Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 20 de 153
Filtrar
1.
New Phytol ; 242(6): 2586-2603, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38523234

RESUMEN

Nicotianamine (NA) plays a crucial role in transporting metal ions, including iron (Fe), in plants; therefore, NICOTIANAMINE SYNTHASE (NAS) genes, which control NA synthesis, are tightly regulated at the transcriptional level. However, the transcriptional regulatory mechanisms of NAS genes require further investigations. In this study, we determined the role of bZIP44 in mediating plant response to Fe deficiency stress by conducting transformation experiments and assays. bZIP44 positively regulated the response of Arabidopsis to Fe deficiency stress by interacting with MYB10 and MYB72 to enhance their abilities to bind at NAS2 and NAS4 promoters, thereby increasing NAS2 and NAS4 transcriptional levels and promote NA synthesis. In summary, the transcription activities of bZIP44, MYB10, and MYB72 were induced in response to Fe deficiency stress, which enhanced the interaction between bZIP44 and MYB10 or MYB72 proteins, synergistically activated the transcriptional activity of NAS2 and NAS4, promoted NA synthesis, and improved Fe transport, thereby enhancing plant tolerance to Fe deficiency stress.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Factores de Transcripción con Cremalleras de Leucina de Carácter Básico , Regulación de la Expresión Génica de las Plantas , Deficiencias de Hierro , Estrés Fisiológico , Factores de Transcripción , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Factores de Transcripción/metabolismo , Factores de Transcripción/genética , Estrés Fisiológico/genética , Factores de Transcripción con Cremalleras de Leucina de Carácter Básico/metabolismo , Factores de Transcripción con Cremalleras de Leucina de Carácter Básico/genética , Hierro/metabolismo , Regiones Promotoras Genéticas/genética , Unión Proteica , Transferasas Alquil y Aril/metabolismo , Transferasas Alquil y Aril/genética , Ácido Azetidinocarboxílico/análogos & derivados , Ácido Azetidinocarboxílico/metabolismo , Plantas Modificadas Genéticamente
2.
Angew Chem Int Ed Engl ; 63(20): e202401411, 2024 May 13.
Artículo en Inglés | MEDLINE | ID: mdl-38500479

RESUMEN

A succinct synthetic approach to mugineic acids and 2'-hydroxynicotianamine was established. Unlike all other synthetic methods, this approach utilized epoxide ring-opening reactions to form two C-N bonds and is characterized by the absence of redox reactions. Mugineic acid was synthesized from three readily available fragments on a gram scale in 6 steps. The protected 2'-hydroxynicotianamine was also synthesized in 4 steps, and the dansyl group, serving as a fluorophore, was introduced through a click reaction after propargylation of the 2'-hydroxy group. The dansyl-labeled nicotianamine (NA) iron complexes were internalized by oocytes overexpressing ZmYS1 (from maize) or PAT1 (from human) transporters, indicating successful transport of the synthesized NA-probe through these transporters.


Asunto(s)
Ácido Azetidinocarboxílico/análogos & derivados , Compuestos Epoxi , Compuestos Epoxi/química , Compuestos Epoxi/metabolismo , Humanos , Estructura Molecular , Ácido Azetidinocarboxílico/metabolismo , Ácido Azetidinocarboxílico/química
3.
Plant Physiol ; 188(4): 2131-2145, 2022 03 28.
Artículo en Inglés | MEDLINE | ID: mdl-35099564

RESUMEN

The Yang cycle is involved in many essential metabolic pathways in plant growth and development. As extended products of the Yang cycle, the function and regulation network of ethylene and polyamines are well characterized. Nicotianamine (NA) is also a product of this cycle and works as a key metal chelator for iron (Fe) homeostasis in plants. However, interactions between the Yang cycle and NA biosynthesis remain unclear. Here, we cloned maize interveinal chlorosis 1 (mic1), encoding a 5'-methylthioadenosine nucleosidase (MTN), that is essential for 5'-methylthioadenosine (MTA) salvage and NA biosynthesis in maize (Zea mays). A single base G-A transition in the fourth exon of mic1 causes a Gly to Asp change, resulting in increased MTA, reduced Fe distribution, and growth retardation of seedlings. Knockout of ZmMIC1 but not its paralog ZmMTN2 by CRISPR/Cas9 causes interveinal chlorosis, indicating ZmMIC1 is mainly responsible for MTN activity in maize. Transcriptome analysis showed a typical response of Fe deficiency. However, metabolic analysis revealed dramatically reduced NA content in mic1, suggesting NA biosynthesis was impaired in the mutant. Exogenous application of NA transiently reversed the interveinal chlorosis phenotype of mic1 seedlings. Moreover, the mic1 mutant overexpressing a NA synthase gene not only recovered from interveinal chlorosis and growth retardation but was also fertile. These findings provide a link between the Yang cycle and NA biosynthesis, which highlights an aspect of Fe homeostasis regulation in maize.


Asunto(s)
Anemia Hipocrómica , Zea mays , Ácido Azetidinocarboxílico/análogos & derivados , Ácido Azetidinocarboxílico/metabolismo , Regulación de la Expresión Génica de las Plantas , Homeostasis , Zea mays/genética , Zea mays/metabolismo
4.
J Labelled Comp Radiopharm ; 66(13): 428-434, 2023 11.
Artículo en Inglés | MEDLINE | ID: mdl-37755147

RESUMEN

We, herein, report the synthesis of 13 C2 -labeled natural products from the mugineic acid and avenic acid family. These phytosiderophores ("plant iron carriers") are built up from non-proteinogenic amino acids and play a key role in micronutrient uptake in gramineous plants. In this work, two central building blocks are prepared from labeled starting materials (13 C2 -bromoacetic acid, 13 C2 -glycine) and further employed in our recently reported divergent, branched synthetic strategy delivering eight isotopically labeled phytosiderophores. The required labeled building blocks (13 C2 -l-allylglycine and a related hydroxylated derivative) were prepared via enantioselective phase-transfer catalysis and enantio- and diastereoselective aldol condensation with a chiral auxiliary, respectively, both potentially valuable themselves for other synthetic routes toward labeled (natural) products.


Asunto(s)
Hierro , Sideróforos , Humanos , Sideróforos/química , Sideróforos/metabolismo , Hierro/química , Hierro/metabolismo , Transporte Biológico , Ácido Azetidinocarboxílico/química , Ácido Azetidinocarboxílico/metabolismo
5.
J Biol Chem ; 296: 100418, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33837730

RESUMEN

The nicotianamine-iron chelate [NA-Fe2+], which is found in many plant-based foods, has been recently described as a new form of bioavailable iron in mice and chickens. How NA-Fe2+ is assimilated from the diet, however, remains unclear. The current investigation by Murata et al. has identified the proton-coupled amino acid transporter 1 (PAT1) as the main mechanism by which NA-Fe2+ is absorbed in the mammalian intestine. Discovery of this new form of dietary iron and elucidation of its pathway of intestinal absorption may lead to the development of improved iron supplementation approaches.


Asunto(s)
Sistemas de Transporte de Aminoácidos/metabolismo , Ácido Azetidinocarboxílico/análogos & derivados , Quelantes del Hierro/metabolismo , Simportadores/metabolismo , Animales , Ácido Azetidinocarboxílico/metabolismo , Absorción Intestinal , Hierro de la Dieta/metabolismo , Ratones , Xenopus
6.
BMC Plant Biol ; 22(1): 37, 2022 Jan 17.
Artículo en Inglés | MEDLINE | ID: mdl-35039017

RESUMEN

BACKGROUND: Nicotianamine (NA), 2'-deoxymugineic acid (DMA), and mugineic acid (MA) are chelators required for iron uptake and transport in plants. Nicotianamine aminotransferase (NAAT), 2'-deoxymugineic acid synthase (DMAS), transporter of MAs (TOM), and efflux transporter of NA (ENA) are involved in iron uptake and transport in rice (Oryza sativa), wheat (Triticum aestivum), and barley (Hordeum vulgare); however, these families have not been fully identified and comprehensively analyzed in maize (Zea mays L.). RESULTS: Here, we identified 5 ZmNAAT, 9 ZmDMAS, 11 ZmTOM, and 2 ZmENA genes by genome mining. RNA-sequencing and quantitative real-time PCR analysis revealed that these genes are expressed in various tissues and respond differently to high and low iron conditions. In particular, iron deficiency stimulated the expression of ZmDMAS1, ZmTOM1, ZmTOM3, and ZmENA1. Furthermore, we determined protein subcellular localization by transient expression of green fluorescent protein fusions in maize mesophyll protoplasts. ZmNAAT1, ZmNAAT-L4, ZmDMAS1, and ZmDMAS-L1 localized in the cytoplasm, whereas ZmTOMs and ZmENAs targeted to plasma and tonoplast membranes, endomembranes, and vesicles. CONCLUSIONS: Our results suggest that the different gene expression profiles and subcellular localizations of ZmNAAT, ZmDMAS, ZmTOM, and ZmENA family members may enable specific regulation of phytosiderophore metabolism in different tissues and under different external conditions, shedding light on iron homeostasis in maize and providing candidate genes for breeding iron-rich maize varieties.


Asunto(s)
Genoma de Planta/genética , Hierro/metabolismo , Familia de Multigenes/genética , Proteínas de Plantas/genética , Zea mays/genética , Ácido Azetidinocarboxílico/análogos & derivados , Ácido Azetidinocarboxílico/metabolismo , Transporte Biológico , Cromosomas de las Plantas/genética , Regulación de la Expresión Génica de las Plantas , Genes Reporteros , Homeostasis , Deficiencias de Hierro , Filogenia , Proteínas de Plantas/metabolismo , Transporte de Proteínas , Proteínas Recombinantes de Fusión , Sideróforos/metabolismo , Transaminasas/genética , Transaminasas/metabolismo , Zea mays/enzimología , Zea mays/fisiología
7.
Plant Physiol ; 181(1): 276-288, 2019 09.
Artículo en Inglés | MEDLINE | ID: mdl-31331995

RESUMEN

Essential metals, such as iron (Fe) and zinc (Zn), in grains are important sources for seed germination and nutritional requirements, but the molecular mechanisms underlying their loading into grains are poorly understood. Recently, nodes in rice (Oryza sativa) were reported to play an important role in the preferential distribution of mineral elements to the grains. In this study, we functionally characterized a rice gene highly expressed in nodes, OsVMT (VACUOLAR MUGINEIC ACID TRANSPORTER), belonging to a major facilitator superfamily. OsVMT is highly expressed in the parenchyma cell bridges of node I, where Fe and Zn are highly deposited. The expression of OsVMT was induced by Fe deficiency in the roots but not in the shoot basal region and uppermost node. OsVMT localized to the tonoplast and showed efflux transport activity for 2'-deoxymugineic acid (DMA). At the vegetative stage, knockout of OsVMT resulted in decreased DMA but increased ferric Fe in the root cell sap. As a result, the concentration of DMA in the xylem sap increased but that of ferric Fe decreased in the xylem sap in the mutants. In the polished rice grain, the mutants accumulated 1.8- to 2.1-fold, 1.5- to 1.6-fold, and 1.4- to 1.5-fold higher Fe, Zn, and DMA, respectively, than the wild type. Taken together, our results indicate that OsVMT is involved in sequestering DMA into the vacuoles and that knockout of this gene enhances the accumulation of Fe and Zn in polished rice grains through DMA-increased solubilization of Fe and Zn deposited in the node.


Asunto(s)
Hierro/metabolismo , Oryza/genética , Proteínas de Plantas/metabolismo , Sideróforos/metabolismo , Zinc/metabolismo , Ácido Azetidinocarboxílico/análogos & derivados , Ácido Azetidinocarboxílico/metabolismo , Transporte Biológico , Grano Comestible , Regulación de la Expresión Génica de las Plantas , Técnicas de Inactivación de Genes , Proteínas de Transporte de Membrana/genética , Proteínas de Transporte de Membrana/metabolismo , Especificidad de Órganos , Oryza/metabolismo , Proteínas de Plantas/genética , Raíces de Plantas/genética , Raíces de Plantas/metabolismo , Transporte de Proteínas , Sideróforos/genética , Vacuolas/metabolismo , Xilema/genética , Xilema/metabolismo
8.
Int J Mol Sci ; 21(8)2020 Apr 18.
Artículo en Inglés | MEDLINE | ID: mdl-32325653

RESUMEN

Iron (Fe) and sulfur (S) are two essential elements for plants, whose interrelation is indispensable for numerous physiological processes. In particular, Fe homeostasis in cereal species is profoundly connected to S nutrition because phytosiderophores, which are the metal chelators required for Fe uptake and translocation in cereals, are derived from a S-containing amino acid, methionine. To date, various biotechnological cereal Fe biofortification strategies involving modulation of genes underlying Fe homeostasis have been reported. Meanwhile, the resultant Fe-biofortified crops have been minimally characterized from the perspective of interaction between Fe and S, in spite of the significance of the crosstalk between the two elements in cereals. Here, we intend to highlight the relevance of Fe and S interrelation in cereal Fe homeostasis and illustrate the potential implications it has to offer for future cereal Fe biofortification studies.


Asunto(s)
Biofortificación/métodos , Grano Comestible/metabolismo , Hierro/metabolismo , Azufre/metabolismo , Ácido Azetidinocarboxílico/análogos & derivados , Ácido Azetidinocarboxílico/metabolismo , Transporte Biológico/fisiología , Quelantes/metabolismo , Homeostasis , Proteínas de Transporte de Membrana/metabolismo , Estado Nutricional/fisiología
9.
Planta ; 249(3): 751-763, 2019 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-30382344

RESUMEN

MAIN CONCLUSION: Fe uptake machinery of chloroplasts prefers to utilise Fe(III)-citrate over Fe-nicotianamine complexes. Iron uptake in chloroplasts is a process of prime importance. Although a few members of their iron transport machinery were identified, the substrate preference of the system is still unknown. Intact chloroplasts of oilseed rape (Brassica napus) were purified and subjected to iron uptake studies using natural and artificial iron complexes. Fe-nicotianamine (NA) complexes were characterised by 5 K, 5 T Mössbauer spectrometry. Expression of components of the chloroplast Fe uptake machinery was also studied. Fe(III)-NA contained a minor paramagnetic Fe(II) component (ca. 9%), a paramagnetic Fe(III) component exhibiting dimeric or oligomeric structure (ca. 20%), and a Fe(III) complex, likely being a monomeric structure, which undergoes slow electronic relaxation at 5 K (ca. 61%). Fe(II)-NA contained more than one similar chemical Fe(II) environment with no sign of Fe(III) components. Chloroplasts preferred Fe(III)-citrate compared to Fe(III)-NA and Fe(II)-NA, but also to Fe(III)-EDTA and Fe(III)-o,o'EDDHA, and the Km value was lower for Fe(III)-citrate than for the Fe-NA complexes. Only the uptake of Fe(III)-citrate was light-dependent. Regarding the components of the chloroplast Fe uptake system, only genes of the reduction-based Fe uptake system showed high expression. Chloroplasts more effectively utilize Fe(III)-citrate, but hardly Fe-NA complexes in Fe uptake.


Asunto(s)
Ácido Azetidinocarboxílico/análogos & derivados , Brassica napus/metabolismo , Cloroplastos/metabolismo , Compuestos Férricos/metabolismo , Hierro/metabolismo , Ácido Azetidinocarboxílico/metabolismo , Reacción en Cadena en Tiempo Real de la Polimerasa , Espectroscopía de Mossbauer , Transcriptoma
10.
Planta ; 250(4): 1339-1354, 2019 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-31278466

RESUMEN

MAIN CONCLUSION: The ratio of nicotianamine to deoxymugenic acid controls tissue-specific metal homeostasis in rice and regulates metal delivery to the endosperm. The metal-chelating phytosiderophores nicotianamine (NA) and 2'deoxymugenic acid (DMA) are significant factors for the control of metal homeostasis in graminaceous plants. These compounds are thought to influence metal homeostasis, but their individual roles and the effect of altering the NA:DMA ratio are unknown. We purposely generated rice lines with high and low NA:DMA ratios (HND and LND lines, respectively). The HND lines accumulated more iron (Fe), zinc (Zn), manganese (Mn) and copper (Cu) in the endosperm through the mobilization of Fe, Zn and Mn from the seed husk to the endosperm. In contrast, Fe, Zn and Mn were mobilized to the husk in the LND lines, whereas Cu accumulated in the endosperm. Different groups of metals are, therefore, taken up, transported and sequestered in vegetative tissues in the HND and LND lines to achieve this metal distribution pattern in the seeds. We found that different sets of endogenous metal homeostasis genes were modulated in the HND and LND lines to achieve differences in metal homeostasis. Our findings demonstrate that the NA:DMA ratio is a key factor regulating metal homeostasis in graminaceous plants. These findings can help formulate refined strategies to improve nutrient composition and nutrient use efficiency in crop plants.


Asunto(s)
Ácido Azetidinocarboxílico/análogos & derivados , Metales/metabolismo , Oryza/fisiología , Sideróforos/metabolismo , Ácido Azetidinocarboxílico/metabolismo , Transporte Biológico , Endospermo/genética , Endospermo/fisiología , Homeostasis , Hierro/metabolismo , Manganeso/metabolismo , Oryza/genética , Transcriptoma , Zinc/metabolismo
11.
New Phytol ; 224(1): 202-215, 2019 10.
Artículo en Inglés | MEDLINE | ID: mdl-31131881

RESUMEN

Zinc (Zn) deficiency is a critical problem in human nutrition. Rice is the main source of calories for nearly half the world's population but has the shortcoming, from a nutritional perspective, of being low in Zn and other essential nutrients. Here we performed analyses with cytokinin-related mutants and transgenic lines to provide unequivocal evidence that cytokinins have a key role in controlling Zn status in plants. Transporters responsible for Zn uptake and chelators for the internal transport of Zn were strictly controlled by cytokinins. Moreover, cytokinin metabolism was regulated in a highly dynamic way in response to Zn status, which allows rice to adapt to heterogeneous Zn availability. Subsequently, fine-tuning of cytokinin metabolism by root-specific expression of a cytokinin degradation enzyme was able to improve both Zn nutrient and yield traits. Importantly, X-ray fluorescence imaging revealed that the increased Zn was broadly distributed from the aleurone layer to the inner endosperm. These findings show that metabolic control of cytokinin could provide the key to breeding Zn-enriched rice.


Asunto(s)
Citocininas/metabolismo , Fenómenos Fisiológicos de la Nutrición , Oryza/metabolismo , Zinc/metabolismo , Ácido Azetidinocarboxílico/análogos & derivados , Ácido Azetidinocarboxílico/metabolismo , Secuencia de Bases , Regulación de la Expresión Génica de las Plantas , Proteínas de Transporte de Membrana/metabolismo , Modelos Biológicos , Mutación/genética , Especificidad de Órganos , Oryza/genética , Oryza/crecimiento & desarrollo , Proteínas de Plantas/metabolismo , Raíces de Plantas/metabolismo , Plantas Modificadas Genéticamente , Carácter Cuantitativo Heredable , Semillas/metabolismo , Transducción de Señal
12.
Plant Cell Environ ; 42(12): 3167-3181, 2019 12.
Artículo en Inglés | MEDLINE | ID: mdl-31325325

RESUMEN

Apple trees are extensively cultivated worldwide but are often affected by zinc (Zn) deficiency. Limited knowledge regarding Zn remobilization within fruit crops has hampered the development of efficient strategies for providing adequate amounts of Zn. In the present study, Zn distribution and remobilization were compared among apple trees cultivated under different Zn conditions. Without Zn application, plants showed visible symptoms of Zn deficiency at the shoot tips after 1 year but appeared to grow normally during the first 6 months (early stage of Zn deficiency). Compared with apple plants under sufficient Zn treatment, plants suffering from early-stage Zn deficiency showed preferential Zn distribution to young leaves and higher Zn levels in phloem, demonstrating that hidden Zn deficiency triggers a highly efficient remobilization of Zn in this species. The in vivo Zn-nicotianamine complex in phloem tissues, combined with the significant enhanced expression of MdNAS3 and MdYSL6, suggested a positive role for nicotianamine in the phloem remobilization of Zn. These results strongly suggest that a proportion of Zn in the old leaves of apple trees can be efficiently remobilized by phloem transport to the shoot tips, partially in the form of Zn-nicotianamine, thus protecting apple trees against the early stages of Zn deficiency.


Asunto(s)
Malus/fisiología , Floema/metabolismo , Árboles/fisiología , Zinc/deficiencia , Ácido Azetidinocarboxílico/análogos & derivados , Ácido Azetidinocarboxílico/metabolismo , Regulación del Desarrollo de la Expresión Génica , Regulación de la Expresión Génica de las Plantas , Malus/genética , Malus/crecimiento & desarrollo , Modelos Biológicos , Hojas de la Planta/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Tallos de la Planta/metabolismo , Árboles/crecimiento & desarrollo
13.
Plant Cell Environ ; 42(6): 2003-2014, 2019 06.
Artículo en Inglés | MEDLINE | ID: mdl-30809818

RESUMEN

The metallophyte Arabidopsis halleri thrives across an extremely broad edaphic range. Zn hyperaccumulation is found on soils differing in available Zn by up to six orders of magnitude, raising the question as to whether a common set of mechanisms confers this species-wide ability. Elevated root concentrations of the metal chelator nicotianamine due to strong constitutive expression of AhNAS2 are important for hyperaccumulation. In order to analyse the relevance of AhNAS2 under more natural conditions representing a range of metalliferous and nonmetalliferous habitats, we collected soil at eight different A. halleri sites and cultivated wild-type and AhNAS2-RNAi lines in these soils. AhNAS2 transcript abundance and root nicotianamine concentrations in wild-type plants were barely influenced by soil metal concentrations. The RNAi effect was fully expressed in different soils. Zn hyperaccumulation in AhNAS2-silenced lines was significantly reduced in seven soils. Root-to-shoot translocation of Cd, Mn, Cu, Ni, and Co was also affected by AhNAS2 silencing, albeit to a lower extent and less consistently. Leaf Fe levels were unaffected by AhNAS2 knockdown. Results demonstrate that elevated nicotianamine production in roots of A. halleri is a Zn hyperaccumulation factor regardless of the edaphic environment, that is, contributes to Zn hyperaccumulation in soils with contrasting Zn availability.


Asunto(s)
Arabidopsis/metabolismo , Ácido Azetidinocarboxílico/análogos & derivados , Zinc/metabolismo , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Ácido Azetidinocarboxílico/metabolismo , Regulación de la Expresión Génica de las Plantas , Técnicas de Silenciamiento del Gen , Metales/metabolismo , Hojas de la Planta/metabolismo , Raíces de Plantas/metabolismo , Interferencia de ARN , Suelo
14.
Physiol Plant ; 167(3): 330-351, 2019 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-30536844

RESUMEN

Zinc (Zn) deficiency is a widespread agricultural problem in arable soils of the whole world. However, the molecular mechanisms underlying Zn-deficiency response are largely unknown. Here, we analyzed the transcriptomic profilings of soybean leaves and roots in response to Zn deficiency through Illumina's high-throughput RNA sequencing in order to understand the molecular basis of Zn-deficiency response in the plants. A total of 614 and 1011 gene loci were found to be differentially expressed in leaves and roots, respectively, and 88 loci were commonly found in both leaves and roots. Twelve differentially expressed genes (DEGs) were randomly selected for validation by quantitative reverse transcription polymerase chain reaction, and their fold changes were similar to those of RNA-seq. Gene ontology enrichment analysis showed that ion transport, nicotianamine (NA) biosynthetic process and queuosine biosynthetic process were enriched in the upregulated genes, while oxidation-reduction process and defense response were enriched in the downregulated genes. Among the DEGs, 20 DEGs are potentially involved in Zn homeostasis, including seven ZRT, IRT-related protein (ZIP) transporter genes, three NA synthase genes, and seven metallothionein genes; 40 DEGs are possibly involved in diverse hormonal signals such as auxin, cytokinin, ethylene and gibberellin; nine DEGs are putatively involved in calcium signaling; 85 DEGs are putative transcription factor genes. Nine DEGs were found to contain zinc-deficiency-response element in their promoter regions. These results could provide comprehensive insights into the soybean response to Zn deficiency and will be helpful for further elucidation of the molecular mechanisms of Zn-deficiency response and Zn-deficiency tolerance in plants.


Asunto(s)
Fabaceae/metabolismo , Glycine max/metabolismo , Raíces de Plantas/metabolismo , Transcriptoma/genética , Ácido Azetidinocarboxílico/análogos & derivados , Ácido Azetidinocarboxílico/metabolismo , Fabaceae/genética , Regulación de la Expresión Génica de las Plantas/genética , Regulación de la Expresión Génica de las Plantas/fisiología , Raíces de Plantas/genética , Glycine max/genética , Zinc/metabolismo
15.
Int J Mol Sci ; 21(1)2019 Dec 19.
Artículo en Inglés | MEDLINE | ID: mdl-31861687

RESUMEN

Iron (Fe) is an essential element required for plant growth and development. Under Fe-deficientconditions, plants have developed two distinct strategies (designated as strategy I and II) to acquire Fe from soil. As a graminaceous species, rice is not a typical strategy II plant, as it not only synthesizes DMA (2'-deoxymugineic acid) in roots to chelate Fe3+ but also acquires Fe2+ through transporters OsIRT1 and OsIRT2. During the synthesis of DMA in rice, there are three sequential enzymatic reactions catalyzed by enzymes NAS (nicotianamine synthase), NAAT (nicotianamine aminotransferase), and DMAS (deoxymugineic acid synthase). Many transporters required for Fe uptake from the rhizosphere and internal translocation have also been identified in rice. In addition, the signaling networks composed of various transcription factors (such as IDEF1, IDEF2, and members of the bHLH (basic helix-loop-helix) family), phytohormones, and signaling molecules are demonstrated to regulate Fe uptake and translocation. This knowledge greatly contributes to our understanding of the molecular mechanisms underlying iron deficiency responses in rice.


Asunto(s)
Hierro/metabolismo , Oryza/crecimiento & desarrollo , Proteínas de Plantas/metabolismo , Transferasas Alquil y Aril/metabolismo , Ácido Azetidinocarboxílico/análogos & derivados , Ácido Azetidinocarboxílico/metabolismo , Proteínas de Transporte de Catión/metabolismo , Regulación de la Expresión Génica de las Plantas , Oryza/metabolismo , Estrés Fisiológico , Transaminasas/metabolismo
16.
BMC Plant Biol ; 18(1): 105, 2018 Jun 04.
Artículo en Inglés | MEDLINE | ID: mdl-29866051

RESUMEN

BACKGROUND: The release of phytosiderephores (PS) to the rhizosphere is the main root response to iron (Fe) deficiency in graminaceous plants. We have investigated the role of the Fe status in the shoot as well as of the signaling pathways controlled by three relevant phytoregulators - indolacetic acid (IAA), ethylene and nitric oxide (NO) - in the regulation of this root response in Fe-starved wheat plants. To this end, the PS accumulation in the nutrient solution and the root expression of the genes encoding the nicotianamine aminotransferase (TaNAAT) and ferritin (TaFER) have been evaluated in plants subjected to different treatments. RESULTS: The application of Fe to leaves of Fe-deficient plants prevented the increase in both PS root release and TaNAAT gene expression thus showing the relevant role of the shoot to root communication in the regulation of PS root release and some steps of PS biosynthesis. Experiments with specific hormone inhibitors showed that while ethylene and NO did not positively regulate Fe-deficiency induced PS root release, auxin plays an essential role in the regulation of this process. Moreover, the application of IAA to Fe-sufficient plants promoted both PS root release and TaNAAT gene expression thus indicating that auxin might be involved in the shoot to root signaling network regulating Fe-deficiency root responses in wheat. CONCLUSIONS: These results therefore indicate that PS root release in Fe-deficient wheat plants is directly modulated by the shoot Fe status through signaling pathways involving, among other possible effectors, auxin.


Asunto(s)
Ácido Azetidinocarboxílico/análogos & derivados , Ácidos Indolacéticos/metabolismo , Hierro/metabolismo , Reguladores del Crecimiento de las Plantas/metabolismo , Sideróforos/metabolismo , Triticum/fisiología , Ácido Azetidinocarboxílico/metabolismo , Deficiencias de Hierro , Hojas de la Planta/genética , Hojas de la Planta/fisiología , Raíces de Plantas/genética , Raíces de Plantas/fisiología , Brotes de la Planta/genética , Brotes de la Planta/fisiología , Transducción de Señal , Triticum/genética
17.
BMC Plant Biol ; 18(1): 238, 2018 Oct 16.
Artículo en Inglés | MEDLINE | ID: mdl-30326849

RESUMEN

BACKGROUND: Among cereals, durum wheat (Triticum turgidum L. subsp. durum) accumulates cadmium (Cd) at higher concentration if grown in Cd-polluted soils. Since cadmium accumulation is a risk for human health, the international trade organizations have limited the acceptable concentration of Cd in edible crops. Therefore, durum wheat cultivars accumulating low cadmium in grains should be preferred by farmers and consumers. To identify the response of durum wheat to the presence of Cd, the transcriptomes of roots and shoots of Creso and Svevo cultivars were sequenced after a 50-day exposure to 0.5 µM Cd in hydroponic solution. RESULTS: No phytotoxic effects or biomass reduction was observed in Creso and Svevo plants at this Cd concentration. Despite this null effect, cadmium was accumulated in root tissues, in shoots and in grains suggesting a good cadmium translocation rate among tissues. The mRNA sequencing revealed a general transcriptome rearrangement after Cd treatment and more than 7000 genes were found differentially expressed in root and shoot tissues. Among these, the up-regulated genes in roots showed a clear correlation with cadmium uptake and detoxification. In particular, about three hundred genes were commonly up-regulated in Creso and Svevo roots suggesting a well defined molecular strategy characterized by the transcriptomic activation of several transcription factors mainly belonging to bHLH and WRKY families. bHLHs are probably the activators of the strong up-regulation of three NAS genes, responsible for the synthesis of the phytosiderophore nicotianamine (NA). Moreover, we found the overall up-regulation of the methionine salvage pathway that is tightly connected with NA synthesis and supply the S-adenosyl methionine necessary for NA biosynthesis. Finally, several vacuolar NA chelating heavy metal transporters were vigorously activated. CONCLUSIONS: In conclusion, the exposure of durum wheat to cadmium activates in roots a complex gene network involved in cadmium translocation and detoxification from heavy metals. These findings are confident with a role of nicotianamine and methionine salvage pathway in the accumulation of cadmium in durum wheat.


Asunto(s)
Cadmio/toxicidad , Regulación de la Expresión Génica de las Plantas/efectos de los fármacos , Redes Reguladoras de Genes/efectos de los fármacos , Triticum/genética , Ácido Azetidinocarboxílico/análogos & derivados , Ácido Azetidinocarboxílico/metabolismo , Transporte Biológico , Biomasa , Cadmio/metabolismo , Grano Comestible , Hidroponía , Metionina/metabolismo , Raíces de Plantas/efectos de los fármacos , Raíces de Plantas/genética , Raíces de Plantas/fisiología , Brotes de la Planta/efectos de los fármacos , Brotes de la Planta/genética , Brotes de la Planta/fisiología , Triticum/efectos de los fármacos , Triticum/fisiología
18.
Plant Physiol ; 175(3): 1254-1268, 2017 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-28894019

RESUMEN

The mechanisms of root iron uptake and the transcriptional networks that control root-level regulation of iron uptake have been well studied, but the mechanisms by which shoots signal iron status to the roots remain opaque. Here, we characterize an Arabidopsis (Arabidopsis thaliana) double mutant, yellow stripe1-like yellow stripe3-like (ysl1ysl3), which has lost the ability to properly regulate iron deficiency-influenced gene expression in both roots and shoots. In spite of markedly low tissue levels of iron, the double mutant does not up- and down-regulate iron deficiency-induced and -repressed genes. We have used grafting experiments to show that wild-type roots grafted to ysl1ysl3 shoots do not initiate iron deficiency-induced gene expression, indicating that the ysl1ysl3 shoots fail to send an appropriate long-distance signal of shoot iron status to the roots. We present a model to explain how impaired iron localization in leaf veins results in incorrect signals of iron sufficiency being sent to roots and affecting gene expression there. Improved understanding of the mechanism of long-distance iron signaling will allow improved strategies for the engineering of staple crops to accumulate additional bioavailable iron in edible parts, thus improving the iron nutrition of the billions of people worldwide whose inadequate diet causes iron deficiency anemia.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Ácido Azetidinocarboxílico/análogos & derivados , Hierro/metabolismo , Proteínas de Transporte de Membrana/metabolismo , Transducción de Señal , Arabidopsis/efectos de los fármacos , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Ácido Azetidinocarboxílico/metabolismo , Regulación de la Expresión Génica de las Plantas/efectos de los fármacos , Glucuronidasa/metabolismo , Hierro/farmacología , Modelos Biológicos , Mutación/genética , Floema/metabolismo , Exudados de Plantas/metabolismo , Raíces de Plantas/efectos de los fármacos , Raíces de Plantas/metabolismo , Plantones/efectos de los fármacos , Plantones/metabolismo , Transducción de Señal/efectos de los fármacos , Espectrometría por Rayos X
19.
Biol Pharm Bull ; 41(10): 1502-1507, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30270318

RESUMEN

An organic chemistry approach to the mechanistic elucidation of iron acquisition in graminaceous plants is introduced here. To elucidate this detailed mechanism using phytosiderophores, the efficient synthesis of 2'-deoxymugineic acid (DMA), a phytosiderophore of rice, was established. The synthetic DMA was confirmed to have similar iron transport activity to that of natural mugineic acid (MA). It was also revealed that the addition of synthetic DMA, along with iron, to a rice hydroponic solution enabled the rice to grow well even under an alkaline condition, and DMA clearly showed its high potential as a fertilizer to improve food production. On the other hand, the 2'-hydroxy group of MA was confirmed to serve as a point of introduction for labeling, allowing the synthesis of various mugineic acid derivatives as molecular probes. The incorporation of fluorescent mugineic acid into cells allowed them to be clearly observed by fluorescence confocal analysis, and this provided the first direct experimental evidence of transporter-mediated internalization of mugineic acid into cells.


Asunto(s)
Ácido Azetidinocarboxílico/análogos & derivados , Hordeum/metabolismo , Hierro/metabolismo , Proteínas de Transporte de Membrana/metabolismo , Compuestos Organometálicos/metabolismo , Oryza/metabolismo , Proteínas de Plantas/metabolismo , Ácido Azetidinocarboxílico/metabolismo , Química Orgánica/métodos , Fertilizantes , Hordeum/crecimiento & desarrollo , Compuestos de Hierro/metabolismo , Oryza/crecimiento & desarrollo , Raíces de Plantas/metabolismo , Sideróforos/metabolismo , Coloración y Etiquetado
20.
Plant Mol Biol ; 95(4-5): 375-387, 2017 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-28871478

RESUMEN

KEY MESSAGE: Rice OsYSL9 is a novel transporter for Fe(II)-nicotianamine and Fe(III)-deoxymugineic acid that is responsible for internal iron transport, especially from endosperm to embryo in developing seeds. Metal chelators are essential for safe and efficient metal translocation in plants. Graminaceous plants utilize specific ferric iron chelators, mugineic acid family phytosiderophores, to take up sparingly soluble iron from the soil. Yellow Stripe 1-Like (YSL) family transporters are responsible for transport of metal-phytosiderophores and structurally similar metal-nicotianamine complexes. Among the rice YSL family members (OsYSL) whose functions have not yet been clarified, OsYSL9 belongs to an uncharacterized subgroup containing highly conserved homologs in graminaceous species. In the present report, we showed that OsYSL9 localizes mainly to the plasma membrane and transports both iron(II)-nicotianamine and iron(III)-deoxymugineic acid into the cell. Expression of OsYSL9 was induced in the roots but repressed in the nonjuvenile leaves in response to iron deficiency. In iron-deficient roots, OsYSL9 was induced in the vascular cylinder but not in epidermal cells. Although OsYSL9-knockdown plants did not show a growth defect under iron-sufficient conditions, these plants were more sensitive to iron deficiency in the nonjuvenile stage compared with non-transgenic plants. At the grain-filling stage, OsYSL9 expression was strongly and transiently induced in the scutellum of the embryo and in endosperm cells surrounding the embryo. The iron concentration was decreased in embryos of OsYSL9-knockdown plants but was increased in residual parts of brown seeds. These results suggested that OsYSL9 is involved in iron translocation within plant parts and particularly iron translocation from endosperm to embryo in developing seeds.


Asunto(s)
Hierro/metabolismo , Proteínas de Transporte de Membrana/metabolismo , Oryza/genética , Ácido Azetidinocarboxílico/análogos & derivados , Ácido Azetidinocarboxílico/metabolismo , Transporte Biológico , Membrana Celular/metabolismo , Endospermo/citología , Endospermo/genética , Endospermo/metabolismo , Genes Reporteros , Hierro/análisis , Proteínas de Transporte de Membrana/genética , Oryza/citología , Oryza/metabolismo , Filogenia , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Raíces de Plantas/citología , Raíces de Plantas/genética , Raíces de Plantas/metabolismo , Plantas Modificadas Genéticamente , Análisis de Secuencia de ADN
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda