44 isolates forming three groups of Fusarium colonies were obtained using monosporic isolation, of which 19, 8, and 17 isolates were identified as F. oxysporum, F. solani, and F. proliferatum based on colony morphology, respectively. Typical isolates SYJJ6, 9, and 10 for each group were further studied. The SYJJ6 colonies showed gray white abundant fluffy aerial mycelium with rough edges, formation of ellipsoid, unicellular microconidia without septa, 5.6 to 13.4 × 2.4 to 4.7 µm (n = 50), and sickle-shaped, slightly curved macroconidia with 2 to 4 septa, 14.0 to 23.9 × 3.4 to 5.1 µm (n = 50). Isolate SYJJ9 produced flocculent white colonies, grew in a circular pattern with a sharp edge, forming oval or oblong microconidia with zero or one septum, 11.2 to 18.8 × 3.4 to 6.2 µm (n = 50), and slightly curved macroconidia with 2 to 3 septa, 27.6 to 44.0 × 3.9 to 7.4 µm (n = 50). SYJJ10 produced whitish or pinkish white colonies with fluffy aerial mycelium and a red pigmentation, produced renal or oval microconidia with no septa, 5.1 to 11.8 × 1.8 to 4.2 µm (n = 50), and falcate, slightly curved macroconidia with 3 to 4 septa, 16.1 to 30.2 × 3.1 to 5.9 µm (n = 50). Additionally, TUB, EF-1α, and RPB2 genes were amplified with primers BT2a/BT2b, EF1/EF2, and 5f2/-7cr, respectively (Glass and Donaldson 1995; O'Donnell et al. 1998, 2010). BLASTn analysis on SYJJ6 (OR047663, OR047666, OR047669), SYJJ9 (OR047665, OR047667, OR047670), and SYJJ10 (OR047664, OR047668, OR047671) gene sequences were over 99% identical to those of F. oxysporum (100%, MK432917; 100%, MN417196; 99.61%, MN457531), F. solani (100%, MF662662; 100%, MN223440; 99.80%, CP104055), and F. proliferatum (100%, ON557521; 100%, ON458137; 99.90%, LT841266), respectively. Pathogenicity tests of three isolates were separately performed on 60-day-old yam seedlings. The basal stems were wounded using needle, and the wounds were wrapped with cotton balls soaked with conidial suspension (1 mL, 3×106 conidia/mL) or water (control). Each isolate treated three plants and repeated three times. All plants were grown at 28℃ under a 16/8-h light/dark cycle. Typical symptoms emerged on basal stems at 16, 13, and 17 days after inoculation with the conidia of isolates SYJJ6, 9, and 10, while the control basal stems appeared healthy. The re-isolated fungi were identical to the original three isolates. Fusarium species (F. oxysporum, F. commune, F. humuli, etc.)were previously reported to cause wilt or stem rot on different D. polystachya cultivars (Fang et al. 2020; Li et al. 2023; Zhao et al. 2013), or basal stem rot on Panax ginseng (Ma et al. 2020). This is the first report of Chinese yam basal stem rot caused by Fusarium species, which threatens the production of Chinese yam 'Tiegun' and should be further studied.

5.
Plant Dis ; 2024 Jan 19.
Artículo en Inglés | MEDLINE | ID: mdl-38240712

RESUMEN

Chinese yam (Dioscorea polystachya Turczaninow cv. Tiegun), which belongs to the family Dioscoreaceae, is widely cultivated throughout China due to its high economic and medicinal value. In June 2023, black leaf spots on Chinese yam (cv. Purple 1) were observed in Nanchang city (28.45° N, 115.49° E) of Jiangxi province, southeastern China. The incidence of the disease ranged between 70 and 85% of plants, and up to 30% of the leaves per plant were affected in the field over a 2-week period of study. Infected foliage displayed brown necrotic lesions, elliptical or irregular, with yellow halo at the edge of the lesion (0.5 to 3 cm diam.). To identify the causal agent, 32 symptomatic leaves of eight symptomatic plants were collected. Small pieces from the margin of necrotic leaf tissue (about 3 x 3 mm) were surface sterilized in 75% ethanol for 30 s followed in 0.1% HgCl2 for 1 min, and washed three times with ddH2O. Then, the pieces were transferred onto potato dextrose agar (PDA) plates and incubated at 26°C for 3 days with a 12-h light-dark cycle. From the 32 isolates, 21 exhibited similar morphology after hyphal tipping resulting in an isolation frequency of 65.6%. Colonies on PDA were initially white aerial hyphae but became grayish with age, and a reddish orange pigment on the underside. After 16 days of incubation, pycnidia were observed, which were dark, spherical or flat spherical, and 64.1 to 172.5 µm (n = 25) in diameter. Conidia were ellipsoidal, aseptate, hyaline, and 4.1 to 5.6 × 1.8 to 2.7 µm (n = 80). In addition, a blackish green discoloration was produced on malt extract agar (MEA) using the NaOH spot test. The isolates were tentatively identified as Epicoccum spp. based on morphological characteristics (Chen et al. 2017). Isolate AYZ-1 was randomly selected for identification and pathogenicity testing. Genomic DNA of the isolate (AYZ-1) was extracted and amplified by polymerase chain reaction (PCR) using ITS1/ITS4 for the internal transcribed spacer (ITS) region (White et al. 1990), Btub2Fd/Btub4Rd for the ß-tubulin (TUB) region (Woudenberg et al. 2009), LROR/LR7 for the large ribosomal RNA gene (LSU) region (Rehner and Samuels 1994), and RPB2-5F2/fRPB2-7cR for RNA polymerase II second largest subunit (RPB2) region (Liu et al. 1999), respectively. The concatenated sequences (GenBank Accession No. OR574165, OR567827, OR574166, OR567828, respectively) shared 99.8 to 100% identity with Epicoccum latusicollum (OP788080, MN329871, OR428532, and OL422485, respectively). A neighbor-joining phylogenetic tree was generated based on the concatenated sequences in MEGA7, placed isolate (AYZ-1) within E. latusicollum. To fulfill Koch's postulates, healthy leaflets from three one-year-old Chinese yam (cv. Purple 1) were used as inoculation materials, using isolate AYZ-1. Two sites of each leaf were wounded with a sterile needle and covered with a piece of cotton drenched with 200 µL spore suspension (106 conidia/mL) on the left sides, while sterilized water served as the control on the right sides of leaves. All inoculated leaves were covered with clear polyethylene bags for 24 h. Plants were grown outdoors at a daily average temperature of 26°C with relative humidity over 45%. After 7 days of incubation, the leaves showed the same symptoms as the original diseased leaves. The E. latusicollum isolate was re-isolated from diseased leaves and confirmed by morphology and sequencing analysis, fulfilling Koch's postulates. E. latusicollum has been previously reported to cause black root on yam in China's south-western province of Sichuan (Han et al. 2019). Meanwhile, leaf spot have been reported on many plants by this genus, such as tobacco (Guo et al. 2020) and banana (Liu et al. 2023). According to our knowledge, this is the first report of E. latusicollum causing black leaf spot on Chinese yam in China. This finding will provide an important reference for understanding the biology of E. latusicollum and the distribution of the disease, but more research is needed to determine if management is warranted.

6.
Plant Dis ; 2024 Mar 28.
Artículo en Inglés | MEDLINE | ID: mdl-38549276

RESUMEN

Yam is an important medicinal and edible dual-purpose plant with high economic value. However, nematode damage severely affects its yield and quality. One of the major effects of nematode infestations is the secondary infection of pathogenic bacteria or fungi through entry wounds made by the nematodes. Understanding the response of the symbiotic microbial community of yam plants to nematodes is crucial for controlling such a disease. In this study, we investigated the rhizosphere and endophytic microbiomes shift after nematode infection during the tuber expansion stage in the Dioscorea opposita Thunb. cv. Tiegun yam. Our results revealed that soil depth affected the abundance of nematodes, and the relative number of Meloidogyne incognita was higher in the diseased soil at a depth of 16-40 cm than those at a depth of 0-15 cm and 41-70 cm. The abundance of and interactions among soil microbiota members were significantly correlated with root-knot nematode (RKN) parasitism at various soil depths. However, the comparison of the microbial alpha diversity and composition between healthy and diseased rhizosphere soil showed no difference. Compared with healthy soils, the co-occurrence networks of M. incognita-infested soils included a higher ratio of positive correlations linked to plant health. In addition, we detected a higher abundance of certain taxonomic groups belonging to Chitinophagaceae and Xanthobacteraceae in the rhizosphere of RKN-infested plants. The nematodes, besides causing direct damage to plants, also possess the ability to act synergistically with other pathogens, especially Ramicandelaber and Fusarium, leading to the development of disease complexes. In contrast to soil samples, RKN parasitism specifically had a significant effect on the composition and assembly of the root endophytic microbiota. The RKN colonization impacted a wide variety of endophytic microbiomes, including Pseudomonas, Sphingomonas, Rhizobium, Neocosmospora, and Fusarium. This study revealed the relationship between RKN disease and changes in the rhizosphere and endophytic microbial community, which may provide novel insights that help improve biological management of yam RKNs.

7.
Artículo en Inglés | MEDLINE | ID: mdl-38839642

RESUMEN

The Youth Anxiety Measure for DSM-5 (YAM-5) is a self- and parent-report scale specifically developed to assess symptoms of major anxiety disorders (part 1 or YAM-5-I) and specific phobias/agoraphobia (part 2 or YAM-5-II) in children and adolescents in terms of the contemporary psychiatric classification system. Since its introduction, the measure has been increasingly used in research, making it feasible to provide a summary of its psychometric properties. The present article presents a systematic review of 20 studies that employed the YAM-5, involving 5325 young participants. Overall, the results supported the hypothesized factor structure of both parts of the measure, although there were also some studies that could not fully replicate the original five-factor model of YAM-5-I. The internal consistency of the YAM-5 was generally high for the total scores of both parts, while reliability coefficients for the subscales were more variable across studies. Research also obtained evidence for other psychometric properties, such as test-retest reliability, parent-child agreement, convergent/divergent validity, and discriminant validity. Results further revealed that girls tend to show significantly higher anxiety levels on the YAM-5 than boys. Overall, these findings indicate that the YAM-5 is a promising tool for assessing symptoms of anxiety disorders including specific phobias in young people. Some directions for future research with the YAM-5 and recommendations regarding the use of the measure are given.

8.
J Sci Food Agric ; 104(4): 2023-2029, 2024 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-37919817

RESUMEN

BACKGROUND: Kponan is the most popular yam (Dioscorea cayenensis-rotundata) variety in Côte d'Ivoire. Unfortunately, losses due to rotting during storage do not ensure a regular supply to markets. This study aimed to identify the impacts of cultivation and storage practices in the main production areas on physical, cooking and sensory characteristics of Kponan. To this end, yams grown in Bondoukou were stored in straw huts, those grown in Bouna in pits and those grown in Kouassi-Kouassikro in the open air, according to the practices of each producer. RESULTS: Findings showed that yams grown in Kouassi-Kouassikro and stored in the open air recorded the highest rot rate (58.09%) compared to the rot rate of yams grown and stored in pits in Bouna (26.67%) and those grown and stored in straw huts in Bondoukou (53.34%). However, the weight losses were respectively 10.47% (Bouna), 28.57% (Kouassi-Kouassikro) and 36.19% (Bondoukou). Loss rates varied significantly from 43.80% (pits) to 100% (huts and open air). Furthermore, the browning indices were higher for yams grown in Kouassi-Kouassikro and freshly harvested (26.09) compared to the browning index recorded for yams grown and freshly harvested in Bouna (23.43) and in Bondoukou (24.73). Concerning the hardness of yams, it decreased during storage for yams grown and stored in pits in Bouna (38.94 to 25.20 N) and for those grown and stored in straw huts in Bondoukou (39. 39 to 26.42 N). CONCLUSION: The shelf life and culinary and sensory characteristics of Kponan depend on the cultivation and storage practices of each producer. © 2023 Society of Chemical Industry.


Asunto(s)
Dioscorea , Côte d'Ivoire , Culinaria
9.
Zhongguo Zhong Yao Za Zhi ; 49(10): 2776-2782, 2024 May.
Artículo en Zh | MEDLINE | ID: mdl-38812178

RESUMEN

This study explore the molecular mechanism of the synergistic effect of Chinese Yam polysaccharides and nucleoside analogues(NAs) on hepatitis B virus(HBV) resistance. Different concentrations of Chinese Yam polysaccharide and entecavir were ad-ded to HepG2.2.15 cells. After the cytotoxicity was detected by cell counting kit-8(CCK-8), the optimal concentration and time of the two drugs to inhibit HepG2.2.15 cells were screened out. They were divided into control group, Chinese Yam polysaccharide group, entecavir group and combination drug group(Chinese Yam polysaccharide + entecavir). The drugs were added to HepG2.2.15 cells, ELISA was used to detect the effects of each group of drugs on the secretion of hepatitis B virus surface antigen(HBsAg) and hepatitis B virus e antigen(HBeAg) in cell supernatant, probe quantitative real-time PCR(probe qRT-PCR) was used to detect the effects of drugs on HBV-DNA in HepG2.2.15 cells, and Western blot was used to detect the effects of each group of drugs on the expression of p38 MAPK, p-p38 MAPK, NTCP proteins in HepG2.2.15 cells. The qRT-PCR was used to detect the effect of drugs on the expression of p38 MAPK and NTCP mRNA in HepG2.2.15 cells. The results showed that compared with control group, the concentrations of HBeAg and HBsAg in Chinese Yam polysaccharide group, entecavir group and combination group decreased(P<0.01 or P<0.001), and both of them inhibited HBV-DNA in HepG2.2.15 cells(P<0.01), and the HBV-DNA inhibition of HepG2.2.15 cells in the combination group was more obvious(P<0.001), and the protein expression levels of p-p38 MAPK and NTCP were significantly decreased(P<0.05 or P<0.01), the mRNA expression level of p38 MAPK increased, and the mRNA expression level of NTCP decreased(P<0.05 or P<0.01). To sum up, Chinese Yam polysaccharide can reduce the expression of NTCP protein and mRNA through p38 MAPK signaling pathway and cooperate with entecavir in anti-HBV.


Asunto(s)
Antivirales , Dioscorea , Virus de la Hepatitis B , Polisacáridos , Proteínas Quinasas p38 Activadas por Mitógenos , Humanos , Virus de la Hepatitis B/efectos de los fármacos , Virus de la Hepatitis B/genética , Polisacáridos/farmacología , Proteínas Quinasas p38 Activadas por Mitógenos/metabolismo , Proteínas Quinasas p38 Activadas por Mitógenos/genética , Células Hep G2 , Antivirales/farmacología , Dioscorea/química , Sinergismo Farmacológico , Nucleósidos/farmacología , Sistema de Señalización de MAP Quinasas/efectos de los fármacos , Antígenos de Superficie de la Hepatitis B/metabolismo , Antígenos de Superficie de la Hepatitis B/genética , Antígenos e de la Hepatitis B/metabolismo , Hepatitis B/tratamiento farmacológico , Hepatitis B/virología , Medicamentos Herbarios Chinos/farmacología , Medicamentos Herbarios Chinos/química , Guanina/análogos & derivados , Guanina/farmacología
10.
BMC Genomics ; 24(1): 354, 2023 Jun 26.
Artículo en Inglés | MEDLINE | ID: mdl-37365511

RESUMEN

BBX proteins play important roles in all of the major light-regulated developmental processes. However, no systematic analysis of BBX gene family regarding the regulation of photoperiodic microtuber formation has been previously performed in yam. In this study, a systematic analysis on the BBX gene family was conducted in three yam species, with the results, indicating that this gene plays a role in regulating photoperiodic microtuber formation. These analyses included identification the BBX gene family in three yam species, their evolutionary relationships, conserved domains, motifs, gene structure, cis-acting elements, and expressional patterns. Based on these analyses, DoBBX2/DoCOL5 and DoBBX8/DoCOL8 showing the most opposite pattern of expression during microtuber formation were selected as candidate genes for further investigation. Gene expression analysis showed DoBBX2/DoCOL5 and DoBBX8/DoCOL8 were highest expressed in leaves and exhibited photoperiod responsive expression patterns. Besides, the overexpression of DoBBX2/DoCOL5 and DoBBX8/DoCOL8 in potato accelerated tuber formation under short-day (SD) conditions, whereas only the overexpression of DoBBX8/DoCOL8 enhanced the accelerating effect of dark conditions on tuber induction. Tuber number was increased in DoBBX8/DoCOL8 overexpressing plants under dark, as well as in DoBBX2/DoCOL5 overexpressing plants under SD. Overall, the data generated in this study may form the basis of future functional characterizations of BBX genes in yam, especially regarding their regulation of microtuber formation via the photoperiodic response pathway.


Asunto(s)
Dioscorea , Dioscorea/genética , Dioscorea/metabolismo , Perfilación de la Expresión Génica , Familia de Multigenes , Fotoperiodo , Ritmo Circadiano , Regulación de la Expresión Génica de las Plantas , Proteínas de Plantas/metabolismo
11.
Mol Pharm ; 20(3): 1613-1623, 2023 03 06.
Artículo en Inglés | MEDLINE | ID: mdl-36795759

RESUMEN

Chinese yam polysaccharides (CYPs) have received wide attention for their immunomodulatory activity. Our previous studies had discovered that the Chinese yam polysaccharide PLGA-stabilized Pickering emulsion (CYP-PPAS) can serve as an efficient adjuvant to trigger powerful humoral and cellular immunity. Recently, positively charged nano-adjuvants are easily taken up by antigen-presenting cells, potentially resulting in lysosomal escape, the promotion of antigen cross-presentation, and the induction of CD8 T-cell response. However, reports on the practical application of cationic Pickering emulsions as adjuvants are very limited. Considering the economic damage and public-health risks caused by the H9N2 influenza virus, it is urgent to develop an effective adjuvant for boosting humoral and cellular immunity against influenza virus infection. Here, we applied polyethyleneimine-modified Chinese yam polysaccharide PLGA nanoparticles as particle stabilizers and squalene as the oil core to fabricate a positively charged nanoparticle-stabilized Pickering emulsion adjuvant system (PEI-CYP-PPAS). The cationic Pickering emulsion of PEI-CYP-PPAS was utilized as an adjuvant for the H9N2 Avian influenza vaccine, and the adjuvant activity was compared with the Pickering emulsion of CYP-PPAS and the commercial adjuvant (aluminum adjuvant). The PEI-CYP-PPAS, with a size of about 1164.66 nm and a ζ potential of 33.23 mV, could increase the H9N2 antigen loading efficiency by 83.99%. After vaccination with Pickering emulsions based on H9N2 vaccines, PEI-CYP-PPAS generated higher HI titers and stronger IgG antibodies than CYP-PPAS and Alum and increased the immune organ index of the spleen and bursa of Fabricius without immune organ injury. Moreover, treatment with PEI-CYP-PPAS/H9N2 induced CD4+ and CD8+ T-cell activation, a high lymphocyte proliferation index, and increased cytokine expression of IL-4, IL-6, and IFN-γ. Thus, compared with the CYP-PPAS and aluminum adjuvant, the cationic nanoparticle-stabilized vaccine delivery system of PEI-CYP-PPAS was an effective adjuvant for H9N2 vaccination to elicit powerful humoral and cellular immune responses.


Asunto(s)
Subtipo H9N2 del Virus de la Influenza A , Vacunas contra la Influenza , Nanopartículas , Animales , Pollos , Aluminio/farmacología , Emulsiones/farmacología , Antígenos , Inmunidad Celular , Copolímero de Ácido Poliláctico-Ácido Poliglicólico/farmacología , Adyuvantes Inmunológicos , Polisacáridos/farmacología
12.
Arch Insect Biochem Physiol ; 113(4): e22025, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37199037

RESUMEN

Proteases such as trypsins in the gut of Spodoptera frugiperda are responsible for breaking down dietary proteins into amino acids necessary for insect growth and development. In this study, we characterized the insecticidal potential of dioscorin, the storage protein of yam (Dioscorea alata), using molecular docking and molecular dynamics simulations to determine the interactions between trypsin enzymes and the protein inhibitor dioscorin. To achieve this, we used the three-dimensional structures of the trypsin-like digestive enzymes of S. frugiperda, a pest of corn and cotton, as receptors or target molecules. We performed protein-protein docking using Cluspro software, estimation of the binding free energy, and information on the dynamic and time-dependent behavior of dioscorin-trypsin complexes using the NAMD package. Our computational analysis showed that dioscorin can bind to the digestive trypsins of S. frugiperda, as confirmed by the affinity energy values (-1022.4 to -1236.9), stability of the complexes during the simulation trajectory, and binding free energy values between -57.3 and -66.9 kcal/mol. Additionally, dioscorin uses two reactive sites to bind trypsin, but the largest contribution to the interaction energy is made by amino acid residues between amino acid backbone positions 8-14 by hydrogen bonds, hydrophobic, and Van der Waals (VdW) interactions. VdW is the energy that makes the greatest contribution to the binding energy. Collectively, our findings demonstrate, for the first time, the binding capacity of the yam protein dioscorin to the digestive trypsin of S. frugiperda. These promising results suggest a possible bioinsecticide action of dioscorin.


Asunto(s)
Dioscorea , Animales , Dioscorea/química , Dioscorea/metabolismo , Proteínas de Plantas/metabolismo , Simulación del Acoplamiento Molecular , Tripsina/metabolismo , Aminoácidos/metabolismo , Simulación de Dinámica Molecular
13.
Proc Natl Acad Sci U S A ; 117(50): 31987-31992, 2020 12 15.
Artículo en Inglés | MEDLINE | ID: mdl-33268496

RESUMEN

White Guinea yam (Dioscorea rotundata) is an important staple tuber crop in West Africa. However, its origin remains unclear. In this study, we resequenced 336 accessions of white Guinea yam and compared them with the sequences of wild Dioscorea species using an improved reference genome sequence of D. rotundata In contrast to a previous study suggesting that D. rotundata originated from a subgroup of Dioscorea praehensilis, our results suggest a hybrid origin of white Guinea yam from crosses between the wild rainforest species D. praehensilis and the savannah-adapted species Dioscorea abyssinica We identified a greater genomic contribution from D. abyssinica in the sex chromosome of Guinea yam and extensive introgression around the SWEETIE gene. Our findings point to a complex domestication scenario for Guinea yam and highlight the importance of wild species as gene donors for improving this crop through molecular breeding.


Asunto(s)
Productos Agrícolas/genética , Dioscorea/genética , Genoma de Planta , Hibridación Genética , Cromosomas de las Plantas/genética , ADN de Plantas/genética , Domesticación , Guinea , Filogenia , Fitomejoramiento/métodos , Tubérculos de la Planta , Polimorfismo de Nucleótido Simple , Cromosomas Sexuales/genética
14.
Int J Toxicol ; 42(3_suppl): 29S-31S, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37751575

RESUMEN

The Expert Panel for Cosmetic Ingredient Safety reviewed updated information that has become available since their original assessment from 2004, along with updated information regarding product types, and frequency and concentrations of use, and reaffirmed their original conclusion that Dioscorea Villosa (Wild Yam) Root Extract is safe as a cosmetic ingredient in the practices of use and concentration as described in this report.


Asunto(s)
Cosméticos , Dioscorea , Extractos Vegetales/toxicidad , Seguridad de Productos para el Consumidor
15.
Molecules ; 28(12)2023 Jun 07.
Artículo en Inglés | MEDLINE | ID: mdl-37375169

RESUMEN

Significant amounts of oil remain in the reservoir after primary and secondary operations, and to recover the remaining oil, enhanced oil recovery (EOR) can be applied as one of the feasible options remaining nowadays. In this study, new nano-polymeric materials have been prepared from purple yam and cassava starches. The yield of purple yam nanoparticles (PYNPs) was 85%, and that of cassava nanoparticles (CSNPs) was 90.53%. Synthesized materials were characterized through particle size distribution (PSA), Zeta potential distribution, Fourier transform infrared spectroscopy (FTIR), differential scanning calorimetry (DSC), and transmission electron microscopy (TEM). The performance of PYNPs in recovering oil was better than CSNPs, as found from the recovery experiments. Zeta potential distribution results confirmed the stability of PYNPs over CSNPs (-36.3 mV for PYNPs and -10.7 mV for CSNPs). The optimum concentration for these nanoparticles has been found from interfacial tension measurements and rheological properties, and it was 0.60 wt.% for PYNPs and 0.80 wt.% for CSNPs. A more incremental recovery (33.46%) was achieved for the polymer that contained PYNPs in comparison to the other nano-polymer (31.3%). This paves the way for a new technology for polymer flooding that may replace the conventional method, which depends on partially hydrolyzed polyacrylamide (HPAM).

16.
Molecules ; 28(15)2023 Jul 31.
Artículo en Inglés | MEDLINE | ID: mdl-37570740

RESUMEN

This study aimed to address the challenges faced by mature oilfields in extracting substantial oil quantities. It focused on improving the efficiency of alkaline-surfactant-polymer (ASP) flooding technique, which is a proven tertiary recovery technology, to overcome scaling issues and other hindrances in its large-scale implementation. Appropriate materials and their suitable concentrations were selected to enhance the ASP flooding technique. Special surfactants from Indonesia were introduced to improve the interfacial tension reduction and wettability alteration. Reservoir rock model that resembling Langgak oilfield in Sumatra was utilized, and low-salinity water was employed to mimic the oilfield conditions. Starches derived from cassava nanoparticles (CSNPs) and purple yam nanoparticles (PYNPs) were combined separately with conventional hydrolyzed polyacrylamide (HPAM) polymer to enhance its performance. Sodium hydroxide and sodium carbonate were used as alkaline in final ASP formula. It was demonstrated from this research that only two combinations of ASP formulations have led to improved oil recovery. One combination utilizing PYNPs resulted in 39.17% progressive recovery, while the other combination incorporating CSNPs achieved 35% incremental oil recovery. The ASP combination that resulted in recovery rate of 39.17% was composed of sodium hydroxide (NaOH) at a concentration of 1.28 wt.%, PSC EOR 2.2 (0.98 wt.%), and a combined polymer consisting of HPAM (0.2 wt.%) and PYNPs nano-starch (0.6 wt.%). The second combination led to 35% recovery rate and involved NaOH also at concentration 1.28 wt.%, PSC HOMF (0.63 wt.%), and a combined polymer comprising from HPAM (0.2 wt.%) and CSNPs nano-starch (0.8 wt.%). These findings of this study highlighted the potential of this modified ASP flooding to enhance oil recovery in mature oilfields, thereby offering valuable insights for oil industry.

17.
Molecules ; 28(18)2023 Sep 18.
Artículo en Inglés | MEDLINE | ID: mdl-37764461

RESUMEN

Alkaline-surfactant-polymer (ASP) flooding, a recognized method for oil recovery, encounters limited use due to its expense. In addition, ASP's best composition and injection sequence still remains uncertain today. This study explores conventional ASP flooding using PT SPR Langgak's special surfactants, simulating Langgak oilfield conditions in Sumatra, Indonesia. By comparing the outcomes of this flooding technique with that of starch-assisted ASP performed in another study, the benefits of adding starch nanoparticles to flooding are evident. Nano-starch ASP increased oil recovery by 18.37%, 10.76%, and 10.37% for the three configurations investigated in this study. Water flooding preceded ASP flooding, and flooding operations were carried out at 60 °C. This study employed sodium hydroxide (NaOH), sodium carbonate (Na2CO3), and specialized surfactants from PT SPR. The adopted polymer is solely hydrolyzed polyacrylamide (HPAM) at 2000 ppm. Starch nanoparticles underwent comprehensive characterization and focused more on charge stability. Purple yam nanoparticles (PYNPs) exhibited remarkable stability at -36.33 mV, unlike cassava starch nanoparticles (CSNPs') at -10.68 mV and HPAM's at -27.13 mV. Surface properties affect interactions with fluids and rocks. Crystallinity, a crucial characterization, was assessed using Origin software 2019b. CSNPs showed 24.15% crystallinity, surpassing PYNPs' 20.68%. Higher crystallinity benefits CSNPs' thermal stability. The amorphous behavior found in PYNPs makes them less suitable if applied in harsh reservoirs. This research correlated with prior findings, reinforcing starch nanoparticles' role in enhancing oil recovery. In summary, this study highlighted conventional ASP flooding using HPAM as the sole polymer and compared it with three formations that used two starch nanoparticles included with HPAM, assessing their impact on charge stability, crystallinity, and recovery rate to emphasize their importance in the oil recovery industry. Starch nanoparticles' benefits and limitations guided further investigation in this study.

18.
Molecules ; 29(1)2023 Dec 23.
Artículo en Inglés | MEDLINE | ID: mdl-38202692

RESUMEN

The Chinese yam (Dioscorea polystachya, DP) is known for the nutritional value of its tuber. Nevertheless, DP also has promising pharmacological properties. Compared with the tuber, the leaves of DP are still very little studied. However, it may be possible to draw conclusions about the plant quality based on the coloration of the leaves. Magnesium, as a component of chlorophyll, seems to play a role. Therefore, the aim of this research work was to develop an atomic absorption spectrometry-based method for the analysis of magnesium (285.2125 nm) in leaf extracts of DP following the graphite furnace sub-technique. The optimization of the pyrolysis and atomization temperatures resulted in 1500 °C and 1800 °C, respectively. The general presence of flavonoids in the extracts was detected and could explain the high pyrolysis temperature due to the potential complexation of magnesium. The elaborated method had linearity in a range of 1-10 µg L-1 (R2 = 0.9975). The limits of detection and quantification amounted to 0.23 µg L-1 and 2.00 µg L-1, respectively. The characteristic mass was 0.027 pg, and the recovery was 96.7-102.0%. Finally, the method was applied to extracts prepared from differently colored leaves of DP. Similar magnesium contents were obtained for extracts made of dried and fresh leaves. It is often assumed that the yellowing of the leaves is associated with reduced magnesium content. However, the results indicated that yellow leaves are not due to lower magnesium levels. This stimulates the future analysis of DP leaves considering other essential minerals such as molybdenum or manganese.


Asunto(s)
Dioscorea , Magnesio , Espectrofotometría Atómica , Clorofila , Flavonoides
19.
J Sci Food Agric ; 2023 May 20.
Artículo en Inglés | MEDLINE | ID: mdl-37209230

RESUMEN

BACKGROUND: Consumers' preferences for food crops are guided by quality attributes. This study aimed at deciphering the genetic basis of quality traits, especially tuber flesh color (FC) and oxidative browning (OB) in Dioscorea alata, based on the genome-wide association studies (GWAS) approach. The D. alata panel was planted at two locations in Guadeloupe. At harvest, the FC was scored visually as white, cream, or purple on longitudinally sliced mature tubers. The OB was scored visually as the presence or absence of browning after 15 min of exposure of the sliced samples to ambient air. RESULTS: Phenotypic characterization for FC and OB of a diverse panel of D. alata genotypes highlighted significant variation within the panel and across two locations. The genotypes within the panel displayed a weak structure and could be classified into three subpopulations. GWAS identified 14 and 4 significant associations for tuber FC and OB, respectively, with phenotypic variance, explained values ranging from 7.18% to 18.04%. Allele segregation analysis at the significantly associated loci highlighted the favorable alleles for the desired traits, i.e., white FC and no OB. A total of 24 putative candidate genes were identified around the significant signals. A comparative analysis with previously reported quantitative trait loci indicated that numerous genomic regions control these traits in D. alata. CONCLUSION: Our study provides important insights into the genetic control of tuber FC and OB in D. alata. The major and stable loci can be further utilized to improve selection in breeding programs for developing new cultivars with enhanced tuber quality. © 2023 The Authors. Journal of The Science of Food and Agriculture published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.

20.
J Sci Food Agric ; 103(13): 6440-6451, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37209398

RESUMEN

BACKGROUND: Chinese yam fermented by Monascus, namely red mold dioscorea (RMD), has the potential of treating diseases. However, the production of citrinin limits the application of RMD. In the present study, the fermentation process of Monascus was optimized by adding genistein or luteolin to reduce citrinin yield. RESULTS: The results showed that citrinin in 25 g of Huai Shan yam was reduced by 48% and 72% without affecting the pigment yield by adding 0.2 g of luteolin or genistein, respectively, to a 250-mL conical flask after fermentation for 18 days at 28 °C, whereas the addition of luteolin increased the content of yellow pigment by 1.3-fold. Under optimal conditions, citrinin in 20 g of iron bar yam decreased by 55% and 74% after adding 0.2 g of luteolin or genistein. Luteolin also increased yellow pigment content by 1.2-fold. Ultra HPLC coupled to quadrupole time-of-flight mass spectrometry was used for the preliminary analysis of Monascus fermentation products. It was found that the amino acid types in RMD are similar to those in yams, but there are fewer polysaccharides and fatty acids. CONCLUSION: The results obtained in the present study showed that the addition of genistein or luteolin could reduce citrinin on the premise of increasing pigment yield, which laid a foundation for the better use of yams in Monascus fermentation. © 2023 Society of Chemical Industry.


Asunto(s)
Citrinina , Dioscorea , Monascus , Fermentación , Citrinina/análisis , Dioscorea/metabolismo , Genisteína/metabolismo , Monascus/metabolismo , Luteolina/metabolismo , Pigmentos Biológicos/metabolismo
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda