Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 20 de 57
Filtrar
1.
J Environ Manage ; 368: 122068, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39116819

RESUMEN

Efficient filtering of dyes is essential for the protection of ecosystem and human health due to the considerable water pollution caused by the effluents released from the sector. We present a simple, scalable UV radiation-assisted method for treating methyl orange dye-polluted water from the textile industry using zirconium phosphate-loaded polyaniline-graphene oxide (PGZrP) composite. The new material was synthesized by sonochemically incorporating a polyaniline-graphene oxide composite with hydrothermally synthesized zirconium phosphate. The efficacy of PGZrP in eliminating methyl orange was evaluated using experimental conditions, and the adsorption capacity was investigated as a function of pH, temperature, adsorbent dosage, and adsorption period. The system follows Langmuir adsorption isotherm with pseudo-second-order kinetics. Thermodynamics studies showed that enthalpy (H°) and entropy (S°) values are positive, indicating that the dye adsorption increases with increasing temperature and is an endothermic reaction. The maximum adsorption capacity was found to be 36.45379 mg/g for methyl orange. Using the COMSOL Multiphysics CFD Platform, an attempt was made to check the temperature and concentration profile of a PGZrP composite in a real industrial system. The predicted result shows that there is no significant temperature change in the material during the adsorption process and the concentration of dye is mainly located on the top region of the bed. The developed zirconium phosphate decorated polyaniline-graphene oxide composite can be successfully utilized for the effective removal of methyl orange from industrial wastewater in bulk quantity which is coming from the textile industry, and the composite can be reused for several cycles with good efficiency. In this work, we have designed a miniaturized proof of concept to remove methyl orange from water which showed good dye removal efficiency.


Asunto(s)
Compuestos de Anilina , Colorantes , Grafito , Circonio , Grafito/química , Circonio/química , Compuestos de Anilina/química , Adsorción , Colorantes/química , Contaminantes Químicos del Agua/química , Textiles , Cinética , Compuestos Azo/química , Termodinámica , Industria Textil
2.
Environ Res ; 215(Pt 1): 114182, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-36044960

RESUMEN

The emergence of antibiotics in water has been globally recognized as a critical pollution issue. Antibiotics (such as Ciprofloxacin (CPFX) pose a serious threat to humans and to the ecosystem due to its accumulation in water sources which can lead to chronic health problems and endanger aquatic life. It is therefore crucial to properly remove them from water. In this work, a nano-composite adsorptive membrane based on Zirconium Phosphate (ZrP) adsorbent supported on Polyethersulfone (PES) was synthesized and evaluated for the removal of CPFX from synthetic aqueous solutions. The membranes described here showed a very high antibiotic removal rate. The effect of various parameters such as the initial concentration of the antibiotic, the adsorbent dosage, contact time, pH, and temperature was studied. The equilibrium data were found to reasonably best fit with the Temkin isotherm model. The membranes showed a high ciprofloxacin removal (99.7%) as opposed to (68%) when PES membrane alone was used. Moreover, a significant improvement in the membrane's water flux (100.84 L/m2.h) and permeability (97.62 L/m2.hr.bar) were noticed as opposed to pure PES membrane's flux and permeability. The adsorptive membranes were characterized by scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDS), Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), and Brunauer-Emmett-Teller (BET). The results confirmed the successful formation of ZrP nanoparticles adsorbent within the membrane matrix, and with enhanced hydrophilic properties. The membrane was successfully regenerated and reused up to 5 times. The results of this work showed the potential of such membranes for the removal of ciprofloxacin and at a high efficiency.


Asunto(s)
Contaminantes Ambientales , Contaminantes Químicos del Agua , Adsorción , Antibacterianos , Ciprofloxacina/química , Ecosistema , Humanos , Concentración de Iones de Hidrógeno , Cinética , Polímeros , Espectroscopía Infrarroja por Transformada de Fourier , Sulfonas , Aguas Residuales/química , Agua , Contaminantes Químicos del Agua/análisis , Circonio
3.
Int J Mol Sci ; 23(24)2022 Dec 14.
Artículo en Inglés | MEDLINE | ID: mdl-36555563

RESUMEN

In this work, exfoliated α-zirconium phosphate (α-ZrP) and phosphated cellulose (PCF) were employed to synthesize poly(vinyl alcohol) composite aerogels (PVA/PCF/α-ZrP) with excellent flame retardancy through the multi-directional freezing method. The peak heat release rate (PHRR), total smoke release (TSR), and CO production (COP) of the (PVA/PCF10/α-ZrP10-3) composite aerogel were considerably decreased by 42.3%, 41.4%, and 34.7%, as compared to the pure PVA aerogel, respectively. Simultaneously, the limiting oxygen index (LOI) value was improved from 18.1% to 28.4%. The mechanistic study of flame retardancy showed evidence that PCF and α-ZrP promoted the crosslinking and carbonization of PVA chains to form a barrier, which not only served as insulation between the material and the air, but also significantly reduced the emissions of combustible toxic gases (CO2, CO). In addition, the multi-directional freezing method further improved the catalytic carbonization process. This mutually advantageous strategy offers a new strategy for the preparation of composite aerogels with enhanced fire resistance.


Asunto(s)
Retardadores de Llama , Alcohol Polivinílico , Animales , Congelación , Catálisis , Celulosa , Estro
4.
J Environ Manage ; 319: 115718, 2022 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-35868183

RESUMEN

Effective and efficient disposal of radioactive pollution has been crucial for responding to unexpected nuclear accidents and guaranteeing the sustainable development of nuclear energy. In this study, a kind of porous zirconium phosphate was synthesized with a sol-gel process followed by a post-synthesis modification to remove the radioactive Sr2+ from wastewater. The prepared materials were characterized by different technologies including FT-IR, SEM-EDS, XRD and XPS, and then the adsorption performance was evaluated in batch and column modes. Experimental results suggested that the porous zirconium phosphate adsorbent was successfully prepared with Na+ dispersed in the channels for exchange. It inherited the excellent properties of zirconium dioxide aerogel and exhibited mesoporous structure and large specific surface area. Compared with traditional zirconium phosphate, the adsorption kinetics and the adsorption capacity were improved simultaneously. Especially, it showed excellent selectivity towards Sr2+ among different cations, and even could remove the low-level Sr2+ from natural seawater efficiently, which powerfully demonstrated that the prepared material could be applied in the treatment of practical wastewater. Spectra studies uncovered that the adsorption activities were dominated by the ion exchange mechanism between external Sr2+ and interlaminar Na+ or H+. In conclusion, this paper not only reports a novel synthesis strategy for the acquisition of porous zirconium phosphate, but also presents a promising adsorbent for the Sr2+ removal.


Asunto(s)
Aguas Residuales , Contaminantes Químicos del Agua , Adsorción , Concentración de Iones de Hidrógeno , Cinética , Fosfatos/química , Porosidad , Espectroscopía Infrarroja por Transformada de Fourier , Estroncio , Contaminantes Químicos del Agua/química , Circonio/química
5.
Sci Technol Adv Mater ; 22(1): 1000-1012, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34924816

RESUMEN

The present study aims to develop a layered zirconium phosphate/phosphonate (LZP) powder to control the release of therapeutic inorganic ions. Organically modified LZPs were successfully prepared with various contents of phenyl groups via a reflux method in an aqueous solution containing phosphoric and phenylphosphonic acids. Powder X-ray diffraction analysis and Fourier transform infrared spectroscopy revealed that the crystal structure of the synthesized LZP samples was identical to that of α-zirconium phosphate, even after modification. The amount of incorporated organic molecules increased with increasing molar fractions of phenylphosphonic acid in the starting composition, as determined from the thermal analysis. Cobalt ion (Co2+), a type of therapeutic inorganic ion, was incorporated into the organically modified LZP through treatment with an acetonitrile solution containing tetrabutylammonium ions, followed by treatment with an acetonitrile solution containing CoCl2. The amount of incorporated Co2+ depended on the concentration of the phenyl groups. Furthermore, the highest amount of Co2+ was incorporated in the sample (ZP-Ph-0.5) prepared with equimolar phosphoric/phenylphosphonic acid. The ZP-Ph-0.5 sample additionally showed the ability to incorporate copper or iron ions (Cu2+ or Fe3+). The incorporated ion, either Co2+ or Cu2+, was continuously released from the ZP-Ph-0.5 sample in a saline solution over a period of three weeks, whereas the release of Fe3+ was negligible. The quantity of Co2+ released was higher than that of Cu2+. The controlled release of Co2+ from the ZP-Ph-0.5 sample was also observed in a simulated body fluid that mimicked the ionic concentration of human blood plasma. These results confirm that a specific degree of phenyl modification makes LZP a candidate host material for releasing therapeutic inorganic ions.

6.
Molecules ; 26(8)2021 Apr 20.
Artículo en Inglés | MEDLINE | ID: mdl-33924121

RESUMEN

Layered zirconium phosphate (ZrP) is a versatile material with phosphate (POH ) groups able to exchange inorganic and organic cations or to intercalate basic molecules. The present review deals with the use of this material as a sorbent for heavy metal cations or dye molecules in wastewater treatments. The possibility to combine ZrP with polymers or other inorganic materials, in order to have suitable systems for real and large scale applications, was investigated, as well as the combination with photocatalytic materials to obtain hetrogeneous photocatalysts for the capture and photodegradation of organic dye molecules.

7.
Drug Dev Ind Pharm ; 43(5): 862-870, 2017 May.
Artículo en Inglés | MEDLINE | ID: mdl-27489129

RESUMEN

In this work, a series of composites of insulin (Ins)/zirconium phosphate (ZrP) were synthesized by intercalation method, then, these composites were coated with TiO2 by sol-gel method to prepare Ins/ZrP@TiO2 hybrid composites and the drug release of the composites was investigated by using UV-Vis spectroscopy. Ins/ZrP (10, 30, 60 wt%) composites were prepared by intercalation of insulin into the ZrP layers in water. Then Ins/ZrP composites were coated with different amounts of TiO2 (30, 50, 100 wt %) by using titanium tetra n-butoxide, as precursor. Formation of intercalated Ins/ZrP and Ins/ZrP@TiO2 hybrid composites was characterized by FT-IR, FE-SEM, BET and XRD analysis. Zeta potential of the optimized Ins/ZrP@TiO2 hybrid composite was determined -27.2 mV. Cytotoxic effects of the optimized Ins/ZrP@TiO2 hybrid composite against HeLa and Hek293T cell lines were evaluated using MTT assay and the results showed that designed drug delivery system was not toxic in biological environment. Compared to the Ins/ZrP composites, incorporation of TiO2 coating enhanced the drug entrapment considerably, and reduced the drug release. The Ins/ZrP composites without TiO2 coating released the whole drug after 30 min in pH 7.4 (phosphate buffer solution) while the TiO2-coated composites released the entrapped drug after 20 h. In addition to increasing the shelf life of hormone, this nanoencapsulation and nanocoating method can convert the insulin utilization from injection to oral and present a painless and more comfortable treatment for diabetics.


Asunto(s)
Insulina/química , Titanio/química , Circonio/química , Administración Oral , Línea Celular , Línea Celular Tumoral , Sistemas de Liberación de Medicamentos/métodos , Células HEK293 , Células HeLa , Humanos
8.
Phytochem Anal ; 27(3-4): 153-7, 2016 May.
Artículo en Inglés | MEDLINE | ID: mdl-27313152

RESUMEN

INTRODUCTION: 5-O-Galloylquinic acid from green tea and other plants is attracting increasing attention for its antioxidant and antileishmanial bioactivities. It is always isolated using a silica column, a Sephadex column and high-performance liquid chromatography (HPLC) methods, which are either laborious or instrument dependent. OBJECTIVE: To develop a new method to easily separate 5-O-galloylquinic acid. METHODOLOGY: Mesoporous zirconium phosphate (m-ZrP) was prepared to conveniently separate 5-O-galloylquinic acid from Chinese green tea extract, and the target compound was easily obtained by simple steps of adsorption, washing and desorption. The effects of the green tea extraction conditions, extract concentrations, and m-ZrP adsorption/desorption dynamics on the 5-O-galloylquinic acid separation were evaluated. RESULTS: 5-O-Galloylquinic acid that was separated from a 70% ethanol extract of green tea was of moderate HPLC purity (92%) and recovery (88%), and an increased non-specific binding of epigallocatechin gallate (EGCG) on m-ZrP was observed in the diluted tea extract. The times for maximal adsorption of 5-O-galloylquinic acid in 70% ethanol extract and maximal desorption of 5-O-galloylquinic acid in 0.4% phosphoric acid solution were confirmed as 7 h and 5 h, respectively. CONCLUSION: A facile method to separate 5-O-galloylquinic acid from Chinese green tea extract using m-ZrP was established. Copyright © 2016 John Wiley & Sons, Ltd.


Asunto(s)
Antioxidantes/aislamiento & purificación , Extractos Vegetales/aislamiento & purificación , Ácido Quínico/aislamiento & purificación , Té/química , Circonio/química , Adsorción , Antioxidantes/química , Catequina/análogos & derivados , Catequina/química , Catequina/aislamiento & purificación , Fraccionamiento Químico , Estructura Molecular , Extractos Vegetales/química , Ácido Quínico/química
9.
Anal Biochem ; 445: 24-9, 2014 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-24135657

RESUMEN

A novel glucose oxidase/chitosan/α-zirconium phosphate (GOD/chitosan/α-ZrP) ternary biocomposite was prepared by co-intercalating glucose oxidase (GOD) and chitosan into the interlayers of α-zirconium phosphate (α-ZrP) via a delamination-reassembly procedure. The results of X-ray diffraction, infrared spectroscopy, circular dichroism, and ultraviolet spectrum characterizations indicated not only the layered and hybrid structure of the GOD/chitosan/α-ZrP ternary biocomposite but also the recovered activity of the intercalated GOD improved by the co-intercalated chitosan. By depositing the GOD/chitosan/α-ZrP biocomposite film onto a glassy carbon electrode, the direct electrochemistry of the intercalated GOD was achieved with a fast electron transfer rate constant, k(s), of 7.48±3.52 s(-1). Moreover, this GOD/chitosan/α-ZrP biocomposite modified electrode exhibited a sensitive response to glucose in the linear range of 0.25-8.0 mM (R=0.9994, n=14), with a determination limit of 0.076 mM.


Asunto(s)
Materiales Biocompatibles/química , Técnicas Biosensibles , Quitosano/química , Glucosa/análisis , Circonio/química , Técnicas Electroquímicas , Electrodos , Transporte de Electrón , Enzimas Inmovilizadas/química , Enzimas Inmovilizadas/metabolismo , Glucosa Oxidasa/química , Glucosa Oxidasa/metabolismo , Cinética
10.
Dent Mater ; 2024 Aug 07.
Artículo en Inglés | MEDLINE | ID: mdl-39117499

RESUMEN

OBJECTIVE: Dental implants fabricated from titanium have several limitations and therefore, alternative materials that fulfil the criteria of successful dental implant (bioactivity and anti-bacterial activity) need to be considered. Polyether ether ketone (PEEK) has been suggested to replace titanium implants. However, this material needs surface modification to meet the appropriate criteria. A nano-sized zirconium phosphate/GO (nZrP/GO) composite coating was prepared to improve PEEK's biological qualities. METHODS: Polished and cleaned PEEK discs were coated with the composite of nZrP doped with 1.25 wt% GO by the soft-template method. To analyze the composite coating, X-ray, atomic force microscopy, and field emission scanning electron microscopy-energy dispersive spectroscopy were used. The adhesion of the coating to PEEK was measured by adhesive tape test. By measuring the optical contact angle, the coated and non-coated samples' differences in wettability were evaluated. Antimicrobial activity was evaluated against S. aureus and E. coli and cytotoxicity tested employing gingival fibroblasts and osteoblast-like cells. RESULTS: The nZrP/GO composite coating was 23.45 µm thick, was irregular and attached strongly to the PEEK surface. Following coating, the water contact angle dropped to 34° and surface roughness to 13 nm. The coating reduced the count of bacteria two-fold and was non-cytotoxic to mammalian osteoblast-like cells and fibroblasts. A precipitation of nano-calcium-deficient apatite was observed on the surface of the nZrP/GO coating following a 28-day immersion in SBF. SIGNIFICANCE: PEEK-coated with nZr/GO coating is a good candidate as dental implant.

11.
Nucl Med Biol ; 132-133: 108909, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38599144

RESUMEN

BACKGROUND: Radioligand therapy using alpha emitters has gained more and more prominence in the last decade. Despite continued efforts to identify new appropriate radionuclides, the combination of 225Ac/213Bi remains among the most promising. Bismuth-213 has been employed in clinical trials in combination with appropriate vectors to treat patients with various forms of cancer, such as leukaemia, bladder cancer, neuroendocrine tumours, melanomas, gliomas, or lymphomas. However, the half-life of 213Bi (T½ = 46 min) implies that its availability for clinical use is limited to hospitals possessing a 225Ac/213Bi radionuclide generator, which is still predominantly scarce. We investigated a new Ac/Bi generator system based on using the composite sorbent α-ZrP-PAN (zirconium(IV) phosphate as active component and polyacrylonitrile as matrix). The developed 225Ac/213Bi generator was subjected to long-term testing after its development. The elution profile was determined and the elution yield, the contamination of the eluate with the parent 225Ac and the contamination of the eluate with the column material were monitored over time. RESULTS: The high activity (75 MBq of parent 225Ac) generator with a length of 75 mm and a diameter of 4 mm containing the composite sorbent α-ZrP-PAN with a particle size of 0.8 to 1.0 mm as the stationary phase, eluted with a mixture of 10 mM DTPA in 5 mM nitric acid, provided 213Bi with yields ranging from 77 % to 96 % in 2.8 mL of eluate, with parent 225Ac contamination in the order of 10-3 %, up to twenty days of use. CONCLUSION: All the results of the monitored parameters indicate that the composite sorbent α-ZrP-PAN based separation system for the elution of 213Bi is a very promising and functional solution.


Asunto(s)
Actinio , Partículas alfa , Bismuto , Radioisótopos , Bismuto/química , Partículas alfa/uso terapéutico , Radioisótopos/química , Actinio/química , Circonio/química , Generadores de Radionúclidos , Radioquímica/métodos , Radioquímica/instrumentación
12.
Int J Biol Macromol ; 254(Pt 3): 127999, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37949264

RESUMEN

Manipulating the dispersibility and reactivity of two-dimensional nanomaterials in collagen fibers (CFs) matrix has aroused attention in the fabrication of multifunctional collagen-based nanocomposites. Here, α­zirconium phosphate nanoplatelets (ZrP NPs) were surface-functionalized with gallic acid (GA) to afford ZrP-GA NPs for engineering CFs matrix. The influence of ZrP-GA NPs on the ultraviolet barrier, antibacterial, and flame-retardant properties of resultant CFs matrix were investigated. Microstructural analysis revealed that ZrP-GA NPs were dispersed and bound within the collagen fibrils and onto the collagen strands in the CFs matrix. The resultant CFs matrix also maintained typical D-periodic structures of collagen fibrils and native branching and interwoven structures of CFs networks with increased porosity and enhanced ultraviolet barrier properties. Inhibition zone testing presented excellent antibacterial activities of the CFs matrix owing to surface grafting of antibacterial GA. Thanks to enhanced dispersion and binding of ZrP NPs with the CFs matrix by surface-functionalization with GA, the resultant CFs matrix reduced the peak heat release rate and the total heat release by 42.9 % and 39.0 %, respectively, highlighting improved flame-retardant properties. We envision that two-dimensional nanomaterials possess great potential in developing reasonable collagen-based nanocomposites towards the manufacture of emergent multifunctional collagen fibers-based wearable electronics.


Asunto(s)
Retardadores de Llama , Nanocompuestos , Matriz Extracelular , Antibacterianos/farmacología , Electrónica , Ácido Gálico
13.
Materials (Basel) ; 16(13)2023 Jun 25.
Artículo en Inglés | MEDLINE | ID: mdl-37444898

RESUMEN

Salt lake brine originating from Qinghai, China has abundant cesium resources and huge total reserves. The inorganic ion exchangers ammonium molybdophosphate (AMP) and zirconium phosphate (ZrP) have the significant advantages of separating and extracting Cs+ as a special adsorbent. Nevertheless, their high solubility in water leads to a decrease in their ability to adsorb Cs+ in aqueous solutions, causing problems such as difficulty with using adsorbents alone and a difficult recovery. In this work, an environmentally friendly polyurethane sponge (PU sponge) with a large specific surface area is employed as an adsorbent carrier by physically impregnating dopamine-coated AMP and ZrP onto a PU sponge, respectively. The experiment found that under the same conditions, the AMP/PU sponge performs better than the ZrP/PU sponge for Cs+ adsorption. When the amount of adsorbent reaches 0.025 g, the adsorption capacity reaches saturation. The adsorption efficiency remains above 80% when the concentration of Cs+ is 5-35 mg/L. The kinetic calculations show that adsorption is spontaneous, feasible, and has a higher driving force at high temperatures. In addition, the power and mechanism of the interaction between adsorbent and adsorbent are explained using the density functional theory calculation. This efficient, stable, and selective Cs+ adsorbent provides design guidelines.

14.
ACS Appl Mater Interfaces ; 15(13): 17054-17069, 2023 Apr 05.
Artículo en Inglés | MEDLINE | ID: mdl-36944022

RESUMEN

A supramolecular self-assembly method was used to prepare melamine cyanurate/α-ZrP nanosheets (MCA@α-ZrP) as a novel hybrid flame retardant for thermoplastic polyurethane (TPU). Microstructure characterization showed a uniform dispersion with strong interfacial strength of the MCA@α-ZrP hybrid within the TPU matrix, leading to simultaneous enhancements in both mechanical and fire-safety properties. The TPU/MCA@α-ZrP nanocomposite exhibited 43.1 and 47.0% increments in tensile strength and fracture energy, respectively. Thanks to the platelike structure of α-ZrP coupled with the dilution effect of MCA (releasing nonflammable gases), the hybrid MCA@α-ZrP reduced the peak heat release rate of TPU by 49.7% in comparison with 15.8 and 35.4% for TPU/MCA and TPU/ α-ZrP composites, respectively. The fire performance index of TPU is significantly promoted by 90% upon adding the MCA@α-ZrP hybrid. Additionally, LOI and UL-94 tests showed high flame-retarding characteristics for the MCA@α-ZrP hybrid. For example, LOI increased from 20.0% for neat TPU to 25.5% for the MCA@α-ZrP hybrid system, and it was rated V-1 from the UL-94 test. Furthermore, the smoke production and pyrolysis products were significantly suppressed by adding the MCA@α-ZrP hybrid into TPU. Interfacial hydrogen bonding, the dilution effect of MCA, forming a "labyrinth" layer, and catalytic action of α-ZrP nanosheets synergistically improved both the mechanical performance and flame retardancy of TPU nanocomposites. This work provides a new example of integrating traditional flame retardants with functional nanosheets to develop polymeric nanocomposites with high mechanical and fire-safety properties.

15.
Polymers (Basel) ; 15(2)2023 Jan 14.
Artículo en Inglés | MEDLINE | ID: mdl-36679327

RESUMEN

The high mechanical strength, large specific surface area, favorable biocompatibility, and degradability of nanocellulose (CNC) enable it to be a potential alternative to petroleum-based materials. However, the traditional preparation of CNCs requires a large amount of strong acid, which poses a serious challenge to equipment maintenance, waste liquid recycling, and economics. In this study, a solid and easily recoverable zirconium phosphate (ZrP) was used to assist in the phosphoric acid co-catalyzed hydrolysis of lignocellulose for extracting CNCs. Due to the presence of acidic phosphate groups, ZrP has a strong active center with a high catalytic activity. With the assistance of ZrP, the amount of phosphoric acid used in the reaction is significantly reduced, improving the equipment's durability and economic efficiency. The effects of the process conditions investigated were the phosphate acid concentration, reaction temperature, and reaction time on the yield of CNCs. The Box-Behnken design (BBD) method from the response surface methodology (RSM) was applied to investigate and optimize the preparation conditions. The optimized pre-treatment conditions were 49.27% phosphoric acid concentration, 65.38 °C reaction temperature, and 5 h reaction time with a maximal cellulose yield (48.33%). The obtained CNCs show a granular shape with a length of 40~50 nm and a diameter of 20~30 nm, while its high zeta potential (-24.5 mV) make CNCs present a stable dispersion in aqueous media. Moreover, CNCs have a high crystallinity of 78.70% within the crystal type of cellulose Ⅰ. As such, this study may pioneer the horizon for developing a green method for the efficient preparation of CNC, and it is of great significance for CNCs practical production process.

16.
Heliyon ; 9(11): e21353, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37928022

RESUMEN

Composites of amorphous ZrP and N-doped carbon were prepared in a one-step pyrolysis process instead of general post-loading technique. Owing to their mesoporous structure (6-10 nm) and Zr content (up to 41 wt%), the amphoteric materials have potential use in the cycloaddition of CO2 to epoxides, which is an acid‒base tandem process including the ring opening of epoxides and the addition of CO2. Substantial work has been done on how starting materials impact the structure and performance of composite materials. The coordination between metal and melamine has been confirmed, and it can be implanted in the melamine-polymer initiation of formation of porous metal-carbon materials. The composite catalysts exhibit amphoteric properties, present broad-spectrum adsorption, and finally produce carbonates via cycloaddition of CO2 to epoxides. It is remarkable that the multiple characteristics of porous solids are stabilized, and no significant loss of catalytic performance is observed after four cycles.

17.
J Colloid Interface Sci ; 636: 588-601, 2023 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-36669452

RESUMEN

Bimetal oxide is a popular defluorinating material. Hexadecyl trimethyl ammonium bromide (CTAB) as a surfactant successfully synthesizes a novel lanthanum-zirconium phosphate to remove fluorine from groundwater. Lanthanum-zirconium phosphate at a Zr/La molar ratio of 2 exhibited a specific surface area of 455.14 m2/g with a wide pore size, which was achieved by incorporating lanthanum into materials and removing CTAB through calcination. The maximum fluoride adsorption capacity is 109.17 mg/g, which is tenfold that of mesostructured zirconium phosphate. Specifically, analysis revealed that mZrP and LamZrP2-1 were amorphous, which is consistent with HAADF-STEM. The fluoride adsorption fitted well with the pseudo-second-order equation model and Langmuir isotherm mode. LamZrP2-1 had potent anti-interference ability without PO43-. Moreover, LamZrP2-1 was reusable for at least six cycles of adsorption-desorption with little influence. The adsorption mechanism of fluoride was discussed by X-ray photoelectron spectroscopy (XPS), nuclear magnetic resonance spectroscopy (NMR) analysis, and Fourier transform infrared (FTIR) spectroscopy. Fluoride was captured by LamZrP2-1 via charge attraction, ligand exchange of different bond strengths, and ion exchange. Lanthanum-zirconium phosphate is important not only in the research and development of bimetal oxides but also in the treatment of groundwater for fluoride removal.

18.
Nanomaterials (Basel) ; 13(4)2023 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-36839110

RESUMEN

Different amounts of sodium-alendronate (ALN) were loaded into layered zirconium phosphates of alpha and gamma type (αZP and γZP) by means of topotactic exchange reactions of phosphate with ALN. In order to extend the exchange process to the less accessible interlayer regions, ALN solutions were contacted with colloidal dispersions of the layered solids previously exfoliated in single sheets by means of intercalation reaction of propylamine (for αZP) or acetone (for γZP). The ALN loading degree was determined by liquid P-nuclear magnetic resonance (NMR) and inductively coupled plasma (ICP), and it was reported as ALN/Zr molar ratios (Rs). The maximum R obtained for γZP was 0.34, while αZP was able to load a higher amount of ALN, reaching Rs equal to 1. The synthesized compounds were characterized by X-ray powder diffractometry, scanning electron microscopy (SEM), solid-state NMR, and infrared spectroscopy. The way the grafted organo-phosphonate groups were bonded to the layers of the host structure was suggested. The effect of ZP derivatives was assessed on cell proliferation, and the results showed that after 7 days of incubation, none of the samples showed a decrease in cell proliferation.

19.
Nanomaterials (Basel) ; 14(1)2023 Dec 27.
Artículo en Inglés | MEDLINE | ID: mdl-38202531

RESUMEN

The rupture of a micro/nano container can trigger the release of repair agents and provides the coating with a self-healing and anti-corrosion effect. However, the defect and inhomogeneity of the coating, produced by the rupture of the micro/nano container, may weaken its anti-corrosion performance. This study reports a rare protection mechanism, which optimizes the space occupying of zirconium phosphate, and the de-doping peculiarity of polyaniline without the rupture of the micro/nano container. Polyaniline/α-zirconium phosphate composites were constructed through in situ oxidation polymerization. Repair agents were added in the form of doped acids. According to the different repair agents in polyaniline/α-zirconium phosphate composites (citric ion, tartaric ion and phytic ion), the performance and protection mechanism of the composites were researched. Polyaniline/α-zirconium phosphate coating (with phytic ion) shows an excellent self-healing anti-corrosive effect, due to the large spatial structure and abundant chelating groups of the precipitation inhibitor. Considering the anti-corrosive application, the developed polyaniline/α-zirconium phosphate composite has a far-reaching influence on marine development.

20.
Materials (Basel) ; 15(14)2022 Jul 20.
Artículo en Inglés | MEDLINE | ID: mdl-35888516

RESUMEN

The paper presented the mechanical (MChT), microwave (MWT), and hydrothermal (HTT) methods of zirconium phosphate samples modification in order to improve its adsorption affinity for the Ag (I) ions. The FTIR studies proved that the modification of both gel and xerogel samples with the ultrasonic microwaves causes an increase in the concentration of phosphate groups on the surface of MWT-modified zirconium phosphate: the isoelectric point pHiep = 2.2-2.9 for these samples against 3.9 for the initial sample and pKa2 values were 4.7-5.6 and 6.3, respectively. As resulting from the Ag+ ion adsorption studies, the MWT treatment of zirconium phosphate samples caused the greatest affinity of Ag+ ions for the surface of MWT zirconium phosphate. Compared with the initial ZrP sample, the shift of the Ag (I) ion adsorption edge towards lower pH values was observed, e.g., with adsorption of Ag (I) ions from the solution with the initial concentration of 1 µmol/dm3 for the initial ZrP sample pH50% = 3.2, while for the sample MWT ZrPxero pH50% = 2.6.

SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda