Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 20 de 458
Filtrar
1.
Cell ; 174(6): 1549-1558.e14, 2018 09 06.
Artículo en Inglés | MEDLINE | ID: mdl-30100189

RESUMEN

Engineering microorganisms for production of fuels and chemicals often requires major re-programming of metabolism to ensure high flux toward the product of interest. This is challenging, as millions of years of evolution have resulted in establishment of tight regulation of metabolism for optimal growth in the organism's natural habitat. Here, we show through metabolic engineering that it is possible to alter the metabolism of Saccharomyces cerevisiae from traditional ethanol fermentation to a pure lipogenesis metabolism, resulting in high-level production of free fatty acids. Through metabolic engineering and process design, we altered subcellular metabolic trafficking, fine-tuned NADPH and ATP supply, and decreased carbon flux to biomass, enabling production of 33.4 g/L extracellular free fatty acids. We further demonstrate that lipogenesis metabolism can replace ethanol fermentation by deletion of pyruvate decarboxylase enzymes followed by adaptive laboratory evolution. Genome sequencing of evolved strains showed that pyruvate kinase mutations were essential for this phenotype.


Asunto(s)
Ácidos Grasos no Esterificados/biosíntesis , Ingeniería Metabólica , Saccharomyces cerevisiae/metabolismo , Acetilcoenzima A/metabolismo , Glucosa/metabolismo , Glucólisis , Isocitrato Deshidrogenasa/genética , Isocitrato Deshidrogenasa/metabolismo , Lipogénesis , NADP/metabolismo , Vía de Pentosa Fosfato/genética , Piruvato Quinasa/genética , Piruvato Quinasa/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo
2.
Immunity ; 53(1): 187-203.e8, 2020 07 14.
Artículo en Inglés | MEDLINE | ID: mdl-32640259

RESUMEN

Only a small percentage of patients afflicted with gastric cancer (GC) respond to immune checkpoint blockade (ICB). To study the mechanisms underlying this resistance, we examined the immune landscape of GC. A subset of these tumors was characterized by high frequencies of regulatory T (Treg) cells and low numbers of effector T cells. Genomic analyses revealed that these tumors bore mutations in RHOA that are known to drive tumor progression. RHOA mutations in cancer cells activated the PI3K-AKT-mTOR signaling pathway, increasing production of free fatty acids that are more effectively consumed by Treg cells than effector T cells. RHOA mutant tumors were resistant to PD-1 blockade but responded to combination of PD-1 blockade with inhibitors of the PI3K pathway or therapies targeting Treg cells. We propose that the metabolic advantage conferred by RHOA mutations enables Treg cell accumulation within GC tumors, generating an immunosuppressive TME that underlies resistance to ICB.


Asunto(s)
Linfocitos T CD8-positivos/inmunología , Inhibidores de Puntos de Control Inmunológico/farmacología , Neoplasias Gástricas/genética , Linfocitos T Reguladores/metabolismo , Proteína de Unión al GTP rhoA/genética , Animales , Recuento de Linfocito CD4 , Linfocitos T CD8-positivos/metabolismo , Línea Celular Tumoral , Quimiocina CXCL10/biosíntesis , Quimiocina CXCL11/biosíntesis , Ácidos Grasos no Esterificados/biosíntesis , Humanos , Ratones , Ratones Endogámicos BALB C , Ratones Endogámicos C57BL , Ratones Desnudos , Fosfatidilinositol 3-Quinasas/metabolismo , Inhibidores de las Quinasa Fosfoinosítidos-3/farmacología , Receptor de Muerte Celular Programada 1/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Transducción de Señal/inmunología , Neoplasias Gástricas/inmunología , Neoplasias Gástricas/patología , Linfocitos T Reguladores/inmunología , Serina-Treonina Quinasas TOR/metabolismo , Microambiente Tumoral/inmunología
3.
Proc Natl Acad Sci U S A ; 119(29): e2201711119, 2022 07 19.
Artículo en Inglés | MEDLINE | ID: mdl-35858340

RESUMEN

Methanol-based biorefinery is a promising strategy to achieve carbon neutrality goals by linking CO2 capture and solar energy storage. As a typical methylotroph, Pichia pastoris shows great potential in methanol biotransformation. However, challenges still remain in engineering methanol metabolism for chemical overproduction. Here, we present the global rewiring of the central metabolism for efficient production of free fatty acids (FFAs; 23.4 g/L) from methanol, with an enhanced supply of precursors and cofactors, as well as decreased accumulation of formaldehyde. Finally, metabolic transforming of the fatty acid cell factory enabled overproduction of fatty alcohols (2.0 g/L) from methanol. This study demonstrated that global metabolic rewiring released the great potential of P. pastoris for methanol biotransformation toward chemical overproduction.


Asunto(s)
Ácidos Grasos no Esterificados , Ingeniería Metabólica , Metanol , Saccharomycetales , Reactores Biológicos , Biotransformación , Ácidos Grasos no Esterificados/biosíntesis , Metanol/metabolismo , Saccharomycetales/genética , Saccharomycetales/metabolismo
4.
J Cell Physiol ; 235(3): 2776-2791, 2020 03.
Artículo en Inglés | MEDLINE | ID: mdl-31544977

RESUMEN

Therapy-induced senescence in cancer cells is an irreversible antiproliferative state, which inhibits tumor growth and is therefore a potent anti-neoplastic mechanism. In this study, low doses of Abrus agglutinin (AGG)-induced senescence through autophagy in prostate carcinoma cells (PC3) and inhibited proliferation. The inhibition of autophagy with 3-methyl adenine reversed AGG-induced senescence, thus confirming that AGG-triggered senescence required autophagy. AGG treatment also led to lipophagy-mediated accumulation of free fatty acids (FFAs), with a concomitant decrease in the number of lipid droplets. Lalistat, a lysosomal acid lipase inhibitor, abrogated AGG-induced lipophagy and senescence in PC3 cells, indicating that lipophagy is essential for AGG-induced senescence. The accumulation of FFAs increased reactive oxygen species generation, a known facilitator of senescence, which was also reduced in the presence of lalistat. Furthermore, AGG upregulated silent mating type information regulator 2 homolog 1 (SIRT1), while the presence of sirtinol reduced autophagy flux and the senescent phenotype in the AGG-treated cells. Mechanistically, AGG-induced cytoplasmic SIRT1 deacetylated a Lys residue on the cytoplasmic domain of lysosome-associated membrane protein 1 (LAMP1), an autolysosomal protein, resulting in lipophagy and senescence. Taken together, our findings demonstrate a novel SIRT1/LAMP1/lipophagy axis mediating AGG-induced senescence in prostate cancer cells.


Asunto(s)
Autofagia/efectos de los fármacos , Senescencia Celular/efectos de los fármacos , Ácidos Grasos no Esterificados/biosíntesis , Proteínas de Membrana de los Lisosomas/metabolismo , Lectinas de Plantas/farmacología , Neoplasias de la Próstata/tratamiento farmacológico , Adenina/análogos & derivados , Adenina/farmacología , Apoptosis/efectos de los fármacos , Apoptosis/fisiología , Autofagia/fisiología , Benzamidas/farmacología , Carbamatos/farmacología , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Senescencia Celular/fisiología , Humanos , Masculino , Naftoles/farmacología , Células PC-3 , Neoplasias de la Próstata/patología , Especies Reactivas de Oxígeno/metabolismo , Sirtuina 1/metabolismo , Esterol Esterasa/antagonistas & inhibidores , Tiadiazoles/farmacología , Regulación hacia Arriba/efectos de los fármacos
5.
Microb Cell Fact ; 19(1): 226, 2020 Dec 10.
Artículo en Inglés | MEDLINE | ID: mdl-33302960

RESUMEN

BACKGROUND: Saccharomyces cerevisiae is being exploited as a cell factory to produce fatty acids and their derivatives as biofuels. Previous studies found that both precursor supply and fatty acid metabolism deregulation are essential for enhanced fatty acid synthesis. A bacterial pyruvate dehydrogenase (PDH) complex expressed in the yeast cytosol was reported to enable production of cytosolic acetyl-CoA with lower energy cost and no toxic intermediate. RESULTS: Overexpression of the PDH complex significantly increased cell growth, ethanol consumption and reduced glycerol accumulation. Furthermore, to optimize the redox imbalance in production of fatty acids from glucose, two endogenous NAD+-dependent glycerol-3-phosphate dehydrogenases were deleted, and a heterologous NADP+-dependent glyceraldehyde-3-phosphate dehydrogenase was introduced. The best fatty acid producing strain PDH7 with engineering of precursor and co-factor metabolism could produce 840.5 mg/L free fatty acids (FFAs) in shake flask, which was 83.2% higher than the control strain YJZ08. Profile analysis of free fatty acid suggested the cytosolic PDH complex mainly resulted in the increases of unsaturated fatty acids (C16:1 and C18:1). CONCLUSIONS: We demonstrated that cytosolic PDH pathway enabled more efficient acetyl-CoA provision with the lower ATP cost, and improved FFA production. Together with engineering of the redox factor rebalance, the cytosolic PDH pathway could achieve high level of FFA production at similar levels of other best acetyl-CoA producing pathways.


Asunto(s)
Ácidos Grasos no Esterificados/biosíntesis , Ingeniería Metabólica , Complejo Piruvato Deshidrogenasa/genética , Complejo Piruvato Deshidrogenasa/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Acetilcoenzima A/metabolismo , Citosol/enzimología , NADP/metabolismo , Oxidación-Reducción
6.
Microb Cell Fact ; 18(1): 20, 2019 Jan 31.
Artículo en Inglés | MEDLINE | ID: mdl-30704481

RESUMEN

BACKGROUND: Long-chain free fatty acids (FFAs) are a type of backbone molecule that can react with alcohol to produce biodiesels. Various microorganisms have become potent producers of FFAs. Efforts have focused on increasing metabolic flux to the synthesis of either neutral fat or fatty acyl intermediates attached to acyl carrier protein (ACP), which are the source of FFAs. Membrane lipids are also a source of FFAs. As an alternative way of producing FFAs, exogenous phospholipase may be used after heterologous production and localization in the periplasmic space. In this work, we examined whether Rhodobacter sphaeroides, which forms an intracytoplasmic membrane, can be used for long-chain FFA production using phospholipase. RESULTS: The recombinant R. sphaeroides strain Rs-A2, which heterologously produces Arabidopsis thaliana phospholipase A2 (PLA2) in the periplasm, excretes FFAs during growth. FFA productivity under photoheterotrophic conditions is higher than that observed under aerobic or semiaerobic conditions. When the biosynthetic enzymes for FA (ß-ketoacyl-ACP synthase, FabH) and phosphatidate (1-acyl-sn-glycerol-3-phosphate acyltransferase, PlsC) were overproduced in Rs-A2, the FFA productivity of the resulting strain Rs-HCA2 was elevated, and the FFAs produced mainly consisted of long-chain FAs of cis-vaccenate, stearate, and palmitate in an approximately equimolar ratio. The high-cell-density culture of Rs-HCA2 with DMSO in two-phase culture with dodecane resulted in an increase of overall carbon substrate consumption, which subsequently leads to a large increase in FFA productivity of up to 2.0 g L-1 day-1. Overexpression of the genes encoding phosphate acyltransferase (PlsX) and glycerol-3-phosphate acyltransferase (PlsY), which catalyze the biosynthetic steps immediately upstream from PlsC, in Rs-HCA2 generated Rs-HXYCA2, which grew faster than Rs-HCA2 and showed an FFA productivity of 2.8 g L-1 day-1 with an FFA titer of 8.5 g L-1. CONCLUSION: We showed that long-chain FFAs can be produced from metabolically engineered R. sphaeroides heterologously producing PLA2 in the periplasm. The FFA productivity was greatly increased by high-cell-density culture in two-phase culture with dodecane. This approach provides highly competitive productivity of long-chain FFAs by R. sphaeroides compared with other bacteria. This method may be applied to FFA production by other photosynthetic bacteria with similar differentiated membrane systems.


Asunto(s)
Alcanos/química , Ácidos Grasos no Esterificados/biosíntesis , Periplasma/enzimología , Fosfolipasas A2/metabolismo , Rhodobacter sphaeroides/metabolismo , Lípidos de la Membrana/metabolismo , Ingeniería Metabólica , Rhodobacter sphaeroides/genética
7.
Anal Chem ; 90(8): 5171-5178, 2018 04 17.
Artículo en Inglés | MEDLINE | ID: mdl-29578696

RESUMEN

Microfluidics have been used to create "body-on-chip" systems to mimic in vivo cellular interactions with a high level of control. Most such systems rely on optical observation of cells as a readout. In this work we integrated a cell-cell interaction chip with online microchip electrophoresis immunoassay to monitor the effects of the interaction on protein secretion dynamics. The system was used to investigate the effects of adipocytes on insulin secretion. Chips were loaded with 190 000 3T3-L1 adipocytes and a single islet of Langerhans in separate chambers. The chambers were perfused at 300-600 nL/min so that adipocyte secretions flowed over the islets for 3 h. Adipocytes produced 80 µM of nonesterified fatty acids (NEFAs), a factor known to impact insulin secretion, at the islets. After perfusion, islets were challenged with a step change in glucose from 3 to 11 mM while monitoring insulin secretion at 8 s intervals by online immunoassay. Adipocyte treatment augmented insulin secretion by 6-fold compared to controls. The effect was far greater than comparable concentrations of NEFA applied to the islets demonstrating that adipocytes release multiple factors that can strongly potentiate insulin secretion. The experiments reveal that integration of chemical analysis with cell-cell interaction can provide valuable insights into cellular functions.


Asunto(s)
Adipocitos/citología , Electroforesis por Microchip , Inmunoensayo , Islotes Pancreáticos/citología , Técnicas Analíticas Microfluídicas , Células 3T3-L1 , Animales , Comunicación Celular , Células Cultivadas , Ácidos Grasos no Esterificados/análisis , Ácidos Grasos no Esterificados/biosíntesis , Ratones , Tamaño de la Partícula , Propiedades de Superficie
8.
Nat Chem Biol ; 12(5): 339-44, 2016 May.
Artículo en Inglés | MEDLINE | ID: mdl-26999780

RESUMEN

Biosynthesis enables renewable production of manifold compounds, yet often biosynthetic performance must be improved for it to be economically feasible. Nongenetic, cell-to-cell variations in protein and metabolite concentrations are naturally inherent, suggesting the existence of both high- and low-performance variants in all cultures. Although having an intrinsic source of low performers might cause suboptimal ensemble biosynthesis, the existence of high performers suggests an avenue for performance enhancement. Here we develop in vivo population quality control (PopQC) to continuously select for high-performing, nongenetic variants. We apply PopQC to two biosynthetic pathways using two alternative design principles and demonstrate threefold enhanced production of both free fatty acid (FFA) and tyrosine. We confirm that PopQC improves ensemble biosynthesis by selecting for nongenetic high performers. Additionally, we use PopQC in fed-batch FFA production and achieve 21.5 g l(-1) titer and 0.5 g l(-1) h(-1) productivity. Given the ubiquity of nongenetic variation, PopQC should be applicable to a variety of metabolic pathways for enhanced biosynthesis.


Asunto(s)
Escherichia coli/citología , Escherichia coli/fisiología , Ácidos Grasos no Esterificados/biosíntesis , Tirosina/biosíntesis , Clonación Molecular , Regulación Bacteriana de la Expresión Génica , Ingeniería Metabólica , Redes y Vías Metabólicas
9.
BMC Genomics ; 18(1): 33, 2017 01 05.
Artículo en Inglés | MEDLINE | ID: mdl-28056772

RESUMEN

BACKGROUND: Finding a source from which high-energy-density biofuels can be derived at an industrial scale has become an urgent challenge for renewable energy production. Some microorganisms can produce free fatty acids (FFA) as precursors towards such high-energy-density biofuels. In particular, photosynthetic cyanobacteria are capable of directly converting carbon dioxide into FFA. However, current engineered strains need several rounds of engineering to reach the level of production of FFA to be commercially viable; thus new chassis strains that require less engineering are needed. Although more than 120 cyanobacterial genomes are sequenced, the natural potential of these strains for FFA production and excretion has not been systematically estimated. RESULTS: Here we present the FFA SC (FFASC), an in silico screening method that evaluates the potential for FFA production and excretion of cyanobacterial strains based on their proteomes. A literature search allowed for the compilation of 64 proteins, most of which influence FFA production and a few of which affect FFA excretion. The proteins are classified into 49 orthologous groups (OGs) that helped create rules used in the scoring/ranking of algorithms developed to estimate the potential for FFA production and excretion of an organism. Among 125 cyanobacterial strains, FFASC identified 20 candidate chassis strains that rank in their FFA producing and excreting potential above the specifically engineered reference strain, Synechococcus sp. PCC 7002. We further show that the top ranked cyanobacterial strains are unicellular and primarily include Prochlorococcus (order Prochlorales) and marine Synechococcus (order Chroococcales) that cluster phylogenetically. Moreover, two principal categories of enzymes were shown to influence FFA production the most: those ensuring precursor availability for the biosynthesis of lipids, and those involved in handling the oxidative stress associated to FFA synthesis. CONCLUSION: To our knowledge FFASC is the first in silico method to screen cyanobacteria proteomes for their potential to produce and excrete FFA, as well as the first attempt to parameterize the criteria derived from genetic characteristics that are favorable/non-favorable for this purpose. Thus, FFASC helps focus experimental evaluation only on the most promising cyanobacteria.


Asunto(s)
Biología Computacional/métodos , Cianobacterias/genética , Cianobacterias/metabolismo , Ácidos Grasos no Esterificados/biosíntesis , Algoritmos , Análisis por Conglomerados , Simulación por Computador , Cianobacterias/clasificación , Redes y Vías Metabólicas , Fotosíntesis , Filogenia , Proteoma , Proteómica/métodos
10.
Am J Physiol Endocrinol Metab ; 313(1): E26-E36, 2017 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-28325733

RESUMEN

Evidence has accumulated that obesity-related metabolic dysregulation is associated with overactivation of the endocannabinoid system (ECS), which involves cannabinoid receptor 1 (CB1R), in peripheral tissues, including adipose tissue (AT). The functional consequences of CB1R activation on AT metabolism remain unclear. Since excess fat mobilization is considered an important primary event contributing to the onset of insulin resistance, we combined in vivo and in vitro experiments to investigate whether activation of ECS could alter the lipolytic rate. For this purpose, the appearance of plasma glycerol was measured in wild-type and CB1R-/- mice after acute anandamide administration or inhibition of endocannabinoid degradation by JZL195. Additional experiments were conducted on rat AT explants to evaluate the direct consequences of ECS activation on glycerol release and signaling pathways. Treatments stimulated glycerol release in mice fasted for 6 h and injected with glucose but not in 24-h fasted mice or in CB1R-/-, suggesting that the effect was dependent on plasma insulin levels and mediated by CB1R. We concomitantly observed that Akt cascade activity was decreased, indicating an alteration of the antilipolytic action of insulin. Similar results were obtained with tissue explants exposed to anandamide, thus identifying CB1R of AT as a major target. This study indicates the existence of a functional interaction between CB1R and lipolysis regulation in AT. Further investigation is needed to test if the elevation of ECS tone encountered in obesity is associated with excess fat mobilization contributing to ectopic fat deposition and related metabolic disorders.


Asunto(s)
Tejido Adiposo/fisiología , Endocannabinoides/metabolismo , Resistencia a la Insulina/fisiología , Insulina/sangre , Lipólisis/fisiología , Receptor Cannabinoide CB1/metabolismo , Animales , Ácidos Grasos no Esterificados/biosíntesis , Hidrólisis , Masculino , Ratones , Ratones Endogámicos C57BL , Regulación hacia Arriba/fisiología
11.
Can J Microbiol ; 63(4): 321-329, 2017 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-28335611

RESUMEN

Acinetobacter baylyi is one of few Gram-negative bacteria capable of accumulating storage lipids in the form of triacylglycerides and wax esters, which makes it an attractive candidate for production of lipophilic products, including biofuel precursors. Thioesterases play a significant dual role in the triacylglyceride and wax ester biosynthesis by either providing or removing acyl-CoA from this pathway. Therefore, 4 different thioesterase genes were cloned from Acinetobacter baylyi ADP1 and expressed in Escherichia coli to investigate their contribution to free fatty acids (FFAs) accumulation. Overexpression of the genes tesA' (a leaderless form of the gene tesA) and tesC resulted in increased accumulation of FFAs when compared with the host E. coli strain. Overexpression of tesA' showed a 1.87-fold increase in production of long-chain fatty acids (C16 to C18) over the host strain. Unlike TesC and the other investigated thioesterases, the TesA' thioesterase also produced shorter chain FFAs (e.g., myristic acid) and unsaturated FFAs (e.g., cis-vaccenic acid (18:1Δ11)). A comparison of the remaining 3 A. baylyi ADP1 thioesterases (encoded by the tesB, tesC, and tesD genes) revealed that only the strain containing the tesC gene produced statistically higher levels of FFAs over the control, suggesting that it possesses the acyl-ACP thioesterase activity. Both E. coli strains containing the tesB and tesD genes produced levels of FFAs similar to those of the plasmid-free control E. coli strain, which indicates that TesB and TesD lack the acyl-ACP thioesterase activity.


Asunto(s)
Acinetobacter/metabolismo , Ácidos Grasos no Esterificados/biosíntesis , Tioléster Hidrolasas/genética , Biocombustibles , Escherichia coli/genética
12.
J Ind Microbiol Biotechnol ; 44(3): 419-430, 2017 03.
Artículo en Inglés | MEDLINE | ID: mdl-28097501

RESUMEN

Two engineered Escherichia coli strains, DQ101 (MG1655 fadD -)/pDQTES and DQ101 (MG1655 fadD -)/pDQTESZ were constructed to investigate the free fatty acid production using ionic liquid-based acid- or enzyme-catalyzed bamboo hydrolysate as carbon source in this study. The plasmid, pDQTES, carrying an acyl-ACP thioesterase 'TesA of E. coli in pTrc99A was constructed firstly, and then (3R)-hydroxyacyl-ACP dehydratase was ligated after the TesA to give the plasmid pDQTESZ. These two strains exhibited efficient fatty acid production when glucose was used as the sole carbon source, with a final concentration of 2.45 and 3.32 g/L, respectively. The free fatty acid production of the two strains on xylose is not as efficient as that on glucose, which was 2.32 and 2.96 g/L, respectively. For mixed sugars, DQ101 (MG1655 fadD -)-based strains utilized glucose and pentose sequentially under the carbon catabolite repression (CCR) regulation. The highest total FFAs concentration from the mixed sugar culture reached 2.81 g/L by DQ101 (MG1655 fadD -)/pDQTESZ. Furthermore, when ionic liquid-based enzyme-catalyzed bamboo hydrolysate was used as the carbon source, the strain DQ101 (MG1655 fadD -)/pDQTESZ could produce 1.23 g/L FFAs with a yield of 0.13 g/g, and while it just produced 0.65 g/L free fatty acid with the ionic liquid-based acid-catalyzed bamboo hydrolysate as the feedstock. The results suggested that enzymatic catalyzed bamboo hydrolysate with ionic liquid pretreatment could serve as an efficient feedstock for free fatty acid production.


Asunto(s)
Ácidos Grasos no Esterificados/biosíntesis , Líquidos Iónicos/química , Poaceae/química , Carbohidratos/química , Medios de Cultivo/química , Escherichia coli/genética , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Fermentación , Glucosa/química , Ingeniería Metabólica , Microorganismos Modificados Genéticamente , Plásmidos/genética , Plásmidos/metabolismo , Tioléster Hidrolasas/genética , Tioléster Hidrolasas/metabolismo
13.
J Ind Microbiol Biotechnol ; 44(4-5): 759-772, 2017 05.
Artículo en Inglés | MEDLINE | ID: mdl-27738839

RESUMEN

Free fatty acids (FFA) are an attractive platform chemical that serves as a functional intermediate in metabolic pathways for producing oleochemicals. Many groups have established strains of Escherichia coli capable of producing various chain-length mixtures of FFA by heterologous expression of acyl-ACP thioesterases. For example, high levels of dodecanoic acid are produced by an E. coli strain expressing the Umbellularia californica FatB2 thioesterase, BTE. Prior studies achieved high dodecanoic acid yields and productivities under phosphate-limiting media conditions. In an effort to understand the metabolic and physiological changes that led to increased FFA production, the transcriptome of this strain was assessed as a function of nutrient limitation and growth rate. FFA generation under phosphate limitation led to consistent changes in transporter expression, osmoregulation, and central metabolism. Guided by these results, targeted knockouts led to a further ~11 % in yield in FFA.


Asunto(s)
Escherichia coli/metabolismo , Ácidos Grasos no Esterificados/biosíntesis , Genómica , Fosfatos/metabolismo , Escherichia coli/efectos de los fármacos , Escherichia coli/genética , Ácidos Grasos no Esterificados/metabolismo , Ácidos Láuricos/metabolismo , Redes y Vías Metabólicas/efectos de los fármacos , Fosfatos/farmacología , Tioléster Hidrolasas/genética , Tioléster Hidrolasas/metabolismo
14.
Med Princ Pract ; 26(6): 561-566, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28898884

RESUMEN

OBJECTIVE: To investigate free fatty acid levels and histopathological changes in the brain of rats fed a high fructose diet (HFrD) and to evaluate the effects of Mucuna pruriens, known to have antidiabetic activity, on these changes. MATERIALS AND METHODS: The study comprised 28 mature female Wistar rats. The rats were divided into 4 groups, each included 7 rats. Group 1: control; group 2: fed an HFrD; group 3: fed normal rat chow and M. pruriens; group 4: fed an HFrD and M. pruriens for 6 weeks. At the end of 6 weeks, the rats were decapitated, blood and brain tissues were obtained. Serum glucose and triglyceride levels were measured. Free fatty acid levels were measured in 1 cerebral hemisphere of each rat and histopathological changes in the other. The Mann-Whitney U test was used to compare quantitative continuous data between 2 independent groups, and the Kruskal-Wallis test was used to compare quantitative continuous data between more than 2 independent groups. RESULTS: Arachidonic acid and docosahexaenoic acid levels were significantly higher in group 2 than in group 1 (p < 0.05). Free arachidonic acid and docosahexaenoic acid levels in group 4 were significantly less than in group 2 (p < 0.05). Histopathological examination of group 2 revealed extensive gliosis, neuronal hydropic degeneration, and edema. In group 4, gliosis was much lighter than in group 2, and edema was not observed. Neuronal structures in group 4 were similar to those in group 1. CONCLUSIONS: The HFrD increased the levels of free arachidonic acid and docosahexaenoic acid probably due to membrane degradation resulting from possible oxidative stress and inflammation in the brain. The HFrD also caused extensive gliosis, neuronal hydropic degeneration, and edema. Hence, M. pruriens could have therapeutic effects on free fatty acid metabolism and local inflammatory responses in the brains of rats fed an HFrD.


Asunto(s)
Ácidos Grasos no Esterificados/biosíntesis , Fructosa/farmacología , Mucuna , Extractos Vegetales/farmacología , Animales , Ácido Araquidónico/biosíntesis , Glucemia , Cerebro/efectos de los fármacos , Cerebro/patología , Ácidos Docosahexaenoicos/biosíntesis , Femenino , Gliosis/metabolismo , Estrés Oxidativo/efectos de los fármacos , Ratas , Ratas Wistar , Triglicéridos/sangre
15.
J Exp Bot ; 67(14): 4127-39, 2016 07.
Artículo en Inglés | MEDLINE | ID: mdl-27194736

RESUMEN

Fusarium head blight (FHB), caused by Fusarium graminearum, is one of the most devastating diseases of wheat and barley. Resistance to FHB is highly complex and quantitative in nature, and is most often classified as resistance to spikelet infection and resistance to spread of pathogen through the rachis. In the present study, a resistant (CI9831) and a susceptible (H106-371) two-row barley genotypes, with contrasting levels of spikelet resistance to FHB, pathogen or mock-inoculated, were profiled for metabolites based on liquid chromatography and high resolution mass spectrometry. The key resistance-related (RR) metabolites belonging to fatty acids, phenylpropanoids, flavonoids and terpenoid biosynthetic pathways were identified. The free fatty acids (FFAs) linoleic and palmitic acids were among the highest fold change RR induced (RRI) metabolites. These FFAs are deposited as cutin monomers and oligomers to reinforce the cuticle, which acts as a barrier to pathogen entry. Quantitative real-time PCR studies revealed higher expressions of KAS2, CYP86A2, CYP89A2, LACS2 and WAX INDUCER1 (HvWIN1) transcription factor in the pathogen-inoculated resistant genotype than in the susceptible genotype. Knockdown of HvWIN1 by virus-induced genes silencing (VIGS) in resistant genotype upon pathogen inoculation increased the disease severity and fungal biomass, and decreased the abundance of FFAs like linoleic and palmitic acids. Notably, the expression of CYP86A2, CYP89A2 and LAC2 genes was also suppressed, proving the link of HvWIN1 in regulating these genes in cuticle biosynthesis as a defense response.


Asunto(s)
Resistencia a la Enfermedad/fisiología , Ácidos Grasos no Esterificados/biosíntesis , Fusarium/patogenicidad , Genes de Plantas/fisiología , Hordeum/microbiología , Factores de Transcripción/fisiología , Ceras/metabolismo , Resistencia a la Enfermedad/genética , Ácidos Grasos no Esterificados/fisiología , Fusariosis/metabolismo , Técnicas de Silenciamiento del Gen , Genes de Plantas/genética , Hordeum/genética , Hordeum/fisiología , Estructuras de las Plantas , Reacción en Cadena en Tiempo Real de la Polimerasa
16.
Appl Microbiol Biotechnol ; 100(3): 1407-1420, 2016 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-26450510

RESUMEN

The engineered Saccharomyces cerevisiae strain △faa1△faa4 [Acot5s] was demonstrated to accumulate more free fatty acids (FFA) previously. Here, comparative proteomic analysis was performed to get a global overview of metabolic regulation in the strain. Over 500 proteins were identified, and 82 of those proteins were found to change significantly in the engineered strains. Proteins involved in glycolysis, acetate metabolism, fatty acid synthesis, TCA cycle, glyoxylate cycle, the pentose phosphate pathway, respiration, transportation, and stress response were found to be upregulated in △faa1△faa4 [Acot5s] as compared to the wild type. On the other hand, proteins involved in glycerol, ethanol, ergosterol, and cell wall synthesis were downregulated. Taken together with our metabolite analysis, our results showed that the disruption of Faa1 and Faa4 and expression of Acot5s in the engineered strain △faa1△faa4 [Acot5s] not only relieved the feedback inhibition of fatty acyl-CoAs on fatty acid synthesis, but also caused a major metabolic rearrangement. The rearrangement redirected carbon flux toward the pathways which generate the essential substrates and cofactors for fatty acid synthesis, such as acetyl-CoA, ATP, and NADPH. Therefore, our results help shed light on the mechanism for the increased production of fatty acids in the engineered strains, which is useful in providing information for future studies in biofuel production.


Asunto(s)
Ácidos Grasos no Esterificados/biosíntesis , Proteínas de Saccharomyces cerevisiae/química , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Ingeniería Metabólica , Proteómica , Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo
17.
Biosci Biotechnol Biochem ; 80(9): 1829-35, 2016 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-26998626

RESUMEN

Free fatty acids are useful as source materials for the production of biodiesel fuel and various chemicals such as pharmaceuticals and dietary supplements. Previously, we attained a 9.2-fold increase in free fatty acid productivity by disrupting a predicted acyl-CoA synthetase gene (faaA, AO090011000642) in Aspergillus oryzae. In this study, we achieved further increase in the productivity by overexpressing a predicted transketolase gene of the pentose phosphate pathway in the faaA disruptant. The A. oryzae genome is predicted to have three transketolase genes and overexpression of AO090023000345, one of the three genes, resulted in phenotypic change and further increase (corresponding to an increased production of 0.38 mmol/g dry cell weight) in free fatty acids at 1.4-fold compared to the faaA disruptant. Additionally, the biomass of hyphae increased at 1.2-fold by the overexpression. As a result, free fatty acid production yield per liter of liquid culture increased at 1.7-fold by the overexpression.


Asunto(s)
Aspergillus oryzae/genética , Coenzima A Ligasas/genética , Ácidos Grasos no Esterificados/biosíntesis , Proteínas Fúngicas/genética , Aspergillus oryzae/enzimología , Aspergillus oryzae/crecimiento & desarrollo , Coenzima A Ligasas/biosíntesis , Ácidos Grasos no Esterificados/genética , Regulación Enzimológica de la Expresión Génica , Regulación Fúngica de la Expresión Génica , Hifa/enzimología , Hifa/genética , Hifa/crecimiento & desarrollo , Vía de Pentosa Fosfato/genética , Transcetolasa/genética
18.
J Eur Acad Dermatol Venereol ; 30(8): 1384-9, 2016 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-27072777

RESUMEN

BACKGROUND: Lithium succinate and gluconate are effective alternative options licensed for the topical treatment of seborrhoeic dermatitis (SD). OBJECTIVE: Their mode of action is not fully elucidated. Minimal inhibitory concentrations against Malassezia (M.) yeasts, which play an important role in SD, are very high. METHODS: An assay based on the hydrolysis of ethyl octanoate enables us to test the hydrolytic activity of reference strains of the species M. globosa, M. sympodialis and M. furfur solely without interference by fungal growth as the free octanoic acid generated has antifungal activity. RESULTS: In this assay the presence of alkali salts (lithium, sodium and potassium succinate resp.) in concentrations of 2%, 4% and 8% does not influence hydrolytic activity but the availability of the generated free fatty acid in a dose-dependent manner which was analysed by means of high-performance thin layer chromatography and densitometry. This was best effected with the lithium, followed by the sodium and only to a low degree by the potassium salt. As shown by attenuated total reflection Fourier transform infrared spectroscopy the free fatty acid reacted to the respective alkali soap and precipitate from solution. The alkali soaps could not be utilized by the M. spp. as shown in a modified Tween auxanogram and in lack of fungal growth by ethyl oleate in the presence of 8% lithium succinate. CONCLUSION: The effect of lithium succinate on growth of M. yeasts and presumably in SD can be explained by a precipitation of free fatty acids as alkali soaps limiting their availability for the growth of these lipid-dependent yeasts.


Asunto(s)
Dermatitis Seborreica/tratamiento farmacológico , Ácidos Grasos no Esterificados/biosíntesis , Malassezia/metabolismo , Compuestos Organometálicos/uso terapéutico , Succinatos/uso terapéutico , Dermatitis Seborreica/microbiología , Humanos
19.
Metab Eng ; 31: 53-61, 2015 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-26164646

RESUMEN

Biological production of terminal alkenes has garnered a significant interest due to their industrial applications such as lubricants, detergents and fuels. Here, we engineered the yeast Saccharomyces cerevisiae to produce terminal alkenes via a one-step fatty acid decarboxylation pathway and improved the alkene production using combinatorial engineering strategies. In brief, we first characterized eight fatty acid decarboxylases to enable and enhance alkene production. We then increased the production titer 7-fold by improving the availability of the precursor fatty acids. We additionally increased the titer about 5-fold through genetic cofactor engineering and gene expression tuning in rich medium. Lastly, we further improved the titer 1.8-fold to 3.7 mg/L by optimizing the culturing conditions in bioreactors. This study represents the first report of terminal alkene biosynthesis in S. cerevisiae, and the abovementioned combinatorial engineering approaches collectively increased the titer 67.4-fold. We envision that these approaches could provide insights into devising engineering strategies to improve the production of fatty acid-derived biochemicals in S. cerevisiae.


Asunto(s)
Alquenos/metabolismo , Ingeniería Metabólica , Saccharomyces cerevisiae/genética , Reactores Biológicos , Ácidos Grasos no Esterificados/biosíntesis , Hemo/farmacología , Peróxido de Hidrógeno/farmacología , Saccharomyces cerevisiae/metabolismo
20.
Metab Eng ; 25: 82-91, 2014 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-25014174

RESUMEN

Crude glycerol, generated as waste by-product in biodiesel production process, has been considered as an important carbon source for converting to value-added bioproducts recently. Free fatty acids (FFAs) can be used as precursors for the production of biofuels or biochemicals. Microbial biosynthesis of FFAs can be achieved by introducing an acyl-acyl carrier protein thioesterase into Escherichia coli. In this study, the effect of metabolic manipulation of FFAs synthesis cycle, host genetic background and cofactor engineering on FFAs production using glycerol as feed stocks was investigated. The highest concentration of FFAs produced by the engineered stain reached 4.82g/L with the yield of 29.55% (g FFAs/g glycerol), about 83% of the maximum theoretical pathway value by the type II fatty acid synthesis pathway. In addition, crude glycerol from biodiesel plant was also used as feedstock in this study. The FFA production was 3.53g/L with a yield of 24.13%. The yield dropped slightly when crude glycerol was used as a carbon source instead of pure glycerol, while it still can reach about 68% of the maximum theoretical pathway yield.


Asunto(s)
Proteínas de Escherichia coli/fisiología , Escherichia coli/fisiología , Ácidos Grasos no Esterificados/biosíntesis , Glicerol/metabolismo , Ingeniería Metabólica/métodos , NADP Transhidrogenasas/metabolismo , Fosfotransferasas/metabolismo , Simulación por Computador , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Ácidos Grasos no Esterificados/genética , Mejoramiento Genético/métodos , Modelos Biológicos , NADP Transhidrogenasas/genética , Fosfotransferasas/genética
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda