Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 20 de 119
Filtrar
1.
Cell ; 151(7): 1474-87, 2012 Dec 21.
Artículo en Inglés | MEDLINE | ID: mdl-23260137

RESUMEN

DNA Ligase IV is responsible for sealing of double-strand breaks (DSBs) during nonhomologous end-joining (NHEJ). Inhibiting Ligase IV could result in amassing of DSBs, thereby serving as a strategy toward treatment of cancer. Here, we identify a molecule, SCR7 that inhibits joining of DSBs in cell-free repair system. SCR7 blocks Ligase IV-mediated joining by interfering with its DNA binding but not that of T4 DNA Ligase or Ligase I. SCR7 inhibits NHEJ in a Ligase IV-dependent manner within cells, and activates the intrinsic apoptotic pathway. More importantly, SCR7 impedes tumor progression in mouse models and when coadministered with DSB-inducing therapeutic modalities enhances their sensitivity significantly. This inhibitor to target NHEJ offers a strategy toward the treatment of cancer and improvement of existing regimens.


Asunto(s)
Roturas del ADN de Doble Cadena , Reparación del ADN por Unión de Extremidades/efectos de los fármacos , ADN Ligasas/antagonistas & inhibidores , Neoplasias/tratamiento farmacológico , Neoplasias/patología , Pirimidinas/uso terapéutico , Bases de Schiff/uso terapéutico , Secuencia de Aminoácidos , Animales , Línea Celular Tumoral , ADN Ligasa (ATP) , ADN Ligasas/química , ADN Ligasas/genética , Modelos Animales de Enfermedad , Diseño de Fármacos , Resistencia a Antineoplásicos , Humanos , Linfocitos/efectos de los fármacos , Linfoma/tratamiento farmacológico , Linfoma/patología , Masculino , Ratones , Ratones Endogámicos BALB C , Ratones Desnudos , Modelos Moleculares , Datos de Secuencia Molecular , Estructura Terciaria de Proteína , Pirimidinas/síntesis química , Pirimidinas/química , Tolerancia a Radiación , Ratas , Bases de Schiff/síntesis química , Bases de Schiff/química , Alineación de Secuencia
2.
Molecules ; 26(9)2021 Apr 25.
Artículo en Inglés | MEDLINE | ID: mdl-33923034

RESUMEN

Present in all organisms, DNA ligases catalyse the formation of a phosphodiester bond between a 3' hydroxyl and a 5' phosphate, a reaction that is essential for maintaining genome integrity during replication and repair. Eubacterial DNA ligases use NAD+ as a cofactor and possess low sequence and structural homology relative to eukaryotic DNA ligases which use ATP as a cofactor. These key differences enable specific targeting of bacterial DNA ligases as an antibacterial strategy. In this study, four small molecule accessible sites within functionally important regions of Escherichia coli ligase (EC-LigA) were identified using in silico methods. Molecular docking was then used to screen for small molecules predicted to bind to these sites. Eight candidate inhibitors were then screened for inhibitory activity in an in vitro ligase assay. Five of these (geneticin, chlorhexidine, glutathione (reduced), imidazolidinyl urea and 2-(aminomethyl)imidazole) showed dose-dependent inhibition of EC-LigA with half maximal inhibitory concentrations (IC50) in the micromolar to millimolar range (11-2600 µM). Two (geneticin and chlorhexidine) were predicted to bind to a region of EC-LigA that has not been directly investigated previously, raising the possibility that there may be amino acids within this region that are important for EC-LigA activity or that the function of essential residues proximal to this region are impacted by inhibitor interactions with this region. We anticipate that the identified small molecule binding sites and inhibitors could be pursued as part of an antibacterial strategy targeting bacterial DNA ligases.


Asunto(s)
ADN Ligasas/antagonistas & inhibidores , Inhibidores Enzimáticos/aislamiento & purificación , Escherichia coli/enzimología , Sitios de Unión/efectos de los fármacos , ADN Ligasas/química , Inhibidores Enzimáticos/química , Inhibidores Enzimáticos/farmacología , Escherichia coli/efectos de los fármacos , Simulación del Acoplamiento Molecular
3.
PLoS Pathog ; 13(12): e1006784, 2017 12.
Artículo en Inglés | MEDLINE | ID: mdl-29287110

RESUMEN

Hepadnavirus covalently closed circular (ccc) DNA is the bona fide viral transcription template, which plays a pivotal role in viral infection and persistence. Upon infection, the non-replicative cccDNA is converted from the incoming and de novo synthesized viral genomic relaxed circular (rc) DNA, presumably through employment of the host cell's DNA repair mechanisms in the nucleus. The conversion of rcDNA into cccDNA requires preparation of the extremities at the nick/gap regions of rcDNA for strand ligation. After screening 107 cellular DNA repair genes, we herein report that the cellular DNA ligase (LIG) 1 and 3 play a critical role in cccDNA formation. Ligase inhibitors or functional knock down/out of LIG1/3 significantly reduced cccDNA production in an in vitro cccDNA formation assay, and in cccDNA-producing cells without direct effect on viral core DNA replication. In addition, transcomplementation of LIG1/3 in the corresponding knock-out or knock-down cells was able to restore cccDNA formation. Furthermore, LIG4, a component in non-homologous end joining DNA repair apparatus, was found to be responsible for cccDNA formation from the viral double stranded linear (dsl) DNA, but not rcDNA. In conclusion, we demonstrate that hepadnaviruses utilize the whole spectrum of host DNA ligases for cccDNA formation, which sheds light on a coherent molecular pathway of cccDNA biosynthesis, as well as the development of novel antiviral strategies for treatment of hepatitis B.


Asunto(s)
ADN Ligasas/metabolismo , ADN Circular/biosíntesis , ADN Viral/biosíntesis , Hepadnaviridae/metabolismo , Línea Celular , ADN Ligasa (ATP)/antagonistas & inhibidores , ADN Ligasa (ATP)/genética , ADN Ligasa (ATP)/metabolismo , ADN Ligasas/antagonistas & inhibidores , ADN Ligasas/genética , Reparación del ADN/genética , Técnicas de Silenciamiento del Gen , Técnicas de Inactivación de Genes , Células HEK293 , Células Hep G2 , Hepadnaviridae/genética , Hepadnaviridae/patogenicidad , Virus de la Hepatitis B/genética , Virus de la Hepatitis B/metabolismo , Virus de la Hepatitis B/patogenicidad , Hepatocitos/metabolismo , Hepatocitos/virología , Interacciones Huésped-Patógeno/genética , Interacciones Huésped-Patógeno/fisiología , Humanos , Redes y Vías Metabólicas , Proteínas de Unión a Poli-ADP-Ribosa/antagonistas & inhibidores , Proteínas de Unión a Poli-ADP-Ribosa/genética , Proteínas de Unión a Poli-ADP-Ribosa/metabolismo
4.
Molecules ; 22(1)2017 Jan 17.
Artículo en Inglés | MEDLINE | ID: mdl-28106753

RESUMEN

The DNA ligases, enzymes that seal breaks in the backbones of DNA, are essential for all organisms, however bacterial ligases essential for DNA replication use ß-nicotinamide adenine dinucleotide as their co-factor, whereas those that are essential in eukaryotes and viruses use adenosine-5'-triphosphate. This fact leads to the conclusion that NAD⁺-dependent DNA ligases in bacteria could be targeted by their co-factor specific inhibitors. The development of novel alternative medical strategies, including new drugs, are a top priority focus areas for tuberculosis research due to an increase in the number of multi-drug resistant as well as totally drug resistant tubercle bacilli strains. Here, through the use of a virtual high-throughput screen and manual inspection of the top 200 records, 23 compounds were selected for in vitro studies. The selected compounds were evaluated in respect to their Mycobacterium tuberculosis NAD⁺ DNA ligase inhibitory effect by a newly developed assay based on Genetic Analyzer 3500 Sequencer. The most effective agents (e.g., pinafide, mitonafide) inhibited the activity of M. tuberculosis NAD⁺-dependent DNA ligase A at concentrations of 50 µM. At the same time, the ATP-dependent (phage) DNA LigT4 was unaffected by the agents at concentrations up to 2 mM. The selected compounds appeared to also be active against actively growing tubercle bacilli in concentrations as low as 15 µM.


Asunto(s)
Antituberculosos/farmacología , ADN Ligasas/antagonistas & inhibidores , Mycobacterium tuberculosis/efectos de los fármacos , Naftalimidas/farmacología , Proteínas Bacterianas/antagonistas & inhibidores , Inhibidores Enzimáticos/farmacología , Ensayos Analíticos de Alto Rendimiento , Isoquinolinas/farmacología , Simulación del Acoplamiento Molecular , NAD
5.
Antimicrob Agents Chemother ; 59(7): 3736-47, 2015 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-25845868

RESUMEN

Lymphatic filarial nematodes maintain a mutualistic relationship with the endosymbiont Wolbachia. Depletion of Wolbachia produces profound defects in nematode development, fertility, and viability and thus has great promise as a novel approach for treating filarial diseases. NAD(+)-dependent DNA ligase is an essential enzyme of DNA replication, repair, and recombination. Therefore, in the present study, the antifilarial drug target potential of the NAD(+)-dependent DNA ligase of the Wolbachia symbiont of Brugia malayi (wBm-LigA) was investigated using dispiro-cycloalkanone compounds. Dispiro-cycloalkanone specifically inhibited the nick-closing and cohesive-end ligation activities of the enzyme without inhibiting human or T4 DNA ligase. The mode of inhibition was competitive with the NAD(+) cofactor. Docking studies also revealed the interaction of these compounds with the active site of the target enzyme. The adverse effects of these inhibitors were observed on adult and microfilarial stages of B. malayi in vitro, and the most active compounds were further monitored in vivo in jirds and mastomys rodent models. Compounds 1, 2, and 5 had severe adverse effects in vitro on the motility of both adult worms and microfilariae at low concentrations. Compound 2 was the best inhibitor, with the lowest 50% inhibitory concentration (IC50) (1.02 µM), followed by compound 5 (IC50, 2.3 µM) and compound 1 (IC50, 2.9 µM). These compounds also exhibited the same adverse effect on adult worms and microfilariae in vivo (P < 0.05). These compounds also tremendously reduced the wolbachial load, as evident by quantitative real-time PCR (P < 0.05). wBm-LigA thus shows great promise as an antifilarial drug target, and dispiro-cycloalkanone compounds show great promise as antifilarial lead candidates.


Asunto(s)
Brugia Malayi/microbiología , ADN Ligasas/antagonistas & inhibidores , Filaricidas/farmacología , Cetonas/farmacología , Compuestos de Espiro/farmacología , Wolbachia/efectos de los fármacos , Animales , Antibacterianos/farmacología , ADN Ligasa (ATP) , ADN Ligasas/efectos de los fármacos , Escherichia coli/genética , Escherichia coli/metabolismo , Gerbillinae , Cetonas/síntesis química , Masculino , Pruebas de Sensibilidad Microbiana , Modelos Moleculares , Simulación del Acoplamiento Molecular , Murinae/parasitología , Compuestos de Espiro/síntesis química , Simbiosis , Wolbachia/enzimología
6.
J Recept Signal Transduct Res ; 35(1): 15-25, 2015 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-25055026

RESUMEN

Staphylococcus aureus has been recognized as an important human pathogen for more than 100 years. It is among the most important causative agent of human infections in the twenty-first century. DNA ligase is the main protein responsible for the replication of S. aureus. In order to control the replication mechanism, DNA ligase is a successive drug target, hence we have chosen this protein for this study. We performed virtual screening using ZINC database for identification of potent inhibitor against DNA ligase. Based on the scoring methods, we have selected best five compounds from the ZINC database. In order to improve the accuracy, selected compounds were subjected into Quantum Polarized Ligand Docking (QPLD) docking, for which the results showed high docking score, compared to glide docking score. QPLD is more accurate as it includes charges in the scoring function, which was not available in the glide docking. Binding energy calculation results also indicated that selected compounds have good binding capacity with the target protein. In addition, these compounds on screening have good absorption, distribution, metabolism, excretion and toxicity property. In this study, we identified few compounds that particularly work against DNA ligase protein, having better interaction phenomenon and it would help further the experimental analysis.


Asunto(s)
ADN Ligasas/antagonistas & inhibidores , Replicación del ADN/efectos de los fármacos , Infecciones Estafilocócicas/tratamiento farmacológico , Staphylococcus aureus/efectos de los fármacos , Secuencia de Aminoácidos , ADN Ligasas/genética , Humanos , Ligandos , Simulación del Acoplamiento Molecular , Simulación de Dinámica Molecular , Conformación Proteica/efectos de los fármacos , Infecciones Estafilocócicas/microbiología , Staphylococcus aureus/enzimología , Staphylococcus aureus/patogenicidad
7.
Bioorg Med Chem Lett ; 25(22): 5172-7, 2015 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-26463129

RESUMEN

Two novel compounds, pyridopyrimidines (1) and naphthyridines (2) were identified as potent inhibitors of bacterial NAD(+)-dependent DNA ligase (Lig) A in a fragment screening. SAR was guided by molecular modeling and X-ray crystallography. It was observed that the diaminonitrile pharmacophore made a key interaction with the ligase enzyme, specifically residues Glu114, Lys291, and Leu117. Synthetic challenges limited opportunities for diversification of the naphthyridine core, therefore most of the SAR was focused on a pyridopyrimidine scaffold. The initial diversification at R(1) improved both enzyme and cell potency. Further SAR developed at the R(2) position using the Negishi cross-coupling reaction provided several compounds, among these compounds 22g showed good enzyme potency and cellular potency.


Asunto(s)
Antibacterianos/farmacología , Proteínas Bacterianas/antagonistas & inhibidores , ADN Ligasas/antagonistas & inhibidores , NAD/metabolismo , Naftiridinas/farmacología , Pirimidinas/farmacología , Antibacterianos/síntesis química , Proteínas Bacterianas/química , ADN Ligasas/química , Haemophilus influenzae/efectos de los fármacos , Pruebas de Sensibilidad Microbiana , Naftiridinas/síntesis química , Pirimidinas/síntesis química , Staphylococcus aureus/efectos de los fármacos , Streptococcus pneumoniae/efectos de los fármacos , Relación Estructura-Actividad
8.
Org Biomol Chem ; 13(19): 5475-87, 2015 May 21.
Artículo en Inglés | MEDLINE | ID: mdl-25875403

RESUMEN

DNA ligases are critical components for DNA metabolism in all organisms. NAD(+)-dependent DNA ligases (LigA) found exclusively in bacteria and certain entomopoxviruses are drawing increasing attention as therapeutic targets as they differ in their cofactor requirement from ATP-dependent eukaryotic homologs. Due to the similarities in the cofactor binding sites of the two classes of DNA ligases, it is necessary to find determinants that can distinguish between them for the exploitation of LigA as an anti-bacterial target. In the present endeavour, we have synthesized and evaluated a series of tricyclic dihydrobenzoxazepine and tetracyclic indole derivatives for their ability to distinguish between bacterial and human DNA ligases. The in vivo inhibition assays that employed LigA deficient E. coli GR501 and S. typhimurium LT2 bacterial strains, rescued by ATP-dependent T4 DNA ligase or Mycobacterium tuberculosis NAD(+)-dependent DNA ligase (Mtb LigA), respectively, showed that the compounds can specifically inhibit bacterial LigA. The in vitro enzyme inhibition assays using purified MtbLigA, human DNA ligase I & T4 DNA ligase showed specific inhibition of MtbLigA at low micromolar range. Our results demonstrate that tricyclic dihydrobenzoxazepine and tetracyclic indole derivatives can distinguish between bacterial and human DNA ligases by ∼5-folds. In silico docking and enzyme inhibition assays identified that the compounds bind to the cofactor binding site and compete with the cofactor. Ethidium bromide displacement and gel-shift assays showed that the inhibitors do not exhibit any unwanted general interactions with the substrate DNA. These results set the stage for the detailed exploration of this compound class for development as antibacterials.


Asunto(s)
Bacterias/enzimología , ADN Ligasas/antagonistas & inhibidores , Dibenzoxazepinas/farmacología , Indoles/farmacología , Antibacterianos/farmacología , ADN/metabolismo , ADN Ligasa (ATP) , ADN Ligasas/metabolismo , Dibenzoxazepinas/síntesis química , Dibenzoxazepinas/química , Pruebas de Enzimas , Inhibidores Enzimáticos/síntesis química , Inhibidores Enzimáticos/química , Inhibidores Enzimáticos/farmacología , Escherichia coli/enzimología , Humanos , Indoles/síntesis química , Indoles/química , Pruebas de Sensibilidad Microbiana , Simulación del Acoplamiento Molecular , Mycobacterium tuberculosis/enzimología , Salmonella typhimurium/enzimología
9.
Org Biomol Chem ; 13(22): 6380-98, 2015 Jun 14.
Artículo en Inglés | MEDLINE | ID: mdl-25974621

RESUMEN

We report the chemical synthesis and conformational analysis of a collection of 2-, 6- and 8-substituted derivatives of ß-NAD(+) and AMP, and their biochemical evaluation against NAD(+)-dependent DNA ligases from Escherichia coli and Mycobacterium tuberculosis. Bacterial DNA ligases are validated anti-microbial targets, and new strategies for their inhibition are therefore of considerable scientific and practical interest. Our study includes several pairs of ß-NAD(+) and AMP derivatives with the same substitution pattern at the adenine base. This has enabled the first direct comparison of co-substrate and inhibitor behaviour against bacterial DNA ligases. Our results suggest that an additional substituent in position 6 or 8 of the adenine base in ß-NAD(+) is detrimental for activity as either co-substrate or inhibitor. In contrast, substituents in position 2 are not only tolerated, but appear to give rise to a new mode of inhibition, which targets the conformational changes these DNA ligases undergo during catalysis. Using a molecular modelling approach, we highlight that these findings have important implications for our understanding of ligase mechanism and inhibition, and may provide a promising starting point for the rational design of a new class of inhibitors against NAD(+)-dependent DNA ligases.


Asunto(s)
Adenosina Monofosfato/farmacología , ADN Ligasas/antagonistas & inhibidores , Inhibidores Enzimáticos/farmacología , Escherichia coli/enzimología , Mycobacterium tuberculosis/enzimología , NAD/farmacología , Adenosina Monofosfato/síntesis química , Adenosina Monofosfato/química , Antibacterianos/síntesis química , Antibacterianos/química , Antibacterianos/farmacología , ADN Ligasas/aislamiento & purificación , ADN Ligasas/metabolismo , Relación Dosis-Respuesta a Droga , Inhibidores Enzimáticos/síntesis química , Inhibidores Enzimáticos/química , Escherichia coli/efectos de los fármacos , Modelos Moleculares , Conformación Molecular , Mycobacterium tuberculosis/efectos de los fármacos , NAD/síntesis química , NAD/química , Relación Estructura-Actividad
10.
Med Res Rev ; 34(3): 567-95, 2014 May.
Artículo en Inglés | MEDLINE | ID: mdl-23959747

RESUMEN

Living organisms belonging to all three domains of life, viz., eubacteria, archaeabacteria, and eukaryotes encode one or more DNA ligases. DNA ligases are indispensable in various DNA repair and replication processes and a deficiency or an inhibition of their activity can lead to accumulation of DNA damage and strand breaks. DNA damage, specially strand breaks at unsustainable levels can lead to replication block and/or cell death. DNA ligases as potential anticancer targets have been realized only recently. There is enough rationale to suggest that ligases have a tremendous potential for novel therapeutics including anticancer and antibacterial therapy, specially when the world is facing acute problems of drug resistance and chemotherapy failure, with an immediate need for new therapeutic targets. Here, we review the current state of the art in the development of human ligase inhibitors, their structures, molecular mechanisms, physiological effects, and their potential in future cancer therapy. Citing examples, we focus on strategies for improving the activity and specificity of existing and novel inhibitors by using structure-based rational approaches. In the end, we describe potential new sites on the ligase I protein that can be targeted for the development of novel inhibitors. This is the first comprehensive review to compile all known human ligase inhibitors and to provide a rationale for the further development of ligase inhibitors for cancer therapy.


Asunto(s)
ADN Ligasas/metabolismo , Neoplasias/enzimología , Neoplasias/terapia , Secuencia de Aminoácidos , ADN Ligasas/antagonistas & inhibidores , ADN Ligasas/química , Inhibidores Enzimáticos/química , Inhibidores Enzimáticos/clasificación , Inhibidores Enzimáticos/farmacología , Humanos , Datos de Secuencia Molecular , Terapia Molecular Dirigida
11.
Bioorg Med Chem Lett ; 24(1): 360-6, 2014 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-24287382

RESUMEN

In an attempt to identify novel inhibitors of NAD(+)-dependent DNA ligase (LigA) that are not affected by a known resistance mutation in the adenosine binding pocket, a detailed analysis of the binding sites of a variety of bacterial ligases was performed. This analysis revealed several similarities to the adenine binding region of kinases, which enabled a virtual screen of known kinase inhibitors. From this screen, a thienopyridine scaffold was identified that was shown to inhibit bacterial ligase. Further characterization through structure and enzymology revealed the compound was not affected by a previously disclosed resistance mutation in Streptococcus pneumoniae LigA, Leu75Phe. A subsequent medicinal chemistry program identified substitutions that resulted in an inhibitor with moderate activity across various Gram-positive bacterial LigA enzymes.


Asunto(s)
ADN Ligasas/antagonistas & inhibidores , Inhibidores Enzimáticos/farmacología , Streptococcus pneumoniae/enzimología , ADN Ligasas/metabolismo , Relación Dosis-Respuesta a Droga , Inhibidores Enzimáticos/síntesis química , Inhibidores Enzimáticos/química , Modelos Moleculares , Estructura Molecular , Relación Estructura-Actividad
12.
J Chem Inf Model ; 54(3): 781-92, 2014 Mar 24.
Artículo en Inglés | MEDLINE | ID: mdl-24593844

RESUMEN

Human DNA ligases are enzymes that are indispensable for DNA replication and repair processes. Among the three human ligases, ligase I is attributed to the ligation of thousands of Okazaki fragments that are formed during lagging strand synthesis during DNA replication. Blocking ligation therefore can lead to the accumulation of thousands of single strands and subsequently double strand breaks in the DNA, which is lethal for the cells. The reports of the high expression level of ligase I protein in several cancer cells (versus the low ligase expression level and the low rate of division of most normal cells in the adult body) support the belief that ligase I inhibitors can target cancer cells specifically with minimum side effects to normal cells. Recent publications showing exciting data for a ligase IV inhibitor exhibiting antitumor activity in mouse models also strengthens the argument for ligases as valid antitumor targets. Keeping this in view, we performed a pharmacophore-based screening for potential ligase inhibitors in the Maybridge small molecule library and procured some of the top-ranking compounds for enzyme-based and cell-based in vitro screening. We report here the identification of novel ligase I inhibitors with potential anticancer activity against a colon cancer cell line.


Asunto(s)
Antineoplásicos/química , Antineoplásicos/farmacología , ADN Ligasas/antagonistas & inhibidores , Descubrimiento de Drogas , Inhibidores Enzimáticos/química , Inhibidores Enzimáticos/farmacología , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , ADN/metabolismo , ADN Ligasa (ATP) , ADN Ligasas/metabolismo , Humanos , Simulación del Acoplamiento Molecular , Neoplasias/tratamiento farmacológico , Neoplasias/enzimología
13.
Cell Mol Life Sci ; 69(17): 2933-49, 2012 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-22460582

RESUMEN

DNA ligase I (LigI) plays a central role in the joining of strand interruptions during replication and repair. In our current study, we provide evidence that DNA ligase III (LigIII) and XRCC1, which form a complex that functions in single-strand break repair, are required for the proliferation of mammalian LigI-depleted cells. We show from our data that in cells with either dysfunctional LigI activity or depleted of this enzyme, both LigIII and XRCC1 are retained on the chromatin and accumulate at replication foci. We also demonstrate that the LigI and LigIII proteins cooperate to inhibit sister chromatid exchanges but that only LigI prevents telomere sister fusions. Taken together, these results suggest that in cells with dysfunctional LigI, LigIII contributes to the ligation of replication intermediates but not to the prevention of telomeric instability.


Asunto(s)
ADN Ligasas/fisiología , Proteínas de Unión al ADN/metabolismo , Embrión de Mamíferos/citología , Fibroblastos/citología , Mitosis/fisiología , Telómero/química , Animales , Western Blotting , Supervivencia Celular , Células Cultivadas , Cromatina/genética , Ensayo de Unidades Formadoras de Colonias , Daño del ADN/genética , ADN Ligasa (ATP) , ADN Ligasas/antagonistas & inhibidores , Reparación del ADN , Replicación del ADN , Proteínas de Unión al ADN/antagonistas & inhibidores , Proteínas de Unión al ADN/genética , Embrión de Mamíferos/enzimología , Fibroblastos/enzimología , Técnica del Anticuerpo Fluorescente , Prueba de Complementación Genética , Humanos , Hibridación Fluorescente in Situ , Ratones , Ratones Noqueados , Proteínas de Unión a Poli-ADP-Ribosa , ARN Interferente Pequeño/genética , Intercambio de Cromátides Hermanas/genética , Telómero/genética , Proteína 1 de Reparación por Escisión del Grupo de Complementación Cruzada de las Lesiones por Rayos X , Proteínas de Xenopus
14.
Antimicrob Agents Chemother ; 56(8): 4095-102, 2012 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-22585221

RESUMEN

We report the use of a known pyridochromanone inhibitor with antibacterial activity to assess the validity of NAD(+)-dependent DNA ligase (LigA) as an antibacterial target in Staphylococcus aureus. Potent inhibition of purified LigA was demonstrated in a DNA ligation assay (inhibition constant [K(i)] = 4.0 nM) and in a DNA-independent enzyme adenylation assay using full-length LigA (50% inhibitory concentration [IC(50)] = 28 nM) or its isolated adenylation domain (IC(50) = 36 nM). Antistaphylococcal activity was confirmed against methicillin-susceptible and -resistant S. aureus (MSSA and MRSA) strains (MIC = 1.0 µg/ml). Analysis of spontaneous resistance potential revealed a high frequency of emergence (4 × 10(-7)) of high-level resistant mutants (MIC > 64) with associated ligA lesions. There were no observable effects on growth rate in these mutants. Of 22 sequenced clones, 3 encoded point substitutions within the catalytic adenylation domain and 19 in the downstream oligonucleotide-binding (OB) fold and helix-hairpin-helix (HhH) domains. In vitro characterization of the enzymatic properties of four selected mutants revealed distinct signatures underlying their resistance to inhibition. The infrequent adenylation domain mutations altered the kinetics of adenylation and probably elicited resistance directly. In contrast, the highly represented OB fold domain mutations demonstrated a generalized resistance mechanism in which covalent LigA activation proceeds normally and yet the parameters of downstream ligation steps are altered. A resulting decrease in substrate K(m) and a consequent increase in substrate occupancy render LigA resistant to competitive inhibition. We conclude that the observed tolerance of staphylococcal cells to such hypomorphic mutations probably invalidates LigA as a viable target for antistaphylococcal chemotherapy.


Asunto(s)
Antibacterianos/farmacología , ADN Ligasas/antagonistas & inhibidores , Inhibidores Enzimáticos/farmacología , Staphylococcus aureus Resistente a Meticilina/efectos de los fármacos , Staphylococcus aureus Resistente a Meticilina/enzimología , Antibacterianos/química , ADN Ligasas/química , ADN Ligasas/genética , Farmacorresistencia Bacteriana , Inhibidores Enzimáticos/química , Staphylococcus aureus Resistente a Meticilina/crecimiento & desarrollo , Pruebas de Sensibilidad Microbiana , Proteínas Mutantes/antagonistas & inhibidores , Proteínas Mutantes/química , Estructura Secundaria de Proteína , Estructura Terciaria de Proteína
15.
Bioorg Med Chem Lett ; 22(1): 85-9, 2012 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-22154350

RESUMEN

Optimization of clearance of adenosine inhibitors of bacterial NAD(+)-dependent DNA ligase is discussed. To reduce Cytochrome P-450-mediated metabolic clearance, many strategies were explored; however, most modifications resulted in compounds with reduced antibacterial activity and/or unchanged total clearance. The alkyl side chains of the 2-cycloalkoxyadenosines were fluorinated, and compounds with moderate antibacterial activity and favorable pharmacokinetic properties in rat and dog were identified.


Asunto(s)
Adenosina/química , Antibacterianos/síntesis química , ADN Ligasas/antagonistas & inhibidores , Inhibidores Enzimáticos/farmacología , NAD/química , Adenina/química , Administración Oral , Animales , Antibacterianos/química , Disponibilidad Biológica , Cromatografía Liquida/métodos , ADN Ligasas/química , Perros , Diseño de Fármacos , Evaluación Preclínica de Medicamentos/métodos , Flúor/química , Concentración 50 Inhibidora , Espectrometría de Masas/métodos , Modelos Químicos , Ratas
16.
Bioorg Med Chem Lett ; 22(21): 6705-11, 2012 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-23006603

RESUMEN

A series of 2-amino-[1,8]-naphthyridine-3-carboxamides (ANCs) with potent inhibition of bacterial NAD(+)-dependent DNA ligases (LigAs) evolved from a 2,4-diaminopteridine derivative discovered by HTS. The design was guided by several highly resolved X-ray structures of our inhibitors in complex with either Streptococcus pneumoniae or Escherichia coli LigA. The structure-activity-relationship based on the ANC scaffold is discussed. The in-depth characterization of 2-amino-6-bromo-7-(trifluoromethyl)-[1,8]-naphthyridine-3-carboxamide, which displayed promising in vitro (MIC Staphylococcus aureus 1 mg/L) and in vivo anti-staphylococcal activity, is presented.


Asunto(s)
Antibacterianos/síntesis química , Antibacterianos/farmacología , ADN Ligasas/antagonistas & inhibidores , Diseño de Fármacos , Staphylococcus/efectos de los fármacos , Animales , Antibacterianos/química , Antibacterianos/uso terapéutico , Cristalografía por Rayos X , ADN Bacteriano/antagonistas & inhibidores , Concentración 50 Inhibidora , Ratones , Pruebas de Sensibilidad Microbiana , Estructura Molecular , Ratas , Infecciones Estafilocócicas/tratamiento farmacológico , Relación Estructura-Actividad
18.
Bioorg Med Chem Lett ; 22(11): 3693-8, 2012 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-22560473

RESUMEN

A series of 2,6-disubstituted aminoalkoxypyrimidine carboxamides (AAPCs) with potent inhibition of bacterial NAD(+)-dependent DNA ligase was discovered through the use of structure-guided design. Two subsites in the NAD(+)-binding pocket were explored to modulate enzyme inhibitory potency: a hydrophobic selectivity region was explored through a series of 2-alkoxy substituents while the sugar (ribose) binding region of NAD(+) was explored via 6-alkoxy substituents.


Asunto(s)
Amidas/química , Antibacterianos/síntesis química , Proteínas Bacterianas/antagonistas & inhibidores , ADN Ligasas/antagonistas & inhibidores , Diseño de Fármacos , Inhibidores Enzimáticos/síntesis química , Amidas/síntesis química , Amidas/farmacología , Antibacterianos/química , Antibacterianos/farmacología , Proteínas Bacterianas/metabolismo , Sitios de Unión , Dominio Catalítico , Simulación por Computador , Cristalografía por Rayos X , ADN Ligasa (ATP) , ADN Ligasas/metabolismo , Enterococcus faecalis/efectos de los fármacos , Inhibidores Enzimáticos/química , Inhibidores Enzimáticos/farmacología , Humanos , Pruebas de Sensibilidad Microbiana , NAD/metabolismo , Pirimidinas/química , Relación Estructura-Actividad
19.
J Biol Chem ; 285(4): 2351-60, 2010 Jan 22.
Artículo en Inglés | MEDLINE | ID: mdl-19940137

RESUMEN

The small molecule, 2-(1-hydroxyundecyl)-1-(4-nitrophenylamino)-6-phenyl-6,7a-dihydro-1H-pyrrolo[3,4-b]pyridine-5,7(2H,4aH)-dione (A12B4C3), is a potent inhibitor of the phosphatase activity of human polynucleotide kinase/phosphatase (PNKP) in vitro. Kinetic analysis revealed that A12B4C3 acts as a noncompetitive inhibitor, and this was confirmed by fluorescence quenching, which showed that the inhibitor can form a ternary complex with PNKP and a DNA substrate, i.e. A12B4C3 does not prevent DNA from binding to the phosphatase DNA binding site. Conformational analysis using circular dichroism, UV difference spectroscopy, and fluorescence resonance energy transfer all indicate that A12B4C3 disrupts the secondary structure of PNKP. Investigation of the potential site of binding of A12B4C3 to PNKP using site-directed mutagenesis pointed to interaction between Trp(402) of PNKP and the inhibitor. Cellular studies revealed that A12B4C3 sensitizes A549 human lung cancer cells to the topoisomerase I poison, camptothecin, but not the topoisomerase II poison, etoposide, in a manner similar to small interfering RNA against PNKP. A12B4C3 also inhibits the repair of DNA single and double strand breaks following exposure of cells to ionizing radiation, but does not inhibit two other key strand-break repair enzymes, DNA polymerase beta or DNA ligase III, providing additional evidence that PNKP is the cellular target of the inhibitor.


Asunto(s)
Enzimas Reparadoras del ADN/antagonistas & inhibidores , Resistencia a Antineoplásicos/efectos de los fármacos , Inhibidores Enzimáticos/farmacología , Neoplasias Pulmonares/tratamiento farmacológico , Fosfotransferasas (Aceptor de Grupo Alcohol)/antagonistas & inhibidores , Piperidinas/farmacología , Pirroles/farmacología , Adenosina Trifosfato/metabolismo , Antineoplásicos Fitogénicos/farmacología , Sitios de Unión , Camptotecina/farmacología , Supervivencia Celular/efectos de los fármacos , Dicroismo Circular , ADN Ligasa (ATP) , ADN Ligasas/antagonistas & inhibidores , ADN Ligasas/metabolismo , ADN Polimerasa beta/antagonistas & inhibidores , ADN Polimerasa beta/metabolismo , Reparación del ADN/efectos de los fármacos , Enzimas Reparadoras del ADN/química , Enzimas Reparadoras del ADN/genética , Etopósido/farmacología , Transferencia Resonante de Energía de Fluorescencia , Humanos , Neoplasias Pulmonares/metabolismo , Mutagénesis Sitio-Dirigida , Fosfotransferasas (Aceptor de Grupo Alcohol)/química , Fosfotransferasas (Aceptor de Grupo Alcohol)/genética , Espectroscopía de Fotoelectrones , Proteínas de Unión a Poli-ADP-Ribosa , Conformación Proteica , Pirroles/química , Fármacos Sensibilizantes a Radiaciones/farmacología , Células Tumorales Cultivadas , Proteínas de Xenopus
20.
Antimicrob Agents Chemother ; 55(3): 1088-96, 2011 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-21189350

RESUMEN

DNA ligases are indispensable enzymes playing a critical role in DNA replication, recombination, and repair in all living organisms. Bacterial NAD+-dependent DNA ligase (LigA) was evaluated for its potential as a broad-spectrum antibacterial target. A novel class of substituted adenosine analogs was discovered by target-based high-throughput screening (HTS), and these compounds were optimized to render them more effective and selective inhibitors of LigA. The adenosine analogs inhibited the LigA activities of Escherichia coli, Haemophilus influenzae, Mycoplasma pneumoniae, Streptococcus pneumoniae, and Staphylococcus aureus, with inhibitory activities in the nanomolar range. They were selective for bacterial NAD+-dependent DNA ligases, showing no inhibitory activity against ATP-dependent human DNA ligase 1 or bacteriophage T4 ligase. Enzyme kinetic measurements demonstrated that the compounds bind competitively with NAD+. X-ray crystallography demonstrated that the adenosine analogs bind in the AMP-binding pocket of the LigA adenylation domain. Antibacterial activity was observed against pathogenic Gram-positive and atypical bacteria, such as S. aureus, S. pneumoniae, Streptococcus pyogenes, and M. pneumoniae, as well as against Gram-negative pathogens, such as H. influenzae and Moraxella catarrhalis. The mode of action was verified using recombinant strains with altered LigA expression, an Okazaki fragment accumulation assay, and the isolation of resistant strains with ligA mutations. In vivo efficacy was demonstrated in a murine S. aureus thigh infection model and a murine S. pneumoniae lung infection model. Treatment with the adenosine analogs reduced the bacterial burden (expressed in CFU) in the corresponding infected organ tissue as much as 1,000-fold, thus validating LigA as a target for antibacterial therapy.


Asunto(s)
Antibacterianos/farmacología , Antibacterianos/uso terapéutico , ADN Ligasas/antagonistas & inhibidores , Inhibidores Enzimáticos/farmacología , Inhibidores Enzimáticos/uso terapéutico , Animales , Femenino , Humanos , Ratones , Pruebas de Sensibilidad Microbiana , Infecciones Estafilocócicas/tratamiento farmacológico , Staphylococcus aureus/efectos de los fármacos , Staphylococcus aureus/patogenicidad , Streptococcus pneumoniae/efectos de los fármacos , Streptococcus pneumoniae/patogenicidad
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda